US5281478A - Method for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes - Google Patents

Method for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes Download PDF

Info

Publication number
US5281478A
US5281478A US07/984,747 US98474792A US5281478A US 5281478 A US5281478 A US 5281478A US 98474792 A US98474792 A US 98474792A US 5281478 A US5281478 A US 5281478A
Authority
US
United States
Prior art keywords
group
groups
pigments
modifying
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/984,747
Other languages
English (en)
Inventor
Werner Hohner
Dietmar Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Goldschmidt GmbH
Original Assignee
TH Goldschmidt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TH Goldschmidt AG filed Critical TH Goldschmidt AG
Assigned to TH. GOLDSCHMIDT AG reassignment TH. GOLDSCHMIDT AG ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HOHNER, WERNER, SCHAEFER, DIETMAR
Application granted granted Critical
Publication of US5281478A publication Critical patent/US5281478A/en
Assigned to GOLDSCHMIDT AG reassignment GOLDSCHMIDT AG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TH. GOLDSCHMIDT AKTIENGESELLSCHAFT
Assigned to GOLDSCHMIDT GMBH reassignment GOLDSCHMIDT GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GOLDSCHMIDT AG
Assigned to EVONIK GOLDSCHMIDT GMBH reassignment EVONIK GOLDSCHMIDT GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GOLDSCHMIDT GMBH
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/40Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the invention relates to a method for modifying the surface of finely divided particles, such as pigments and fillers, or of glass fibers, by applying organopolysiloxanes with epoxy and long-chain alkyl groups linked over carbon atoms to silicon atoms.
  • EP-A-0 373 426 describes inorganic paint and magnetic pigments containing at least 0.1 percent by weight and at most 5 percent by weight of one or several polyorganosiloxanes, which have a viscosity of 100 to 100,000 mPa ⁇ sec and a relative molecular weight of 500 to 500,000, do not contain any reactive or cross-linking groups, and contain at least one Si-alkyl and/or Si-aryl group with 9 to 25 carbon atoms per molecule, these groups being present in the polyorganosiloxane in an amount up to 7 to 70 percent by weight and the remaining organic groups in the polyorganosiloxane having 1 to 8 carbon atoms.
  • the organosilicon compounds named in the aforementioned EP-A-0 373 426 are suitable in many cases for coating dye pigments. However, they frequently fail in the case of fillers, such as magnesium or aluminum oxides or their oxide hydrates. Frequently, a better dispersibility of the coated particles and a better adhesion of the coating to the surface of the particles are also desired.
  • the British Patent GB 2,244,489 claims a filler which is provided with a coating of cross-linked silicone elastomers linked chemically to the surface of the inorganic core. It is evident from the examples cited there that, to begin with, highly cross linked silicone elastomers with a plurality of reactive SiOH groups (also referred to as “rubbery reactive silicones”) are synthesized first. These are then applied on the inorganic filler and must be cured on this filler for 4 hours at 250° C.
  • the silicone elastomer is the product of a cross-linking reaction between a "multifunctionally terminated" polysiloxane and a silane cross-linking agent.
  • These coating materials are cross linked elastomers intended to improve mechanical properties, such as the extensibility and tenacity, of filled polymers.
  • the present invention is concerned with the technical problem of finding organosilicon compounds, which are suitable as universally as possible for coating finely divided particles of various types, particularly also of fillers.
  • the coated particles should have good application properties, such as an improved dispersibility and improved compatibility in organic media, such as lacquers, plastics, mineral oils, synthetic oils, vegetable oils or plasticizers.
  • the coating shall adhere well to the surfaces of the particles so that permanence of the properties is ensured.
  • EP-A-0 373 426 teaches that the organopolysiloxane should be free of reactive groups. Surprisingly, it was found that the organopolysiloxanes show improved properties as coating materials on pigments and fillers especially when, in departure from the teachings of EP-A-0 373 426, groups which have a certain, graded reactivity, are linked in the siloxane molecule to silicon atoms.
  • An object of the invention is a method for modifying the surface of finely divided particles, such as pigments and fillers or of glass fibers, by applying organopolysiloxanes with epoxy groups and long-chain alkyl groups linked over carbon atoms to silicon atoms and having the general formula ##STR1## wherein R 1 is an alkyl group with 1 to 4 carbon atoms or a phenyl group, at least 90% of the R groups, however, being CH 3 groups,
  • R 2 is identical with R 1 to the extent of 50 to 99% and is R 3 and R 4 to the extent of I to 50%,
  • R 3 being a group having the formula ##STR2##
  • R 4 being a linear or branched alkyl group with 6 to 30 carbon atoms, the ratio of the R 3 group to the R 4 group falling within the range of 1:25 to 10:1, with the proviso that at least one R 3 group and at least one R 4 group must be present in the average molecule,
  • a is a number from 1 to 500 and
  • b is a number from 0 to 10.
  • finely divided particles such as pigments and fillers, or of glass fibers.
  • R 1 is an alkyl group with 1 to 4 carbon atoms or a phenyl group. At least 90% of the R 1 groups should be methyl groups. It is particularly preferred if all the R 1 groups are methyl groups. In many cases however, the compatibility with lacquers can be improved by the introduction of phenyl groups.
  • R 2 groups From 50 to 99% of the R 2 groups can be R 1 groups.
  • the remaining R 2 groups characterize the organofunctional groups, which are formed in two different ways:
  • R 3 group is an epoxy group of the formula ##STR3##
  • This epoxy group gives the organopolysiloxane, which is to be used pursuant to the invention, the desired substantivity and the desired graded reactivity.
  • the other organofunctional R 4 group is a linear or branched alkyl group with 6 to 30 carbon atoms. This R 4 group preferably has 8 to 20 carbon atoms.
  • organopolysiloxane which is to be used pursuant to the invention, 1 to 50% of the R 2 groups are R 3 and R 4 groups.
  • the ratio of the R 3 groups to the R 4 groups should fall within the range of 1:25 to 10:1. However, the condition must be fulfilled that there is at least one R 3 group and at least one R 4 group in the average organopolysiloxane molecule.
  • the R 3 and R 4 groups can be linked terminally and/or laterally. Organopolysiloxanes with laterally linked R 3 and R 4 groups are preferred.
  • the structure of the organopolysiloxane is determined by the value of the subscripts a and b, a indicating the content of difunctional siloxy units land b the degree of branching.
  • the former, a has a value of 1 to 500 and preferably of 2 to 100, while the latter, b, has a value of 0 to 100 and preferably of 0 to 5.
  • the compounds can be synthesized by a known procedure by the addition reaction between ⁇ -olefins and allyl glycidyl ethers or vinylcyclohexene oxide hand and organopolysiloxanes, in which an appropriate portion of the R 2 groups is replaced by the H group, in the presence of suitable catalysts, such as platinum compounds, for example, H 2 PtCl 6 , or in the presence of platinum applied on carrier material.
  • suitable catalysts such as platinum compounds, for example, H 2 PtCl 6 , or in the presence of platinum applied on carrier material.
  • the modifying agents pursuant to the invention are generally applied directly on the particles that are to be modified. This can be accomplished by spraying the modifying agents, optionally in the form of concentrated solutions. The solvents would then have to be drawn off.
  • the modification can be brought about by mechanically applying the modifying agents, for example, by stirring, kneading or rolling. It is also possible to disperse the particles to be modified in the organic medium, for example, a binder, vehicle or plasticizer, and to add the modifying agent, pursuant to the invention, in the desired amount to this dispersion.
  • the modifying agent generally is used in an amount of 0.1 to 5 percent by weight, based on the particles that are to be modified. The addition of 0.3 to 2 percent by weight is preferred.
  • fillers which are to be modified pursuant to the invention, talc, calcium carbonate, dolomite, mica, wollastonite, kaolin, aluminum hydroxide, magnesium hydroxide and aluminum oxide can be used.
  • Pigments can be white pigments, such as TiO 2 pigments or colored pigments, such as Fe 2 O 3 pigments.
  • pigments such as TiO 2 pigments or colored pigments, such as Fe 2 O 3 pigments.
  • tin oxides, chromium oxides, molybdate pigments or also furnace black can be used.
  • a comprehensive list of the pigments or fillers is given in the handbook "Kunststoff-Additive” (Additives for Plastics), 3rd edition, published by Carl Hanser Verlag, 1990, pages 549 ff. and pages 663 ff.
  • rheological properties are expected by the processor.
  • a low viscosity is desirable when the pigment and filler contents are high.
  • DOP di-2-ethylhexyl phthalate
  • paraffin oil (30 cp
  • organopolysiloxane which corresponds to the state of the art and has the following formula, is used as coating agent: ##STR5##
  • fillers are used as base materials for the coating:
  • the dispersions contain 51 percent by weight of MG(OH) 2 or 54 percent by weight of Al(OH) 3 in the respective medium. They have the following viscosities in cp.
  • Uncoated base material at a concentration of 40 percent by weight of filler in DOP or paraffin oil, has a pasty consistency, whose viscosity cannot be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
US07/984,747 1991-12-11 1992-12-03 Method for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes Expired - Lifetime US5281478A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4140793A DE4140793C1 (enrdf_load_stackoverflow) 1991-12-11 1991-12-11
DE4140793 1991-12-11

Publications (1)

Publication Number Publication Date
US5281478A true US5281478A (en) 1994-01-25

Family

ID=6446774

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/984,747 Expired - Lifetime US5281478A (en) 1991-12-11 1992-12-03 Method for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes

Country Status (4)

Country Link
US (1) US5281478A (enrdf_load_stackoverflow)
EP (1) EP0546406B1 (enrdf_load_stackoverflow)
DE (2) DE4140793C1 (enrdf_load_stackoverflow)
ES (1) ES2075997T3 (enrdf_load_stackoverflow)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665155A (en) * 1995-01-02 1997-09-09 Th. Goldschmidt Ag. Organofunctional polysiloxanes for modifying the surface of finely divided particles
US5863509A (en) * 1996-12-03 1999-01-26 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
DE19913810A1 (de) * 1999-03-26 2000-09-28 Quarzwerke Gmbh Verfahren zur Reduzierung des Staubverhaltens von Silikaten
US6309042B1 (en) 1999-09-30 2001-10-30 Xerox Corporation Marking materials and marking processes therewith
US20030153457A1 (en) * 2000-06-19 2003-08-14 Yasushi Nemoto Adsorbents, process for producing the same, and applications thereof
US20050085581A1 (en) * 1999-08-17 2005-04-21 Mcmichael James W. Free-flowing polymer composition
US10131792B2 (en) 2014-03-14 2018-11-20 Huntsman P&A Germany Gmbh Method for treating the surface of particles, the thus obtained particles and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10232908A1 (de) 2002-07-19 2004-01-29 Goldschmidt Ag Verwendung organfunktionell modifizierter, Phenylderivate enthaltender Polysiloxane als Dispergier- und Netzmittel für Füllstoffe und Pigmente in wässrigen Pigmentpasten und Farb- oder Lackformulierungen
TWI429688B (zh) 2005-02-14 2014-03-11 Byk Chemie Gmbh 經有機矽烷改質之聚矽氧烷及其用於表面改質作用之用途
DE102007044302A1 (de) 2007-09-17 2009-03-19 Bühler PARTEC GmbH Verfahren zur Dispergierung von feinteiligen anorganischen Pulvern in flüssigen Medien unter Verwendung von reaktiven Siloxanen
DE102013226800A1 (de) 2013-12-20 2015-06-25 Evonik Industries Ag Oberflächenbehandlung von Partikeln und deren Verwendung
DE102013226798A1 (de) 2013-12-20 2015-06-25 Evonik Industries Ag Oberflächenbehandlung von Partikeln und deren Verwendung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902570A (en) * 1987-03-06 1990-02-20 Wacker-Chemie Gmbh Process for preparing highly dispersed metal oxides whose surfaces are modified by an ammonium-functional organopolysiloxane as a positive chargeable controlling agent for toners
EP0373426A2 (de) * 1988-12-13 1990-06-20 Bayer Ag Anorganische Pigmente mit Polyorganosiloxanbeschichtung
GB2244489A (en) * 1990-05-07 1991-12-04 Rogers Corp Coated filler particles and method for making same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891923A (en) * 1954-03-01 1959-06-23 Calvin White H Silicone supplemented fillers and rubbers, and methods for their manufacture
DE3628320A1 (de) * 1986-08-21 1988-02-25 Bayer Ag Hydrophobe pigmente und fuellstoffe fuer die einarbeitung in kunststoffe
DE3820294C1 (enrdf_load_stackoverflow) * 1988-06-15 1989-10-05 Th. Goldschmidt Ag, 4300 Essen, De
DE4023556A1 (de) * 1990-07-25 1992-01-30 Goldschmidt Ag Th Haertbare epoxygruppen aufweisende organopolysiloxane, verfahren zu ihrer herstellung und ihre verwendung als haertbare beschichtungsmittel mit abhaesiven eigenschaften

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902570A (en) * 1987-03-06 1990-02-20 Wacker-Chemie Gmbh Process for preparing highly dispersed metal oxides whose surfaces are modified by an ammonium-functional organopolysiloxane as a positive chargeable controlling agent for toners
EP0373426A2 (de) * 1988-12-13 1990-06-20 Bayer Ag Anorganische Pigmente mit Polyorganosiloxanbeschichtung
GB2244489A (en) * 1990-05-07 1991-12-04 Rogers Corp Coated filler particles and method for making same
US5182173A (en) * 1990-05-07 1993-01-26 Rogers Corporation Coated particles and method for making same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Farbmittel" by Dr. W. Damm et al., pp. 734-736, no date.
"Fullstoffe und Verstarkungsmittel" by Dr. H. P. Schlumpf, pp. 613-617, no date.
Farbmittel by Dr. W. Damm et al., pp. 734 736, no date. *
Fullstoffe und Verstarkungsmittel by Dr. H. P. Schlumpf, pp. 613 617, no date. *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665155A (en) * 1995-01-02 1997-09-09 Th. Goldschmidt Ag. Organofunctional polysiloxanes for modifying the surface of finely divided particles
US5863509A (en) * 1996-12-03 1999-01-26 Huels Aktiengesellschaft Fluoroalkyl-functional organopolysiloxane-containing compositions
US6830739B1 (en) 1999-03-26 2004-12-14 Quarzwerke Gmbh Method of reducing the dust generation of silicates
DE19913810A1 (de) * 1999-03-26 2000-09-28 Quarzwerke Gmbh Verfahren zur Reduzierung des Staubverhaltens von Silikaten
DE19913810B4 (de) * 1999-03-26 2005-02-03 Quarzwerke Gmbh Verfahren zur Reduzierung des Staubverhaltens von Silikaten, Silikate mit reduziertem Staubverhalten und deren Verwendung
US7101926B2 (en) 1999-08-17 2006-09-05 The Dow Chemical Company Free-flowing polymer composition
US20050085581A1 (en) * 1999-08-17 2005-04-21 Mcmichael James W. Free-flowing polymer composition
US20060241233A1 (en) * 1999-08-17 2006-10-26 The Dow Chemical Company Free-flowing polymer composition
US20070034840A1 (en) * 1999-08-17 2007-02-15 Dow Global Technologies Inc. Free-flowing polymer composition
US6309042B1 (en) 1999-09-30 2001-10-30 Xerox Corporation Marking materials and marking processes therewith
US20030153457A1 (en) * 2000-06-19 2003-08-14 Yasushi Nemoto Adsorbents, process for producing the same, and applications thereof
US6890373B2 (en) * 2000-06-19 2005-05-10 Bridgestone Corporation Adsorbents, process for producing the same, and applications thereof
US10131792B2 (en) 2014-03-14 2018-11-20 Huntsman P&A Germany Gmbh Method for treating the surface of particles, the thus obtained particles and use thereof

Also Published As

Publication number Publication date
EP0546406A3 (en) 1994-06-22
EP0546406A2 (de) 1993-06-16
DE59203107D1 (de) 1995-09-07
DE4140793C1 (enrdf_load_stackoverflow) 1993-03-11
ES2075997T3 (es) 1995-10-16
EP0546406B1 (de) 1995-08-02

Similar Documents

Publication Publication Date Title
US5387467A (en) Method for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes
US5281478A (en) Method for modifying the surface of finely divided particles by the application of organofunctional polysiloxanes
EP0124235B1 (en) Polyorganosiloxane compositions
US20040050297A1 (en) Silicone resin composition for water repellent coating
KR100258160B1 (ko) 오르가노폴리실록산 조성물 및 고무 부품
US4221693A (en) Composition free of surface cure inhibition and method for preparing the same
US5312855A (en) Adhesive organopolysiloxane composition
US5665155A (en) Organofunctional polysiloxanes for modifying the surface of finely divided particles
CA2011364C (en) Liquid silicone resin compositions
US7008982B2 (en) Surface treated silicas
US5326804A (en) Organopolysiloxane rubber composition for coating high voltage electrical insulators having improved electrical properties
CA1337533C (en) Compositions which can be crosslinked to form flame retardant and/or tracking resistant and arc resistant organopolysiloxane elastomers
AU598332B2 (en) Curable silicone composition for corrosion protection
US5204432A (en) Silicone resin fine powder containing quaternary ammonium group
US4968760A (en) Paintable organopolysiloxane compositions which crosslink at room temperature to form elastomers
US5708113A (en) Catalyst for the preparation and processing of polyorganosiloxanes
US5424374A (en) Heat curable organopolysiloxane compositions
US5034476A (en) Surface-treated polyorganosilsesquioxane fine powder
CA1060462A (en) Cross-linking agents for room temperature vulcanizable silicone rubber compositions
CN109734916B (zh) 一种主链型硅-锌缩聚物、可水解防污涂料及其制备方法
CN101092294A (zh) 通过施用有机官能聚硅氧烷修饰高分散颗粒表面的方法
US5162460A (en) Moisture-curable silicone corrosion resistant coatings
EP0299641B1 (en) A curable composition
JPH09176512A (ja) 環状ポリシロキサンで処理された粒状無機酸化物
JPH0524949B2 (enrdf_load_stackoverflow)

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TH. GOLDSCHMIDT AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HOHNER, WERNER;SCHAEFER, DIETMAR;REEL/FRAME:006349/0156

Effective date: 19921113

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: GOLDSCHMIDT AG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:TH. GOLDSCHMIDT AKTIENGESELLSCHAFT;REEL/FRAME:013774/0695

Effective date: 19990728

AS Assignment

Owner name: GOLDSCHMIDT GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:GOLDSCHMIDT AG;REEL/FRAME:016038/0250

Effective date: 20050110

Owner name: GOLDSCHMIDT GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:GOLDSCHMIDT AG;REEL/FRAME:016038/0250

Effective date: 20050110

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: EVONIK GOLDSCHMIDT GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:GOLDSCHMIDT GMBH;REEL/FRAME:024016/0789

Effective date: 20070919

Owner name: EVONIK GOLDSCHMIDT GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:GOLDSCHMIDT GMBH;REEL/FRAME:024016/0789

Effective date: 20070919