US5231634A - Medium access protocol for wireless lans - Google Patents

Medium access protocol for wireless lans Download PDF

Info

Publication number
US5231634A
US5231634A US07808923 US80892391A US5231634A US 5231634 A US5231634 A US 5231634A US 07808923 US07808923 US 07808923 US 80892391 A US80892391 A US 80892391A US 5231634 A US5231634 A US 5231634A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
agent
send message
request
reservation
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07808923
Inventor
Rick R. Giles
Paul G. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quarterhill Inc
Original Assignee
Proxim Wireless Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Abstract

Access to a radio communications medium shared by at least two agents to provide peer-to-peer communication therebetween is controlled by sensing the communications medium at a first agent to determine if the communications medium is in use, transmitting from the first agent, if the first agent determines that the communications medium is not in use, a request-to-send message that includes reservation duration information, and receiving the request-to-sent message at a second agent. The second agent then transmits a clear-to-send message including reservation duration information on behalf of the first agent, after which the first agent then transmits information to the second agent while a reservation duration indicated by the reservation duration information has not elapsed. A possible third agent within receiving range of only one of the first and second agents is thereby guaranteed to receive the reservation duration information and is expected to observe the reservation according to rules disclosed.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to methods for transferring data between a source and a plurality of receiving data processing devices. More particularly, the present invention relates to data transfer in a local area network (LAN) between a plurality of data processing devices where the devices use radio signals for delivering data.

2. State of the Art

There are many well-known medium access techniques available today for use in a local area network environment such as ALOHA, slotted ALOHA, Carrier Sense Multiple Access (CSMA), Token Ring, CSMA/CA (Collision Avoidance), CSMA/CD (Collision Detection), BTMA, and CDMA. Many of these techniques were designed to work in a wired network and do not address the unique issues facing a wireless LAN. For example, CSMA techniques, although very effective in a hard-wired LAN, have a weakness in a wireless LAN. The benefit of CSMA is to avoid packet collisions by listening before transmitting, and to defer transmission if a carrier is detected. This works well in a wired network since all nodes are guaranteed to hear each other regardless of location on the wire.

An example of CSMA techniques applied to a hard-wired LAN may be found in U.S. Pat. No. 4,661,902 to Hochsprung et al., assigned to Apple Computer, Inc. The techniques of this patent form the basis of the Appletalk™ protocol. An agent wishing to access the communications medium senses the medium to determine if it is in use, waits a predetermined time if the medium is idle, generates a random number and waits an additional waiting time corresponding to the random number before transmitting, and then transmits a request-to-send message. If the agent receives a clear-to-send message in reply within a second predetermined time, then the agent is cleared to transmit data.

In a wireless environment, however, not all nodes are guaranteed to be able to hear all other nodes in the LAN. Such a network is referred to as "semi-broadcast". If all nodes can hear one another the network is considered a "full-broadcast" network. The focus of the present invention deals with a semi-broadcast network in which a problem exists commonly referred to as the hidden terminal problem.

In networks that are semi-broadcast as well as in networks where all nodes may access the medium, there is a phenomenon known as the "middleman" or hidden terminal problem. Hidden terminals are nodes that are logically within the network but which cannot communicate with one or more nodes in the network. This problem is unique to radio networks due to the relatively steep attenuation of received signal strength that occurs as the distance between a transmitting node and a receiving node increases.

FIG. 6--which shows three nodes labeled A, B, and C--illustrates the "middleman" or hidden terminal problem. Assume that node A is in the middle of sending a frame to node B when node C has a message to send to node B. Also assume that node A and node C cannot hear one another, but node B can hear both A and C. Node C listens before transmitting and not hearing node A, determines it is clear to send. The message sent by node C will then collide with the message sent by node A such that neither message may be properly received at node B, and both nodes will have to retransmit their respective messages. A hidden terminal can have an adverse affect upon the capacity of the radio channel, possibly reducing the capacity by as much as two-thirds.

The present invention is furthermore directed toward "peer-to-peer" communication networks in which all nodes, or agents, are able to freely communicate with each other without any node having any advantage over any other. Although medium access control techniques have been developed to address the hidden-terminal problem, such techniques have not allowed peer-to-peer communications. For example, Busy Tone Multiple Access (BTMA) is a medium access control technique designed to address the hidden terminal problem. With BTMA every node sends and receives data from the central node. Whenever the central node is sending or receiving data, it will transmit a busy tone at a different frequency than the data transmission so as not to interfere with the data transmission. Every node in the system is equipped to detect the busy tone and will refrain from sending data when the tone is present. This effectively allows all nodes that are within range of the central node's busy tone to cooperate with all other nodes even if they are hidden terminals. The disadvantage to this technique is that it is centrally managed (not peer-to-peer) and does not provide for multiple central nodes on the same channel.

Another problem that a peer-to-peer network suffers from is that of fair access. Since it is a characteristic of many radio modulation techniques such as FM and spread spectrum to have capture benefits (i.e., if two nodes transmit simultaneously to the same destination, the destination will usually be able to receive the stronger of the two signals), typically the nodes that are physically closer to the destination will have an unfair advantage for accessing the medium.

The present invention solves both the hidden-terminal problem and the problem of fair access in a peer-to-peer semi-broadcast LAN. The invention is particularly applicable to networks of portable computers, such as laptop and palmtop computers. The mobility of the agents in such a network greatly increases the likelihood of hidden terminal problems arising.

In addition, whereas the lengthy radio key-up times of radios create problems with typical CSMA protocols, these problems are avoided in the protocol of the present invention. Although "key-up time" is generally used to refer only to the time required for a radio to switch from the receive mode to the transmit mode, not the time required to switch in the opposite direction from transmit mode to receive mode, in a preferred embodiment of the present invention the two times are substantially equal and will both be referred to by the term "key-up time" throughout the present specification and claims. The term key-up time is therefore used to describe what in actuality might more accurately be referred to as "radio turn-around time", although for simplicity the more familiar term will be used.

SUMMARY OF THE INVENTION

The present invention provides a medium access technique for data processing nodes equipped with radio transceivers. Also, the present invention provides for fair access in a peer-to-peer wireless network without the ill effects of the hidden terminal problem in a manner heretofore unknown in the prior art.

In one embodiment of the present invention, access to a radio communications medium shared by at least two agents to provide peer-to-peer communication therebetween is controlled by sensing the communications medium at a first agent to determine if the communications medium is in use, transmitting from the first agent, if the first agent determines that the communications medium is not in use, a request-to-send message that includes reservation duration information, and receiving the request-to-sent message at a second agent. The second agent then transmits a clear-to-send message including reservation duration information on behalf of the first agent, after which the first agent then transmits information to the second agent while a reservation duration indicated by the reservation duration information has not elapsed. A possible third agent within receiving range of only one of the first and second agents is thereby guaranteed to receive the reservation duration information and is expected to observe the reservation according to rules to be disclosed.

More specifically, the present invention provides an improved CSMA/CA technique that addresses the unique problems of wireless LAN's and provides decentralized, peer-to-peer access for all data processing nodes ("agents"). In the preferred embodiment, the data processing nodes use a radio transceiver for data transmission and reception. The MAC supports three types of LLC data delivery services, unacknowledged (type 1), connectionless acknowledged (type 3), and broadcast. ("Connectionless acknowledged" refers to standard ISO 8802-2, Type 3).

An agent that has data to transmit will first calculate the amount of time (reservation time) the entire transmission process will take (this includes time for an acknowledgement message "ACK" if any). The sending agent will pick a random "slot" time to begin the transmission, and if the network has been clear (no carrier) up until the time arrives, it will send out a request-to-send message RTS to the destination agent with the reservation time embedded in the frame. The sending agent will wait for a fixed time in which it expects to receive a clear-to-send message CTS frame from the destination agent. If a CTS frame is not received, a collision is presumed and the sending node will retransmit the RTS at a newly selected random time. Upon receiving the CTS frame the sending agent begins the transmission of the data when the radio has been "keyed up", i.e., when the radio has transitioned from receive to send mode. When the data transmission is complete, the receiving agent will respond in a fixed amount of time with an ACK frame (type 3 only). The RTS and CTS frames both contain the reservation time. All agents that receive either an RTS or CTS will defer from "contending" for the time specified in either frame with exceptions according to rules stated in state diagram descriptions presented hereinafter.

To preserve fair access to the network, the contention time is broken up into two fixed periods, fairness and deferral, both of which are divided into a fixed number of slots. The fairness period precedes the deferral period. All agents in the LAN observe the same number of fixed slots for both periods. One of the slots in the deferral period is defined as the "pivot slot" which is used in deciding whether a node should switch from the deferral to the fairness state. The pivot slot is a way to control the flow of agents into the fairness period and is especially necessary where the number of agents with data ready is much greater than the number of slots. Agents in the fairness state select a random slot time to transmit in the fairness period and agents in the deferral state select a random slot time that is in the deferral period. An agent that has won contention (received a CTS) while in the fairness state will switch to the deferral state. Agents that are in the deferral state and have not won contention will enter the fairness state when it is detected that the fairness period has been clear (no carrier) and the random slot that was selected is greater than or equal to the pivot slot. This assures all agents in the fairness state orderly access. Which nodes enter the fairness state will be random depending on the slot that was selected for the last contention period. The setting of the pivot slot can be adjusted to support different populations of ready nodes to improve performance. Thus, it can be appreciated that the present invention resides in a medium access control (MAC) technique designed specifically for radio LANs.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be further understood with reference to the following description in conjunction with the appended drawings, wherein like elements are provided with the same reference numerals. In the drawings:

FIG. 1 is a drawing of the frame contents of a message frame;

FIG. 2a is a drawing showing a contention interval;

FIG. 2b is a drawing showing a time slot and in particular the contents of a winning time slot;

FIG. 3 is a drawing showing the arrangement of slots in a contention period with fairness;

FIG. 4, including FIGS. 4a and 4b is a drawing showing contention reservation timing for type 1 and type 3 accesses, respectively;

FIG. 5 is an illustration of broadcast timing; and

FIG. 6 is an illustration of the hidden terminal problem.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, the present invention utilizes a basic unit of data transmission known as a "frame", the contents of which will presently be described. Proceeding from left to right, the Preamble is a one or more octet pattern used by receivers to establish bit synchronization. The start delimiter (SD) indicates the start of the frame. The frame control (FC) field indicates whether the frame contains logical link control (LLC) data or is a control frame. Control frame types include RTS, CTS, and RMA (Request Medium Access--a broadcast request). The destination address (DA) specifies the station(s) that the frame is destined for. It can be a unique physical address, a group of stations, or a global address (broadcast). The source address (SA) specifies the station that the frame originated from. The Data Unit contains LLC data or information related to the control frame. The frame check sequence (FCS) is a 16-bit CRC of all fields except the Preamble, SD, ED, and FCS fields. Finally, the end delimiter (ED) indicates the end of the frame.

Table 1 shows in greater detail the contents of the Frame Control (FC) field. This is an 8-bit field that can designate one of the following types: RTS/type 1, RTS/type 3, CTS/type 1, CTS/type 3, and RMA/type 1. Types 1 and 3 correspond to unacknowledged and connectionless acknowledged services, respectively. The type information (1 or 3) corresponds to logical link control (LLC) layer services and is also used by the MAC to designate whether an ACK message is expected as well as the reservation algorithm that is employed.

              TABLE 1______________________________________Frame Control Definition (FC)______________________________________b7              1:Control; 0:Datab6              1:Type III; 0:Type Ib5-b3           reservedb2-b0           Control code:           000:RTS           001:CTS           010:RMA           100:Regular data frame______________________________________

An important part of the local area network is a state machine that is continually monitoring the state of the air waves. It uses carrier information as well as frame information. For this purpose all frames are received by all agents within range regardless of physical address. This is different from many protocols which utilize address detection in hardware to filter messages.

The above-discussed process has been implemented using a spread spectrum radio that transmits/receives data at 242Kbs but is not limited thereto. The radio has a synchronous/parallel interface based on the HDLC standard and can generate a carrier detect digital signal that goes active within 2 bit times. This signal plays an important part in providing carrier sense capability.

All agents in the network have similar radio transmit power and receive sensitivity which the protocol is designed around. The network is therefore symmetrical in that a node that cannot hear another node also cannot be heard by that node. Each agent has a fixed 28 bit address that is unique. These addresses are assigned at the time of manufacture and are not changeable by the protocol.

Referring to FIG. 2a, a contention period during which agents contend for access to the communications medium begins at the expiration of the reservation of an agent currently occupying the communications medium or, assuming no agent is occupying the communications medium, after the expiration of a maximum quiet time. After an agent first becomes active (i.e., the radio has been off and is now turned on) it must wait a maximum reservation time, or maximum quiet time, before contending for access to the communications medium. This waiting period is required, since the newly-active agent is unaware of the current state of the network. In a preferred embodiment, the maximum reservation time is equal to the duration of a maximum length packet (600 bytes) plus a radio key-up time plus the duration of an acknowledgement message.

The contention interval is divided into a number of slots, one of which is randomly selected by each agent wishing to contend for access to the communications medium. A particular slot becomes the winning slot when no agent has occupied the communications medium by the arrival of that slot time. The agent that has selected that slot may then use the slot to request medium access by sending an RTS. Assuming that a CTS is received in reply, then after a key-up time during which the agent switches from receive to send mode, the agent then transmits a data packet. In the case of a Type 1 non-broadcast access, the contents of the winning slot will be as appears in FIG. 2b. Prior to the arrival of the agent's slot time, the agent will be listening to see if some other agent gains access to the medium first. If not, then after the key-up time, the agent sends a request-to-send RTS message in response to which, following another key-up time, a clear-to-send CTS message will be received if the intended recipient of the agent's communications is available (i.e., physically within range and not currently observing a reservation).

Slots at the beginning of the contention interval naturally stand a better chance of becoming winning slots than do slots near the end of the contention interval. To ensure that all agents enjoy equal access to the communications medium, there has been employed "a contention period with fairness." Referring to FIG. 3, the contention interval is divided into a group of fairness slots occurring during the first part of the contention interval and deferral slots occurring during the last part of the contention interval. One of the deferral slots is designated as a pivot slot. Each of the agents, depending on its past success in gaining access to the communications medium, is set in either a fairness mode in which it selects a random slot from among the fairness slots or a deferral mode in which it selects a random slot from among the deferral slots. The fairness slots of course have a greater chance of becoming the winning slot. Once an agent has gained access to the communications medium, it is then placed in deferral mode after its reservation has expired. When an agent in deferral mode wins access to the communications medium, any other agent in deferral mode whose slot was not the winning slot is placed in fairness mode for the next contention interval if its slot was the pivot slot or any succeeding slot. In this manner the flow of agents from deferral mode to fairness mode may be controlled.

When an agent sends a request-to-send RTS message, it embeds in the message, in the data field thereof, the duration of the reservation measured from the end of the request-to-send RTS message as illustrated in FIG. 4a. The duration of the reservation will include an initial key-up period required by the requesting agent to prepare to receive a clear-to-send CTS message from the intended recipient, a period during which the clear-to-send CTS message is received, another key-up period during which the requesting agent prepares to send a data packet, and a period during which the data packet is sent. When an agent sends a clear-to-send CTS message, it embeds in the message the time remaining in the RTS reservation. The CTS reservation will therefore include the time during which the data packet is sent and the preceding key-up period.

Referring to FIG. 4b, for a Type III reservation, the RTS and CTS reservations additionally include a time during which an acknowledgement message ACK is sent and a preceding key-up time.

Referring to FIG. 5, if an agent wishes to broadcast information to all other agents instead of designating a particular agent as the intended recipient, then during the winning slot it transmits a request-medium-access RMA message (instead of a request-to-send RTS message). Unlike a Type I access in which the intended recipient replies with a clear-to-send CTS message, in the case of a request-medium-access RMA message, no agent replies. Rather, the requesting agent switches to receive mode during a key-up period and then listens for activity on the communications medium throughout the duration of a broadcast listen time BLT. The broadcast listen time is equal to the sum of the radio key-up time of the agents and the duration of a clear-to-send CTS message. This ensures that time is given to listen for the winning agent's data in case that the agent is not in range to have heard the winning CTS. For example, two agents may contend in the same time slot, one sending an RMA and the other sending an RTS. Since both agents are transmitting at the same time neither hears the other's request. Furthermore, the agent that sent the RMA may be out of range of an agent sending a CTS in response to the other agent's RTS. By causing the agent that sent the RMA to wait during the broadcast listen time until such time as the data of the agent receiving the CTS may be heard, the agent that sent the RMA will be alerted that access to the communications medium has already been obtained by another agent, thereby avoiding a collision.

In Table 2 below, the states of the state machine are shown, following which notes pertaining to Table 2 are set forth.

                                  TABLE 2__________________________________________________________________________STATE  EVENT    ACTION      NEXT STATE__________________________________________________________________________Network  Data Ready           Set timer for rand slot                       ContentionClear  Carrier Detected           Set timer   Wait for FrameContention  Carrier Detected           Adjust State                       Wait for Frame           (Fairness/Deferral)/Set           timer  Timer Expires           Sent RTS    Wait for CTSWait for  Personal CTS         TX DataCTS    Timer Expires           Set time rand slot                       Contention.sup.4RTS    Other CTS           Set Reservation Timer                       CTS ReservationReservation  Other RTS           Set Reservation Timer.sup.1  Timer Expires        Network Clear  Personal RTS         RX Data.sup.5           Sent CTS.sup.5CTS    Other RTS           Set Reservation Timer.sup.1                       RTS Reservation.sup.1Reservation  Other CTS           Set Reservation Timer.sup.2  Timer Expires        Network Clear  Person RTSTX Data  TX complete           Set Timer.sup.2 or                       Wait for ACK.sup.2 or           Status Indication.sup.3                       Network Clear.sup.3Wait for  ACK Received           Status Indication                       Network ClearACK    Timer Expires           Status Indication                       Network ClearWait for  Timer Expires           Set Reservation Timer.sup.6                       RTS ReservationFrame  Other RTS           Set Reservation Timer                       RTS Reservation  Other CTS           Set Reservation Timer                       CTS Reservation  Personal RTS           Send CTS    RX DataRX Data  Data Received           Data Indication                       Network ClearPriority  Timer Expired           Send ACK.sup.4                       Network ClearACK__________________________________________________________________________ .sup.1 The Reservation time in the RTC/CTS frame must be longer than the remaining time of the current reservation. If this isn't true then there is no action and the state is unchanged. .sup.2 Event or state transition that applied to Acknowledged services only. .sup.3 Event or state transition that applies to Unacknowledged services only. .sup.4 If ACK hasn't been generated in time then no action is performed. .sup.5 Action and state transition applies only for type 1 reservation. .sup.6 Was unable to capture the message, a reservation is set for the maximum frame size.

There are two states that deal with reservations: the RTS reservation and CTS reservation states. Each state keeps track of whether it is observing a type 1 or type 3 reservation. These correspond to unacknowledged and acknowledged transmission services, respectively. A type 3 reservation must observe a reservation that includes an ACK and a type 1 must not. This type information governs the decision making process for early termination of the reservation caused by an outside event as will be more fully explained hereinafter. A reservation is defined as the time contained in any RTS/CTS/RMA frame received whose address does not match the local agent's.

In the reservation state, if a reservation is received that is shorter than or equal to the remaining time of the current reservation, then the current reservation is observed. If a reservation is received that is longer than the current reservation, then the new reservation is observed. If a personal RTS is received and a current type 1 reservation is already being observed, then a CTS is sent back anyway. In other words, the previous reservation may be terminated early as previously alluded to. Assuming that a CTS for the current reservation hasn't been received at the present listening node, it is then further assumed that the listening node is incapable of colliding with the current data message that is being transmitted. This is true for one of three reasons: 1) The received RTS frame has capture over the CTS frame that would have been expected to follow the previous RTS; 2) The CTS was never sent in response to the RTS that is currently being observed; or 3) the CTS was never received because the agent was out of range. If a personal RTS is received and the current reservation is type 3 rather than type 1, then no action is taken. This is a non-aggressive approach that assumes the CTS wasn't received because of reasons 1 or 3 stated above.

The CTS reservation state is unbreakable by any personal requests. If a reservation is received that is shorter than or equal to the remaining time of the current reservation, then the current reservation is observed. If a reservation is received that is longer than the current reservation, then the new reservation is observed. If a personal RTS is received, no action is performed. This is to avoid any collisions with the current data exchange currently in progress. It is assumed the requesting node is unaware of the current reservation being observed.

With respect to the contention state, the contention period is broken up into a fixed number of slots and therefore synchronization among all nodes is important to reduce contention collisions. Synchronization occurs when the number of nodes ready to transmit at any instant in time is greater than or equal to one. To allow fair access to the network, the slots are divided into two periods, a fairness period and a deferral period. A node is either in a deferral state or a fairness state. A node that is ready to contend will pick a random slot in the fairness period or the deferral period based on its state. A slot period is defined as the time of two inter-frame gaps (IFGs) and two control frames, where the IFG is equal to the radio key-up time.

A node that is in a deferral state will switch to the fairness state when the fairness period is clear and the node's selected contention time slot occurs later or at the same time as the pivot slot. A node that is in deferral determines the fairness period is clear if no carrier is detected during this period. There are two possibilities with respect to contention. The node's slot can arrive and it contends, or a carrier is detected in the deferral period before the slot arrives and it therefore does not contend.

Not all events in each of the foregoing states have been described since some are self-explanatory from Table 1.

As will be appreciated from the foregoing description, the present invention provides a medium access control technique for a wireless LAN that overcomes the hidden-terminal problem in a semibroadcast peer-to-peer network. The problem of fair access is also solved through the mechanism of contention with fairness described above.

The foregoing has described the principles, preferred embodiments and modes of operation of the present invention. However, the invention should not be construed as limited to the particular embodiments discussed. Instead, the above-described embodiments should be regarded as illustrative rather than restrictive, and it should be appreciated that variations may be made in those embodiments by workers skilled in the art without departing from the scope of present invention as defined by the following claims.

Claims (23)

What is claimed is:
1. A method for controlling access to a radio communications medium shared by at least three agents to provide peer-to-peer communications therebetween, comprising the steps of:
sensing the communications medium at a first agent to determine if the communications medium is in use;
transmitting from the first agent, if the first agent determines that the communications medium is not in use, a request-to-send message that includes reservation duration information;
receiving the request-to-send message at a second agent;
transmitting from the second agent a clear-to-send message including reservation duration information on behalf of the first agent;
receiving at least one of the request-to-send message and the clear-to-send message at a third agent;
transmitting information from the first agent to the second agent while a reservation duration indicated by the reservation duration information has not elapsed; and
receiving the information at the second agent;
whereby a third agent within receiving range of only one of the first and second agents receives the reservation duration information.
2. The method of claim 1 comprising the further steps of:
dividing a contention period from conclusion of a previous reservation to initiation of a next reservation into multiple equal-duration time slots; and
selecting, at the first agent, a random time slot from among at least a portion of the time slots;
wherein the first agent transmits the request-to-send message during a time slot selected during the selecting step when the first agent does not detect activity on the communications medium.
3. The method of claim 2, wherein a duration of the time slots is equal to the sum of twice a radio key-up time of the agents plus the duration of a request-to-send message plus the duration of a clear-to-send message.
4. The method of claim 2 comprising the further steps of:
designating a plurality of earlier-occurring ones of the time slots as fairness time slots;
designating a plurality of later-occurring ones of the time slots as deferral time slots; and
causing the first agent to contend for access to the medium in one of a fairness mode and a deferral mode;
wherein the agent if in fairness mode selects a random time slot from among the fairness time slots and the agent if in deferral mode selects a random time slot from among the deferral time slots.
5. The method of claim 4 wherein a plurality of the agents contend for access to the communications medium.
6. The method of claim 5 comprising the further step of causing the plurality of agents to change from one of the fairness and deferral modes to another of the fairness and deferral modes based on success of the respective agents in winning access to the communications medium.
7. The method of claim 6 wherein an agent after winning access to the communications medium is placed in the deferral mode.
8. The method of claim 7 comprising the further step of designating one of the plurality of deferral time slots as a pivot slot for controlling changing of agents from deferral mode to fairness mode.
9. The method of claim 8 wherein an agent in deferral mode that contends unsuccessfully for access to the communications medium during a contention period is changed to fairness mode if but not only if another agent in deferral mode contended successfully for access to the communications medium.
10. The method of claim 9 wherein the agent in deferral mode is changed to fairness mode only if a slot selected by the agent in deferral mode does not occur prior to the pivot slot.
11. The method of claim 5 wherein contending for access to the communications medium includes the steps of an agent:
waiting for occurrence of said selected random time slot while listening for communications on said communications medium;
if no communications are detected prior to occurrence of said selected random time slot then:
transmitting a request-to-send message;
waiting for a clear-to-send message in response to said request-to-send message;
if a clear-to-send message in response to said request-to-send message is received, transmitting information; and
if a clear-to-send message is not received, selecting again a random time slot in order to continue to contend for access to the communications medium.
12. The method of claim 11 wherein if communications are detected prior to occurrence of said selected random time slot then:
waiting to receiving one of a request-to-send message and a clear-to-send message;
if a request-to-send message directed to said agent is received, sending a clear-to-send message in response thereto;
if a request-to-send message not directed to said agent is received, observing a reservation duration indicated in said request-to-send message;
if a clear-to-send message not directed to said agent is received, observing a reservation duration indicated in said clear-to-send message; and
if no request-to-send or clear-to-send message is received after waiting a predetermined amount of time to receive one of said request-to-send message and said clear-to-send message, observing a maximum reservation duration as if a request-to-send message indicating said maximum reservation duration had been received;
whereby the number of agents contending at a time for access to the communications medium is controlled.
13. The method of claim 1 comprising the further step of defining at least two different types of reservations, a first type without acknowledgement by a destination agent and a second type with acknowledgement.
14. The method of claim 13 wherein, in the case of a first type of reservation, the first agent includes in the reservation duration information representing a first duration equal to the sum of twice a radio key-up time of the agents plus the duration of a clear-to-send message plus the duration of a data frame.
15. The method of claim 14 wherein, in the case of a second type of reservation, the first agent includes in the reservation duration information representing a second duration equal to the sum of three times a radio key-up time of the agents plus the duration of a clear-to-send message plus the duration of a data frame plus the duration of an acknowledgement message.
16. The method of claim 15 wherein, in the case of a first type of reservation, the second agent includes in the reservation duration information representing a third duration equal to the difference of the first duration minus a radio key-up time minus the duration of a clear-to-send message.
17. The method of claim 15 wherein, in the case of a second type of reservation, the second agent includes in the reservation duration information representing a fourth duration equal to the difference of the second duration minus a radio key-up time minus the duration of a clear-to-send message.
18. The method of claim 13 comprising the further steps of:
receiving at a particular agent a first request-to-send message not directed to said particular agent but not receiving any clear-to-send message that may have been sent in response to send request-to-send message; and
receiving at said particular agent a second request-to-send message directed to said particular agent;
whereupon said particular agent, even if a reservation duration indicated in said first request-to-send message has not yet expired, sends a clear-to-send message in response to said second request-to-send message, terminating early a reservation established by said first request-to-send message, if said first request-to-send message was of said first type.
19. The method of claim 13 comprising the further steps of:
receiving at a particular agent a first request-to-send message not directed to said particular agent but not receiving any clear-to-send message that may have been sent in response to the request-to-send message; and
receiving at said particular agent a second request-to-send message directed to said particular agent;
whereupon said particular agent takes no action in response to said second request-to-send message if a reservation duration indicated in said first request-to-send message has not yet expired and said first request-to-send message was of said second type.
20. The method of claim 1 comprising the further steps of:
detecting at a fourth agent possible activity on the communications medium;
transmitting from the fourth agent a request-medium-access message, including reservation duration information, when the fourth agent does not detect activity on the communications medium;
detecting at the fourth agent, throughout a broadcast listen time following the request-medium-access message, activity on the communications medium; and
transmitting from the fourth agent a broadcast message if no activity is detected on the communications medium throughout the broadcast listen time.
21. The method of claim 20 wherein the broadcast listen time is equal to the sum of a radio key-up time of the agents and the duration of a clear-to-send message.
22. The method of claim 1 wherein each active agent receives all communications on said communications medium that the active agent is within range to receive regardless of which agent the communications may have been intended for.
23. The method of claim 22 wherein an agent when it first becomes active is caused to listen to communications on the communications medium, without transmitting, for the duration of a maximum allowed reservation time.
US5231634B1 1991-12-18 1991-12-18 Medium access protocol for wireless lans Expired - Lifetime US5231634B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US5231634B1 US5231634B1 (en) 1991-12-18 1991-12-18 Medium access protocol for wireless lans

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5231634B1 US5231634B1 (en) 1991-12-18 1991-12-18 Medium access protocol for wireless lans
PCT/US1992/011005 WO1993012595A1 (en) 1991-12-18 1992-12-17 Medium access protocol for wireless lans

Publications (2)

Publication Number Publication Date
US5231634A true US5231634A (en) 1993-07-27
US5231634B1 US5231634B1 (en) 1996-04-02

Family

ID=25200130

Family Applications (1)

Application Number Title Priority Date Filing Date
US5231634B1 Expired - Lifetime US5231634B1 (en) 1991-12-18 1991-12-18 Medium access protocol for wireless lans

Country Status (2)

Country Link
US (1) US5231634B1 (en)
WO (1) WO1993012595A1 (en)

Cited By (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369639A (en) * 1990-09-06 1994-11-29 Ncr Corporation Local area network having a wireless transmission link
EP0653865A2 (en) 1993-11-15 1995-05-17 International Business Machines Corporation Medium access control protocol for wireless communication
US5487068A (en) * 1994-07-29 1996-01-23 Motorola, Inc. Method for providing error correction using selective automatic repeat requests in a packet-switched communication system
EP0693838A2 (en) * 1994-07-21 1996-01-24 Sharp Kabushiki Kaisha Data communication apparatus and method achieving efficient use of the media
WO1996021978A1 (en) * 1995-01-11 1996-07-18 Momentum Microsystems Wireless desktop area network system
US5577172A (en) * 1994-07-01 1996-11-19 Lasermaster Corporation High-capacity protocol for packet-based networks
US5604869A (en) * 1993-07-09 1997-02-18 Apple Computer, Inc. System and method for sending and responding to information requests in a communications network
US5619530A (en) * 1994-04-04 1997-04-08 Motorola, Inc. Method and apparatus for detecting and handling collisions in a radio communication system
US5629942A (en) * 1991-07-08 1997-05-13 U.S. Philips Corporation Method and arrangement for channel allocation for data transmission between a main station and a plurality of substations
US5657326A (en) * 1994-12-20 1997-08-12 3Com Corporation Radio based collision detection for wireless communication system
US5661727A (en) * 1996-06-12 1997-08-26 International Business Machines Corporation Schemes to determine presence of hidden terminals in wireless networks environment and to switch between them
EP0818905A2 (en) * 1996-07-09 1998-01-14 International Business Machines Corporation Network communication
US5719868A (en) * 1995-10-05 1998-02-17 Rockwell International Dynamic distributed, multi-channel time division multiple access slot assignment method for a network of nodes
US5721725A (en) * 1995-10-30 1998-02-24 Xerox Corporation Protocol for channel access in wireless or network data communication
US5745479A (en) * 1995-02-24 1998-04-28 3Com Corporation Error detection in a wireless LAN environment
US5774877A (en) * 1994-09-20 1998-06-30 Papyrus Technology Corp. Two-way wireless system for financial industry transactions
US5797002A (en) * 1994-09-20 1998-08-18 Papyrus Technology Corp. Two-way wireless system for financial industry transactions
US5818830A (en) * 1995-12-29 1998-10-06 Lsi Logic Corporation Method and apparatus for increasing the effective bandwidth of a digital wireless network
US5844900A (en) * 1996-09-23 1998-12-01 Proxim, Inc. Method and apparatus for optimizing a medium access control protocol
US5864550A (en) * 1995-05-05 1999-01-26 Nokia Mobile Phones Ltd. Wireless local area network system and receiver for the same
US5875179A (en) * 1996-10-29 1999-02-23 Proxim, Inc. Method and apparatus for synchronized communication over wireless backbone architecture
US5889772A (en) * 1997-04-17 1999-03-30 Advanced Micro Devices, Inc. System and method for monitoring performance of wireless LAN and dynamically adjusting its operating parameters
US5898828A (en) * 1995-12-29 1999-04-27 Emc Corporation Reduction of power used by transceivers in a data transmission loop
US5949760A (en) * 1997-03-21 1999-09-07 Rockwell International Corporation Simultaneous channel access transmission method for a multi-hop communications radio network
US6006090A (en) * 1993-04-28 1999-12-21 Proxim, Inc. Providing roaming capability for mobile computers in a standard network
US6049549A (en) * 1997-08-14 2000-04-11 University Of Massachusetts Adaptive media control
US6055512A (en) * 1997-07-08 2000-04-25 Nortel Networks Corporation Networked personal customized information and facility services
US6091507A (en) * 1994-07-01 2000-07-18 Colorspan Corporation Method and apparatus for printing a document over a network
US6108344A (en) * 1996-01-31 2000-08-22 Canon Kabushiki Kaisha Method, means and system for communicating on a shared transmission medium
US6125122A (en) * 1997-01-21 2000-09-26 At&T Wireless Svcs. Inc. Dynamic protocol negotiation system
EP1059773A2 (en) * 1999-06-08 2000-12-13 CALY Corporation Communications protocol for packet data particularly in mesh topology wireless networks
WO2001028162A1 (en) * 1999-10-13 2001-04-19 Caly Corporation Spatially switched router for wireless data packets
WO2001037481A2 (en) * 1999-11-12 2001-05-25 Itt Manufacturing Enterprises, Inc. Method and apparatus for broadcasting messages in channel reservation communication systems
EP1111842A2 (en) * 1999-12-21 2001-06-27 Nokia Mobile Phones Ltd. Apparatus and method for allocating random access channels in a communication system
US6292508B1 (en) 1994-03-03 2001-09-18 Proxim, Inc. Method and apparatus for managing power in a frequency hopping medium access control protocol
EP1163817A1 (en) * 1999-03-02 2001-12-19 GTE Internetworking Incorporated Asynchronous reservation-oriented multiple access for wireless networks
US6343071B1 (en) 1995-01-11 2002-01-29 Simtek Corporation Wireless desktop area network system
US6349091B1 (en) 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic
US6385174B1 (en) 1999-11-12 2002-05-07 Itt Manufacturing Enterprises, Inc. Method and apparatus for transmission of node link status messages throughout a network with reduced communication protocol overhead traffic
US20020058502A1 (en) * 2000-11-13 2002-05-16 Peter Stanforth Ad hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US6393032B1 (en) * 1997-06-23 2002-05-21 Nec Corporation Wireless LAN system and method of driving the same
US20020061031A1 (en) * 2000-10-06 2002-05-23 Sugar Gary L. Systems and methods for interference mitigation among multiple WLAN protocols
US20020085526A1 (en) * 2000-11-08 2002-07-04 Belcea John M. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US6426814B1 (en) 1999-10-13 2002-07-30 Caly Corporation Spatially switched router for wireless data packets
US6466608B1 (en) 1994-03-03 2002-10-15 Proxim, Inc. Frequency hopping medium access control protocol for a communication system having distributed synchronization
US6470189B1 (en) * 1999-09-29 2002-10-22 Motorola, Inc. Method and apparatus in a wireless transceiver for seeking and transferring information available from a network server
US20020165968A1 (en) * 2001-05-03 2002-11-07 Ncr Corporation Methods and apparatus for wireless operator remote control in document processing systems
WO2002089428A1 (en) * 2001-04-27 2002-11-07 Telefonaktiebolaget Lm Ericsson (Publ) A method of initiating data transfer in a wireless communications system
US20020191573A1 (en) * 2001-06-14 2002-12-19 Whitehill Eric A. Embedded routing algorithms under the internet protocol routing layer of a software architecture protocol stack in a mobile Ad-Hoc network
US6505037B1 (en) 1999-06-29 2003-01-07 Sharp Laboratories Of America, Inc. Data unit detection including antenna diversity
US20030016647A1 (en) * 2000-01-13 2003-01-23 Kenneth Margon System and method for multipoint to multipoint data communication
WO2003009518A2 (en) * 2001-07-19 2003-01-30 Cape Range Wireless, Inc. System and method for multipoint to multipoint data communication
US20030035437A1 (en) * 2001-08-15 2003-02-20 Masood Garahi Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US20030040316A1 (en) * 2001-03-22 2003-02-27 Peter Stanforth Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system based on battery-power levels and type of service
US20030043790A1 (en) * 2001-09-06 2003-03-06 Philip Gutierrez Multi-master bus architecture for system -on-chip designs
US20030060202A1 (en) * 2001-08-28 2003-03-27 Roberts Robin U. System and method for enabling a radio node to selectably function as a router in a wireless communications network
US20030058886A1 (en) * 2001-09-25 2003-03-27 Stanforth Peter J. System and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
US20030067903A1 (en) * 1998-07-10 2003-04-10 Jorgensen Jacob W. Method and computer program product for internet protocol (IP)-flow classification in a wireless point to multi-point (PTMP)
US20030076837A1 (en) * 2001-10-23 2003-04-24 Whitehill Eric A. System and method for providing a congestion optimized address resolution protocol for wireless Ad-Hoc Networks
US6556582B1 (en) * 2000-05-15 2003-04-29 Bbnt Solutions Llc Systems and methods for collision avoidance in mobile multi-hop packet radio networks
US20030091012A1 (en) * 2001-08-15 2003-05-15 Barker Charles R. System and method for providing an addressing and proxy scheme for facilitating mobility of wireless nodes between wired access points on a core network of a communications network
US20030091011A1 (en) * 2001-08-15 2003-05-15 Roberts Robin U. System and method for performing soft handoff in a wireless data network
US6580981B1 (en) 2002-04-16 2003-06-17 Meshnetworks, Inc. System and method for providing wireless telematics store and forward messaging for peer-to-peer and peer-to-peer-to-infrastructure a communication network
US20030133469A1 (en) * 2002-01-12 2003-07-17 Brockmann Ronald A. Transmission protection for communications networks having stations operating with different modulation formats
US20030147415A1 (en) * 2002-02-01 2003-08-07 Renaud Dore Method for radio link adaptation in a network with contention-based medium access
US6611521B1 (en) * 1998-07-14 2003-08-26 International Business Machines Corporation Data link layer extensions to a high latency wireless MAC protocol
US6617990B1 (en) 2002-03-06 2003-09-09 Meshnetworks Digital-to-analog converter using pseudo-random sequences and a method for using the same
WO2003075514A1 (en) * 2002-03-07 2003-09-12 Koninklijke Philips Electronics N.V. Coexistence of stations capable of different modulation schemes in a wireless local area network
US6628629B1 (en) * 1998-07-10 2003-09-30 Malibu Networks Reservation based prioritization method for wireless transmission of latency and jitter sensitive IP-flows in a wireless point to multi-point transmission system
US20030214921A1 (en) * 2002-05-16 2003-11-20 Alapuranen Pertti O. System and method for performing multiple network routing and provisioning in overlapping wireless deployments
US20030217283A1 (en) * 2002-05-20 2003-11-20 Scott Hrastar Method and system for encrypted network management and intrusion detection
US20030214933A1 (en) * 2000-01-13 2003-11-20 Cape Range Wireless Malaysia Sdn System and method for single-point to fixed-multipoint data communication
US20030219008A1 (en) * 2002-05-20 2003-11-27 Scott Hrastar System and method for wireless lan dynamic channel change with honeypot trap
US20030227935A1 (en) * 2002-06-05 2003-12-11 Alapuranen Pertti O. Arq mac for ad-hoc communication networks and a method for using the same
US20030227934A1 (en) * 2002-06-11 2003-12-11 White Eric D. System and method for multicast media access using broadcast transmissions with multiple acknowledgements in an Ad-Hoc communications network
US20030228875A1 (en) * 2002-06-05 2003-12-11 Alapuranen Pertti O. MAC protocol with duty-cycle limitation for portable devices in a wireless Ad-Hoc communication network and a method for using the same
US20030227895A1 (en) * 2002-06-05 2003-12-11 Strutt Guenael T. System and method for improving the accuracy of time of arrival measurements in a wireless ad-hoc communications network
US20030233567A1 (en) * 2002-05-20 2003-12-18 Lynn Michael T. Method and system for actively defending a wireless LAN against attacks
US20030236990A1 (en) * 2002-05-20 2003-12-25 Scott Hrastar Systems and methods for network security
US6671284B1 (en) * 2000-08-04 2003-12-30 Intellon Corporation Frame control for efficient media access
US20040001440A1 (en) * 2002-06-26 2004-01-01 Kostoff Stanley J. Powerline network bridging congestion control
US20040001499A1 (en) * 2002-06-26 2004-01-01 Patella James Philip Communication buffer scheme optimized for voip, QoS and data networking over a power line
US20040003338A1 (en) * 2002-06-26 2004-01-01 Kostoff Stanley J. Powerline network flood control restriction
EP1376890A2 (en) * 1994-09-09 2004-01-02 XIRCOM Wireless, Inc. Wireless spread spectrum communication with preamble sounding gap
US6674790B1 (en) 2002-01-24 2004-01-06 Meshnetworks, Inc. System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
US20040005902A1 (en) * 2002-07-05 2004-01-08 Belcea John M. System and method for correcting the clock drift and maintaining the synchronization of low quality clocks in wireless networks
US20040008652A1 (en) * 2002-05-20 2004-01-15 Tanzella Fred C. System and method for sensing wireless LAN activity
US20040028017A1 (en) * 2002-07-29 2004-02-12 Whitehill Eric A. System and method for determining physical location of a node in a wireless network during an authentication check of the node
US6728232B2 (en) 2002-03-15 2004-04-27 Meshnetworks, Inc. System and method for auto-configuration and discovery of IP to MAC address mapping and gateway presence in wireless peer-to-peer ad-hoc routing networks
US6728545B1 (en) 2001-11-16 2004-04-27 Meshnetworks, Inc. System and method for computing the location of a mobile terminal in a wireless communications network
US20040081166A1 (en) * 2002-05-01 2004-04-29 Stanforth Peter J. System and method for using an ad-hoc routing algorithm based on activity detection in an ad-hoc network
US20040082341A1 (en) * 2002-05-17 2004-04-29 Stanforth Peter J. System and method for determining relative positioning in ad-hoc networks
US6732163B1 (en) 2000-01-05 2004-05-04 Cisco Technology, Inc. System for selecting the operating frequency of a communication device in a wireless network
US20040085993A1 (en) * 2002-11-05 2004-05-06 Wentink Maarten Menzo Shared-medium contention algorithm exhibiting fairness
US20040098610A1 (en) * 2002-06-03 2004-05-20 Hrastar Scott E. Systems and methods for automated network policy exception detection and correction
US20040100929A1 (en) * 2002-11-27 2004-05-27 Nokia Corporation System and method for collision-free transmission scheduling in a network
US6744766B2 (en) 2002-06-05 2004-06-01 Meshnetworks, Inc. Hybrid ARQ for a wireless Ad-Hoc network and a method for using the same
US6754188B1 (en) 2001-09-28 2004-06-22 Meshnetworks, Inc. System and method for enabling a node in an ad-hoc packet-switched wireless communications network to route packets based on packet content
US20040127214A1 (en) * 2002-10-01 2004-07-01 Interdigital Technology Corporation Wireless communication method and system with controlled WTRU peer-to-peer communications
US20040143842A1 (en) * 2003-01-13 2004-07-22 Avinash Joshi System and method for achieving continuous connectivity to an access point or gateway in a wireless network following an on-demand routing protocol, and to perform smooth handoff of mobile terminals between fixed terminals in the network
US6768981B2 (en) 1994-09-20 2004-07-27 Papyrus Corporation Method for executing a cross-trade in a two-way wireless system
US6768730B1 (en) 2001-10-11 2004-07-27 Meshnetworks, Inc. System and method for efficiently performing two-way ranging to determine the location of a wireless node in a communications network
WO2004064330A1 (en) * 2003-01-09 2004-07-29 Thomson Licensing S.A. Method and apparatus for bandwidth provisioning in a wlan
US6771666B2 (en) 2002-03-15 2004-08-03 Meshnetworks, Inc. System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media
US6788702B1 (en) 1999-10-15 2004-09-07 Nokia Wireless Routers, Inc. Protocol for neighborhood-established transmission scheduling
US20040179667A1 (en) * 2003-03-14 2004-09-16 Meshnetworks, Inc. System and method for analyzing the precision of geo-location services in a wireless network terminal
US20040184430A1 (en) * 2003-03-18 2004-09-23 Harris Corporation Extended range wireless packetized data communication system
US20040184442A1 (en) * 2003-03-18 2004-09-23 Harris Corporation Relay for extended range point-to-point wireless packetized data communication system
US20040203764A1 (en) * 2002-06-03 2004-10-14 Scott Hrastar Methods and systems for identifying nodes and mapping their locations
US20040209634A1 (en) * 2003-04-21 2004-10-21 Hrastar Scott E. Systems and methods for adaptively scanning for wireless communications
US20040209617A1 (en) * 2003-04-21 2004-10-21 Hrastar Scott E. Systems and methods for wireless network site survey systems and methods
US20040213167A1 (en) * 1999-10-15 2004-10-28 Nokia Wireless Routers, Inc. System for communicating labeled routing trees to establish preferred paths and source routes with local identifiers in wireless computer networks
US20040218602A1 (en) * 2003-04-21 2004-11-04 Hrastar Scott E. Systems and methods for dynamic sensor discovery and selection
US20040242252A1 (en) * 2003-03-26 2004-12-02 Maarten Hoeben Mechanism for reserving multiple channels of a single medium access control and physical layer
US20040246935A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. System and method for characterizing the quality of a link in a wireless network
US20040246926A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. System and method for identifying the floor number where a firefighter in need of help is located using received signal strength indicator and signal propagation time
US20040246975A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. System and method to improve the overall performance of a wireless communication network
US20040252643A1 (en) * 2003-06-05 2004-12-16 Meshnetworks, Inc. System and method to improve the network performance of a wireless communications network by finding an optimal route between a source and a destination
US20040252630A1 (en) * 2003-06-05 2004-12-16 Meshnetworks, Inc. System and method for determining synchronization point in OFDM modems for accurate time of flight measurement
US20040258040A1 (en) * 2003-06-05 2004-12-23 Meshnetworks, Inc. System and method to maximize channel utilization in a multi-channel wireless communiction network
US20040259571A1 (en) * 2003-06-05 2004-12-23 Meshnetworks, Inc. System and method for determining location of a device in a wireless communication network
US20050002349A1 (en) * 1998-03-10 2005-01-06 Matsushita Electric Industrial Co., Ltd. CDMA/TDD mobile communication system and method
US6850489B1 (en) * 1999-04-28 2005-02-01 Matsushita Electric Industrial Co., Ltd. Communication system to which multiple access control method is applied
US20050025131A1 (en) * 2003-07-29 2005-02-03 Seong-Yun Ko Medium access control in wireless local area network
US20050029215A1 (en) * 2003-08-08 2005-02-10 Grau Curtiss A. High capacity shear mechanism
US6859504B1 (en) 1999-06-29 2005-02-22 Sharp Laboratories Of America, Inc. Rapid settling automatic gain control with minimal signal distortion
US20050048997A1 (en) * 2003-09-02 2005-03-03 Mike Grobler Wireless connectivity module
US6873839B2 (en) 2000-11-13 2005-03-29 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system
EP1530316A1 (en) * 2003-11-10 2005-05-11 Go Networks Improving the performance of a wireless packet data communication system
US20050114489A1 (en) * 2003-11-24 2005-05-26 Yonge Lawrence W.Iii Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US6904021B2 (en) 2002-03-15 2005-06-07 Meshnetworks, Inc. System and method for providing adaptive control of transmit power and data rate in an ad-hoc communication network
US6907044B1 (en) 2000-08-04 2005-06-14 Intellon Corporation Method and protocol to support contention-free intervals and QoS in a CSMA network
US6909723B1 (en) 2000-08-04 2005-06-21 Intellon Corporation Segment bursting with priority pre-emption and reduced latency
WO2005067217A1 (en) * 2003-12-22 2005-07-21 Intel Corporation Bi-directional wireless lan channel access
US20050169296A1 (en) * 2004-02-03 2005-08-04 Srinivas Katar Temporary priority promotion for network communications in which access to a shared medium depends on a priority level
US20050169231A1 (en) * 2004-02-03 2005-08-04 Sharp Laboratories Of America, Inc. Method and system for detecting pending transmissions in a wireless data network
US6928061B1 (en) 2000-09-06 2005-08-09 Nokia, Inc. Transmission-scheduling coordination among collocated internet radios
US20050174961A1 (en) * 2004-02-06 2005-08-11 Hrastar Scott E. Systems and methods for adaptive monitoring with bandwidth constraints
US20050186966A1 (en) * 2003-03-13 2005-08-25 Meshnetworks, Inc. Real-time system and method for improving the accuracy of the computed location of mobile subscribers in a wireless ad-hoc network using a low speed central processing unit
US20050190785A1 (en) * 2004-02-26 2005-09-01 Yonge Lawrence W.Iii Channel adaptation synchronized to periodically varying channel
US6970444B2 (en) 2002-05-13 2005-11-29 Meshnetworks, Inc. System and method for self propagating information in ad-hoc peer-to-peer networks
US20050273668A1 (en) * 2004-05-20 2005-12-08 Richard Manning Dynamic and distributed managed edge computing (MEC) framework
US6980537B1 (en) 1999-11-12 2005-12-27 Itt Manufacturing Enterprises, Inc. Method and apparatus for communication network cluster formation and transmission of node link status messages with reduced protocol overhead traffic
US6982982B1 (en) 2001-10-23 2006-01-03 Meshnetworks, Inc. System and method for providing a congestion optimized address resolution protocol for wireless ad-hoc networks
US6987770B1 (en) 2000-08-04 2006-01-17 Intellon Corporation Frame forwarding in an adaptive network
US6987795B1 (en) 2002-04-08 2006-01-17 Meshnetworks, Inc. System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network
US6990117B1 (en) * 1999-11-24 2006-01-24 Denso Corporation CSMA wireless LAN having antenna device and terminal station
US20060034233A1 (en) * 2004-08-10 2006-02-16 Meshnetworks, Inc. Software architecture and hardware abstraction layer for multi-radio routing and method for providing the same
US20060041749A1 (en) * 2004-08-18 2006-02-23 Ptasinki Henry S Method and system for improved communication network setup
US20060077938A1 (en) * 2004-10-07 2006-04-13 Meshnetworks, Inc. System and method for creating a spectrum agile wireless multi-hopping network
US20060085543A1 (en) * 2004-10-19 2006-04-20 Airdefense, Inc. Personal wireless monitoring agent
US20060092965A1 (en) * 1999-12-07 2006-05-04 Tomiya Miyazaki Information terminal and information terminal system
US7046962B1 (en) 2002-07-18 2006-05-16 Meshnetworks, Inc. System and method for improving the quality of range measurement based upon historical data
US20060104301A1 (en) * 1999-02-10 2006-05-18 Beyer David A Adaptive communication protocol for wireless networks
US7058018B1 (en) 2002-03-06 2006-06-06 Meshnetworks, Inc. System and method for using per-packet receive signal strength indication and transmit power levels to compute path loss for a link for use in layer II routing in a wireless communication network
USRE39116E1 (en) 1992-11-02 2006-06-06 Negotiated Data Solutions Llc Network link detection and generation
US20060120399A1 (en) * 2003-06-18 2006-06-08 Claret Jorge V B Method enabling multiple communication nodes to access a transmission means on an electrical grid
US20060123133A1 (en) * 2004-10-19 2006-06-08 Hrastar Scott E Detecting unauthorized wireless devices on a wired network
US7072618B1 (en) 2001-12-21 2006-07-04 Meshnetworks, Inc. Adaptive threshold selection system and method for detection of a signal in the presence of interference
US20060146914A1 (en) * 2004-08-27 2006-07-06 Integration Associates Inc. Method and apparatus for frequency hopping medium access control in a wireless network
US7075890B2 (en) 2003-06-06 2006-07-11 Meshnetworks, Inc. System and method to provide fairness and service differentation in ad-hoc networks
US20060171408A1 (en) * 2005-01-28 2006-08-03 Samsung Electronics Co., Ltd. System and method for asynchronous wireless collision detection with acknowledgment for ad hoc wireless networks
US20060182071A1 (en) * 2003-03-05 2006-08-17 Koninklijke Philips Electronics N.V. Frame synchronization with acknowledgment timeout in wireless networks
US20060198387A1 (en) * 2005-03-03 2006-09-07 Yonge Lawrence W Iii Reserving time periods for communication on power line networks
US7106703B1 (en) 2002-05-28 2006-09-12 Meshnetworks, Inc. System and method for controlling pipeline delays by adjusting the power levels at which nodes in an ad-hoc network transmit data packets
US7106707B1 (en) 2001-12-20 2006-09-12 Meshnetworks, Inc. System and method for performing code and frequency channel selection for combined CDMA/FDMA spread spectrum communication systems
US7107498B1 (en) 2002-04-16 2006-09-12 Methnetworks, Inc. System and method for identifying and maintaining reliable infrastructure links using bit error rate data in an ad-hoc communication network
US7123624B1 (en) * 1999-01-14 2006-10-17 Cape Range Wireless, Ltd. System and method for single-point to fixed-multipoint data communication
US7136587B1 (en) 2001-11-15 2006-11-14 Meshnetworks, Inc. System and method for providing simulated hardware-in-the-loop testing of wireless communications networks
USRE39405E1 (en) 1992-11-02 2006-11-21 Negotiated Data Solutions Llc Network link endpoint capability detection
US20070038752A1 (en) * 1998-07-10 2007-02-15 Van Drebbel Mariner Llc Quality of Service (QoS) - aware wireless Point to Multi-Point (PtMP) transmission system architecture
US7180875B1 (en) 2001-12-20 2007-02-20 Meshnetworks, Inc. System and method for performing macro-diversity selection and distribution of routes for routing data packets in Ad-Hoc networks
US7181214B1 (en) 2001-11-13 2007-02-20 Meshnetworks, Inc. System and method for determining the measure of mobility of a subscriber device in an ad-hoc wireless network with fixed wireless routers and wide area network (WAN) access points
US7190672B1 (en) 2001-12-19 2007-03-13 Meshnetworks, Inc. System and method for using destination-directed spreading codes in a multi-channel metropolitan area wireless communications network
US7200149B1 (en) 2002-04-12 2007-04-03 Meshnetworks, Inc. System and method for identifying potential hidden node problems in multi-hop wireless ad-hoc networks for the purpose of avoiding such potentially problem nodes in route selection
US20070086346A1 (en) * 2005-10-14 2007-04-19 Conexant Systems, Inc. MAC protection
US20070097903A1 (en) * 2005-11-03 2007-05-03 Interdigital Technology Corporation Method and apparatus of exchanging messages via a wireless distribution system between groups operating in different frequencies
US7215638B1 (en) 2002-06-19 2007-05-08 Meshnetworks, Inc. System and method to provide 911 access in voice over internet protocol systems without compromising network security
US7218691B1 (en) 2001-03-05 2007-05-15 Marvell International Ltd. Method and apparatus for estimation of orthogonal frequency division multiplexing symbol timing and carrier frequency offset
US7221686B1 (en) 2001-11-30 2007-05-22 Meshnetworks, Inc. System and method for computing the signal propagation time and the clock correction for mobile stations in a wireless network
US20070113653A1 (en) * 2005-11-21 2007-05-24 Nasiri Steven S Multiple axis accelerometer
US20070136476A1 (en) * 2005-12-12 2007-06-14 Isaac Rubinstein Controlled peer-to-peer network
US20070153755A1 (en) * 2006-01-02 2007-07-05 Jin-Woo Yang Wireless local area network (WLAN) and method of transmitting frame in the WLAN
US20070211748A1 (en) * 2006-03-13 2007-09-13 Stephens Adrian P Wireless network channell access techniques
US20070217371A1 (en) * 2006-03-17 2007-09-20 Airdefense, Inc. Systems and Methods for Wireless Security Using Distributed Collaboration of Wireless Clients
US20070218874A1 (en) * 2006-03-17 2007-09-20 Airdefense, Inc. Systems and Methods For Wireless Network Forensics
US7281187B2 (en) 2003-11-20 2007-10-09 Intellon Corporation Using error checking bits to communicated an address or other bits
US7280545B1 (en) 2001-12-20 2007-10-09 Nagle Darragh J Complex adaptive routing system and method for a nodal communication network
US7284268B2 (en) 2002-05-16 2007-10-16 Meshnetworks, Inc. System and method for a routing device to securely share network data with a host utilizing a hardware firewall
US7298691B1 (en) 2000-08-04 2007-11-20 Intellon Corporation Method and protocol to adapt each unique connection in a multi-node network to a maximum data rate
US20070298778A1 (en) * 2006-06-14 2007-12-27 Mary Chion Efficient Acknowledgement Messaging in Wireless Communications
US20080052779A1 (en) * 2006-08-11 2008-02-28 Airdefense, Inc. Methods and Systems For Wired Equivalent Privacy and Wi-Fi Protected Access Protection
US7352770B1 (en) 2000-08-04 2008-04-01 Intellon Corporation Media access control protocol with priority and contention-free intervals
US7373322B1 (en) 1994-09-20 2008-05-13 Papyrus Technology Corporation Two-way wireless communication system for financial industry transactions
US20080130622A1 (en) * 2003-06-25 2008-06-05 Guido Hiertz Method of Decentralized Medium Access Control in a Communications Network
US20080144493A1 (en) * 2004-06-30 2008-06-19 Chi-Hsiang Yeh Method of interference management for interference/collision prevention/avoidance and spatial reuse enhancement
US20080285489A1 (en) * 1991-11-12 2008-11-20 Broadcom Corporation Redundant radio frequency network having a roaming terminal communication protocol
US7469297B1 (en) 2000-08-04 2008-12-23 Intellon Corporation Mechanism for using a quasi-addressed response to bind to a message requesting the response
US20090010231A1 (en) * 2007-07-06 2009-01-08 Qualcomm Incorporated Communications methods and apparatus related to synchronization with respect to a peer to peer timing structure
US20090013081A1 (en) * 2007-07-06 2009-01-08 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US20090021343A1 (en) * 2006-05-10 2009-01-22 Airdefense, Inc. RFID Intrusion Protection System and Methods
US7532895B2 (en) 2002-05-20 2009-05-12 Air Defense, Inc. Systems and methods for adaptive location tracking
US20090141738A1 (en) * 2007-12-03 2009-06-04 Qing Li Reservation-Based Distributed Collision Avoidance Channel Access For Wireless Local Area Networks
US7577424B2 (en) 2005-12-19 2009-08-18 Airdefense, Inc. Systems and methods for wireless vulnerability analysis
US20090207748A1 (en) * 2008-02-14 2009-08-20 Hyo Hyun Choi Communication method and apparatus using received signal strength indicator in wireless sensor network
US7623542B2 (en) 2002-10-21 2009-11-24 Intellon Corporation Contention-free access intervals on a CSMA network
US20100034214A1 (en) * 2008-06-26 2010-02-11 Zhi Gang Zhang Access point device, communication device and method for access to communication media
US20100085946A1 (en) * 2008-10-03 2010-04-08 Texas Instruments Incorporated Adaptive transmissions in wireless networks
US7715800B2 (en) 2006-01-13 2010-05-11 Airdefense, Inc. Systems and methods for wireless intrusion detection using spectral analysis
US7796570B1 (en) 2002-07-12 2010-09-14 Meshnetworks, Inc. Method for sparse table accounting and dissemination from a mobile subscriber device in a wireless mobile ad-hoc network
US7822059B2 (en) 2005-07-27 2010-10-26 Atheros Communications, Inc. Managing contention-free time allocations in a network
US20100296496A1 (en) * 2009-05-19 2010-11-25 Amit Sinha Systems and methods for concurrent wireless local area network access and sensing
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7970013B2 (en) 2006-06-16 2011-06-28 Airdefense, Inc. Systems and methods for wireless network content filtering
US20110194549A1 (en) * 2004-08-18 2011-08-11 Manoj Thawani Method and System for Improved Communication Network Setup Utilizing Extended Terminals
US8175190B2 (en) 2005-07-27 2012-05-08 Qualcomm Atheros, Inc. Managing spectra of modulated signals in a communication network
US20120329473A1 (en) * 2011-06-21 2012-12-27 Siavash Ekbatani Anonymous Directional Peer-to-Peer Wireless Communication
US20130078923A1 (en) * 2011-09-26 2013-03-28 Broadcom Corporation Pairing with directional code sequence
US8493995B2 (en) 2007-05-10 2013-07-23 Qualcomm Incorporated Managing distributed access to a shared medium
USRE44530E1 (en) 1998-05-04 2013-10-08 Electronics And Telecommunications Research Institute Apparatus for making a random access to the reverse common channel of a base station in CDMA and method therefor
US20130336247A1 (en) * 2003-11-20 2013-12-19 Adrian P. Stephens Trained data transmission for communication systems
US8619922B1 (en) 2002-02-04 2013-12-31 Marvell International Ltd. Method and apparatus for acquisition and tracking of orthogonal frequency division multiplexing symbol timing, carrier frequency offset and phase noise
US8660013B2 (en) 2010-04-12 2014-02-25 Qualcomm Incorporated Detecting delimiters for low-overhead communication in a network
US8891605B2 (en) 2013-03-13 2014-11-18 Qualcomm Incorporated Variable line cycle adaptation for powerline communications
US9049725B1 (en) * 2009-10-09 2015-06-02 Sprint Spectrum L.P. Method and system of using an indicator signal that indicates when an access channel is occupied
US9661528B2 (en) 2004-12-23 2017-05-23 Electronic And Telecommunications Research Institute Apparatus for transmitting and receiving data to provide high-speed data communication and method thereof
US9906979B2 (en) 2013-06-17 2018-02-27 Intel Corporation Apparatus, system and method of communicating an authentication request frame

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI104866B (en) 1997-10-29 2000-04-14 Nokia Mobile Phones Ltd local Network
CN102667865B (en) 2009-12-21 2016-04-06 汤姆森特许公司 A method for generating a map of the environment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012469A (en) * 1988-07-29 1991-04-30 Karamvir Sardana Adaptive hybrid multiple access protocols

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012469A (en) * 1988-07-29 1991-04-30 Karamvir Sardana Adaptive hybrid multiple access protocols

Cited By (431)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369639A (en) * 1990-09-06 1994-11-29 Ncr Corporation Local area network having a wireless transmission link
US5629942A (en) * 1991-07-08 1997-05-13 U.S. Philips Corporation Method and arrangement for channel allocation for data transmission between a main station and a plurality of substations
US7916747B2 (en) * 1991-11-12 2011-03-29 Broadcom Corporation Redundant radio frequency network having a roaming terminal communication protocol
US20080285489A1 (en) * 1991-11-12 2008-11-20 Broadcom Corporation Redundant radio frequency network having a roaming terminal communication protocol
USRE39116E1 (en) 1992-11-02 2006-06-06 Negotiated Data Solutions Llc Network link detection and generation
USRE39405E1 (en) 1992-11-02 2006-11-21 Negotiated Data Solutions Llc Network link endpoint capability detection
US6006090A (en) * 1993-04-28 1999-12-21 Proxim, Inc. Providing roaming capability for mobile computers in a standard network
US5604869A (en) * 1993-07-09 1997-02-18 Apple Computer, Inc. System and method for sending and responding to information requests in a communications network
EP0653865A3 (en) * 1993-11-15 1995-08-02 Ibm Medium access control protocol for wireless communication.
EP0653865A2 (en) 1993-11-15 1995-05-17 International Business Machines Corporation Medium access control protocol for wireless communication
US6292508B1 (en) 1994-03-03 2001-09-18 Proxim, Inc. Method and apparatus for managing power in a frequency hopping medium access control protocol
US6466608B1 (en) 1994-03-03 2002-10-15 Proxim, Inc. Frequency hopping medium access control protocol for a communication system having distributed synchronization
US5619530A (en) * 1994-04-04 1997-04-08 Motorola, Inc. Method and apparatus for detecting and handling collisions in a radio communication system
US6348973B1 (en) 1994-07-01 2002-02-19 Colorspan Corporation Apparatus for printing a document over a network
US5577172A (en) * 1994-07-01 1996-11-19 Lasermaster Corporation High-capacity protocol for packet-based networks
US6091507A (en) * 1994-07-01 2000-07-18 Colorspan Corporation Method and apparatus for printing a document over a network
EP0693838A2 (en) * 1994-07-21 1996-01-24 Sharp Kabushiki Kaisha Data communication apparatus and method achieving efficient use of the media
US5592483A (en) * 1994-07-21 1997-01-07 Sharp Kabushiki Kaisha Data communication apparatus achieving efficient use of the media
EP0693838A3 (en) * 1994-07-21 1998-01-21 Sharp Kabushiki Kaisha Data communication apparatus and method achieving efficient use of the media
US5487068A (en) * 1994-07-29 1996-01-23 Motorola, Inc. Method for providing error correction using selective automatic repeat requests in a packet-switched communication system
EP1376890A2 (en) * 1994-09-09 2004-01-02 XIRCOM Wireless, Inc. Wireless spread spectrum communication with preamble sounding gap
EP1376890A3 (en) * 1994-09-09 2004-01-07 XIRCOM Wireless, Inc. Wireless spread spectrum communication with preamble sounding gap
US5797002A (en) * 1994-09-20 1998-08-18 Papyrus Technology Corp. Two-way wireless system for financial industry transactions
US7373322B1 (en) 1994-09-20 2008-05-13 Papyrus Technology Corporation Two-way wireless communication system for financial industry transactions
US5793301A (en) * 1994-09-20 1998-08-11 Paryrus Technology Corp. Assured two-way wireless communication system for financial industry transactions
US6539362B1 (en) 1994-09-20 2003-03-25 Papyrus Technology Corp. Two-way wireless system for financial industry transactions
US5774877A (en) * 1994-09-20 1998-06-30 Papyrus Technology Corp. Two-way wireless system for financial industry transactions
US6768981B2 (en) 1994-09-20 2004-07-27 Papyrus Corporation Method for executing a cross-trade in a two-way wireless system
US5915245A (en) * 1994-09-20 1999-06-22 Papyrus Technology Corp. Two-way wireless system for financial industry transactions
US5657326A (en) * 1994-12-20 1997-08-12 3Com Corporation Radio based collision detection for wireless communication system
US6343071B1 (en) 1995-01-11 2002-01-29 Simtek Corporation Wireless desktop area network system
WO1996021978A1 (en) * 1995-01-11 1996-07-18 Momentum Microsystems Wireless desktop area network system
US5745479A (en) * 1995-02-24 1998-04-28 3Com Corporation Error detection in a wireless LAN environment
US5864550A (en) * 1995-05-05 1999-01-26 Nokia Mobile Phones Ltd. Wireless local area network system and receiver for the same
US5719868A (en) * 1995-10-05 1998-02-17 Rockwell International Dynamic distributed, multi-channel time division multiple access slot assignment method for a network of nodes
US5721725A (en) * 1995-10-30 1998-02-24 Xerox Corporation Protocol for channel access in wireless or network data communication
US5818830A (en) * 1995-12-29 1998-10-06 Lsi Logic Corporation Method and apparatus for increasing the effective bandwidth of a digital wireless network
US5898828A (en) * 1995-12-29 1999-04-27 Emc Corporation Reduction of power used by transceivers in a data transmission loop
US6754196B1 (en) 1995-12-29 2004-06-22 Lsi Logic Corporation Method and apparatus for increasing the effective bandwidth within a digital wireless network
US6108344A (en) * 1996-01-31 2000-08-22 Canon Kabushiki Kaisha Method, means and system for communicating on a shared transmission medium
US5661727A (en) * 1996-06-12 1997-08-26 International Business Machines Corporation Schemes to determine presence of hidden terminals in wireless networks environment and to switch between them
EP0818905A2 (en) * 1996-07-09 1998-01-14 International Business Machines Corporation Network communication
US5844905A (en) * 1996-07-09 1998-12-01 International Business Machines Corporation Extensions to distributed MAC protocols with collision avoidance using RTS/CTS exchange
EP0818905A3 (en) * 1996-07-09 1999-05-19 International Business Machines Corporation Network communication
US5844900A (en) * 1996-09-23 1998-12-01 Proxim, Inc. Method and apparatus for optimizing a medium access control protocol
US5875179A (en) * 1996-10-29 1999-02-23 Proxim, Inc. Method and apparatus for synchronized communication over wireless backbone architecture
US7054332B2 (en) * 1997-01-21 2006-05-30 Cingular Wireless Ii, Inc. Method and apparatus for dynamic negotiation of protocols
US6445716B1 (en) * 1997-01-21 2002-09-03 At&T Wireless Services, Inc. Method and apparatus for dynamic negotiation of protocols
US6125122A (en) * 1997-01-21 2000-09-26 At&T Wireless Svcs. Inc. Dynamic protocol negotiation system
US5949760A (en) * 1997-03-21 1999-09-07 Rockwell International Corporation Simultaneous channel access transmission method for a multi-hop communications radio network
US5889772A (en) * 1997-04-17 1999-03-30 Advanced Micro Devices, Inc. System and method for monitoring performance of wireless LAN and dynamically adjusting its operating parameters
US6393032B1 (en) * 1997-06-23 2002-05-21 Nec Corporation Wireless LAN system and method of driving the same
US6055512A (en) * 1997-07-08 2000-04-25 Nortel Networks Corporation Networked personal customized information and facility services
US6049549A (en) * 1997-08-14 2000-04-11 University Of Massachusetts Adaptive media control
US7460514B2 (en) 1997-08-14 2008-12-02 University Of Massachusetts Adaptive media control
US7778224B2 (en) * 1998-03-10 2010-08-17 Panasonic Corporation CDMA/TDD mobile communication system and method
US20050002349A1 (en) * 1998-03-10 2005-01-06 Matsushita Electric Industrial Co., Ltd. CDMA/TDD mobile communication system and method
USRE44530E1 (en) 1998-05-04 2013-10-08 Electronics And Telecommunications Research Institute Apparatus for making a random access to the reverse common channel of a base station in CDMA and method therefor
US9712289B2 (en) 1998-07-10 2017-07-18 Intellectual Ventures I Llc Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PtMP) transmission system architecture
US7496674B2 (en) 1998-07-10 2009-02-24 Van Drebbel Mariner Llc System, method, and base station using different security protocols on wired and wireless portions of network
US20070038753A1 (en) * 1998-07-10 2007-02-15 Van Drebbel Mariner Llc Transmission Control Protocol/Internet Protocol (TCP/IP) - centric "Quality of Service(QoS)" aware Media Access Control (MAC) Layer in a wireless Point to Multi-Point (PtMP) transmission system
US20090271512A1 (en) * 1998-07-10 2009-10-29 Jorgensen Jacob W TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL (TCP/IP) PACKET-CENTRIC WIRELESS POINT TO MULTI-POINT (PtMP) TRANSMISSION SYSTEM ARCHITECTURE
US20070038750A1 (en) * 1998-07-10 2007-02-15 Van Drebbel Mariner Llc Method for providing for Quality of Service (QoS) - based handling of IP-flows in a wireless point to multi-point transmission system
US6628629B1 (en) * 1998-07-10 2003-09-30 Malibu Networks Reservation based prioritization method for wireless transmission of latency and jitter sensitive IP-flows in a wireless point to multi-point transmission system
US7412517B2 (en) 1998-07-10 2008-08-12 Van Drebbel Mariner Llc Method for providing dynamic bandwidth allocation based on IP-flow characteristics in a wireless point to multi-point (PtMP) transmission system
US20070038736A1 (en) * 1998-07-10 2007-02-15 Van Drebbel Mariner Llc Time division multiple access/time division duplex (TDMA/TDD) transmission media access control (MAC) air frame
US20070038752A1 (en) * 1998-07-10 2007-02-15 Van Drebbel Mariner Llc Quality of Service (QoS) - aware wireless Point to Multi-Point (PtMP) transmission system architecture
US20070050492A1 (en) * 1998-07-10 2007-03-01 Van Drebbel Mariner Llc Method of operation for the integration of differentiated services (Diff-Serv) marked IP-flows into a quality of service (QoS) priorities in a wireless point to multi-point (PtMP) transmission system
US7251218B2 (en) 1998-07-10 2007-07-31 Van Drebbel Mariner Llc Method and computer program product for internet protocol (IP)-flow classification in a wireless point to multi-point (PtMP) transmission system
USRE46206E1 (en) 1998-07-10 2016-11-15 Intellectual Ventures I Llc Method and computer program product for internet protocol (IP)—flow classification in a wireless point to multi-point (PTMP) transmission system
US20070038751A1 (en) * 1998-07-10 2007-02-15 Van Drebbel Mariner Llc Use of priority-based scheduling for the optimization of latency and jitter sensitive IP flows in a wireless point to multi-point transmission system
US7409450B2 (en) 1998-07-10 2008-08-05 Van Drebbel Mariner Llc Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PtMP) transmission system architecture
US7359971B2 (en) 1998-07-10 2008-04-15 Van Drebbel Mariner Llc Use of priority-based scheduling for the optimization of latency and jitter sensitive IP flows in a wireless point to multi-point transmission system
US20030067903A1 (en) * 1998-07-10 2003-04-10 Jorgensen Jacob W. Method and computer program product for internet protocol (IP)-flow classification in a wireless point to multi-point (PTMP)
US7359972B2 (en) 1998-07-10 2008-04-15 Van Drebbel Mariner Llc Time division multiple access/time division duplex (TDMA/TDD) transmission media access control (MAC) air frame
US6611521B1 (en) * 1998-07-14 2003-08-26 International Business Machines Corporation Data link layer extensions to a high latency wireless MAC protocol
US7123624B1 (en) * 1999-01-14 2006-10-17 Cape Range Wireless, Ltd. System and method for single-point to fixed-multipoint data communication
US7184413B2 (en) 1999-02-10 2007-02-27 Nokia Inc. Adaptive communication protocol for wireless networks
US20060104301A1 (en) * 1999-02-10 2006-05-18 Beyer David A Adaptive communication protocol for wireless networks
EP1163817A4 (en) * 1999-03-02 2003-03-26 Gte Service Corp Asynchronous reservation-oriented multiple access for wireless networks
EP1163817A1 (en) * 1999-03-02 2001-12-19 GTE Internetworking Incorporated Asynchronous reservation-oriented multiple access for wireless networks
US6850489B1 (en) * 1999-04-28 2005-02-01 Matsushita Electric Industrial Co., Ltd. Communication system to which multiple access control method is applied
EP1059773A3 (en) * 1999-06-08 2003-10-22 Radiant Networks Plc Communications protocol for packet data particularly in mesh topology wireless networks
EP1059773A2 (en) * 1999-06-08 2000-12-13 CALY Corporation Communications protocol for packet data particularly in mesh topology wireless networks
WO2000076088A1 (en) * 1999-06-08 2000-12-14 Caly Corporation Communications protocol for packet data particularly in mesh topology wireless networks
US6363062B1 (en) * 1999-06-08 2002-03-26 Caly Corporation Communications protocol for packet data particularly in mesh topology wireless networks
US20030100282A1 (en) * 1999-06-29 2003-05-29 Srinivas Kandala Data unit detection including antenna diversity
US7450922B2 (en) 1999-06-29 2008-11-11 Sharp Laboratories Of America, Inc. Data unit detection including antenna diversity
US6505037B1 (en) 1999-06-29 2003-01-07 Sharp Laboratories Of America, Inc. Data unit detection including antenna diversity
US6856795B2 (en) 1999-06-29 2005-02-15 Sharp Laboratories Of America, Inc. Data unit detection including antenna diversity
US6859504B1 (en) 1999-06-29 2005-02-22 Sharp Laboratories Of America, Inc. Rapid settling automatic gain control with minimal signal distortion
US20050096001A1 (en) * 1999-06-29 2005-05-05 Srinivas Kandala Data unit detection including antenna diversity
US6470189B1 (en) * 1999-09-29 2002-10-22 Motorola, Inc. Method and apparatus in a wireless transceiver for seeking and transferring information available from a network server
WO2001028162A1 (en) * 1999-10-13 2001-04-19 Caly Corporation Spatially switched router for wireless data packets
US6426814B1 (en) 1999-10-13 2002-07-30 Caly Corporation Spatially switched router for wireless data packets
US6836463B2 (en) 1999-10-15 2004-12-28 Nokia Corporation System for communicating labeled routing trees to establish preferred paths and source routes with local identifiers in wireless computer networks
US6788702B1 (en) 1999-10-15 2004-09-07 Nokia Wireless Routers, Inc. Protocol for neighborhood-established transmission scheduling
US20040213167A1 (en) * 1999-10-15 2004-10-28 Nokia Wireless Routers, Inc. System for communicating labeled routing trees to establish preferred paths and source routes with local identifiers in wireless computer networks
US6980537B1 (en) 1999-11-12 2005-12-27 Itt Manufacturing Enterprises, Inc. Method and apparatus for communication network cluster formation and transmission of node link status messages with reduced protocol overhead traffic
WO2001037481A3 (en) * 1999-11-12 2002-03-21 Itt Mfg Enterprises Inc Method and apparatus for broadcasting messages in channel reservation communication systems
US6349210B1 (en) 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for broadcasting messages in channel reservation communication systems
US6385174B1 (en) 1999-11-12 2002-05-07 Itt Manufacturing Enterprises, Inc. Method and apparatus for transmission of node link status messages throughout a network with reduced communication protocol overhead traffic
US6349091B1 (en) 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic
WO2001037481A2 (en) * 1999-11-12 2001-05-25 Itt Manufacturing Enterprises, Inc. Method and apparatus for broadcasting messages in channel reservation communication systems
US6990117B1 (en) * 1999-11-24 2006-01-24 Denso Corporation CSMA wireless LAN having antenna device and terminal station
US20060092965A1 (en) * 1999-12-07 2006-05-04 Tomiya Miyazaki Information terminal and information terminal system
US7664060B2 (en) * 1999-12-07 2010-02-16 Panasonic Corporation Information terminal and information terminal system
US6681256B1 (en) 1999-12-21 2004-01-20 Nokia Corporation Method for dynamically selecting allocation of random access channels in a communication system
EP1111842A3 (en) * 1999-12-21 2002-08-07 Nokia Corporation Apparatus and method for allocating random access channels in a communication system
EP1111842A2 (en) * 1999-12-21 2001-06-27 Nokia Mobile Phones Ltd. Apparatus and method for allocating random access channels in a communication system
US6732163B1 (en) 2000-01-05 2004-05-04 Cisco Technology, Inc. System for selecting the operating frequency of a communication device in a wireless network
US20030214933A1 (en) * 2000-01-13 2003-11-20 Cape Range Wireless Malaysia Sdn System and method for single-point to fixed-multipoint data communication
US20030016647A1 (en) * 2000-01-13 2003-01-23 Kenneth Margon System and method for multipoint to multipoint data communication
US6556582B1 (en) * 2000-05-15 2003-04-29 Bbnt Solutions Llc Systems and methods for collision avoidance in mobile multi-hop packet radio networks
US7916746B2 (en) 2000-08-04 2011-03-29 Atheros Communications, Inc. Media access control protocol with priority and contention-free intervals
US6909723B1 (en) 2000-08-04 2005-06-21 Intellon Corporation Segment bursting with priority pre-emption and reduced latency
US6671284B1 (en) * 2000-08-04 2003-12-30 Intellon Corporation Frame control for efficient media access
US7469297B1 (en) 2000-08-04 2008-12-23 Intellon Corporation Mechanism for using a quasi-addressed response to bind to a message requesting the response
US6907044B1 (en) 2000-08-04 2005-06-14 Intellon Corporation Method and protocol to support contention-free intervals and QoS in a CSMA network
US20080175265A1 (en) * 2000-08-04 2008-07-24 Yonge Lawrence W Media Access Control Protocol With Priority And Contention-Free Intervals
US7352770B1 (en) 2000-08-04 2008-04-01 Intellon Corporation Media access control protocol with priority and contention-free intervals
US6987770B1 (en) 2000-08-04 2006-01-17 Intellon Corporation Frame forwarding in an adaptive network
US7298691B1 (en) 2000-08-04 2007-11-20 Intellon Corporation Method and protocol to adapt each unique connection in a multi-node network to a maximum data rate
US6928061B1 (en) 2000-09-06 2005-08-09 Nokia, Inc. Transmission-scheduling coordination among collocated internet radios
US20020061031A1 (en) * 2000-10-06 2002-05-23 Sugar Gary L. Systems and methods for interference mitigation among multiple WLAN protocols
US7050452B2 (en) 2000-10-06 2006-05-23 Cognio, Inc. Systems and methods for interference mitigation among multiple WLAN protocols
US20020085526A1 (en) * 2000-11-08 2002-07-04 Belcea John M. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7099296B2 (en) 2000-11-08 2006-08-29 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7266104B2 (en) 2000-11-08 2007-09-04 Meshnetworks, Inc. Time division protocol for an AD-HOC, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7212504B2 (en) 2000-11-08 2007-05-01 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7079509B2 (en) 2000-11-08 2006-07-18 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7133391B2 (en) 2000-11-08 2006-11-07 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7197016B2 (en) 2000-11-08 2007-03-27 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7796573B2 (en) 2000-11-08 2010-09-14 Meshnetworks, Inc. Terminal operating within an ad-hoc, peer-to-peer radio network
US20030142638A1 (en) * 2000-11-08 2003-07-31 Belcea John M. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US6807165B2 (en) 2000-11-08 2004-10-19 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US20080013497A1 (en) * 2000-11-08 2008-01-17 Motorola, Inc. Terminal operating within an ad-hoc, peer-to-peer radio network
US7072650B2 (en) 2000-11-13 2006-07-04 Meshnetworks, Inc. Ad hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US20060233184A1 (en) * 2000-11-13 2006-10-19 Meshnetworks, Inc. Ad-hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US20020058502A1 (en) * 2000-11-13 2002-05-16 Peter Stanforth Ad hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US8180351B2 (en) 2000-11-13 2012-05-15 Meshnetworks, Inc. Ad-hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US6873839B2 (en) 2000-11-13 2005-03-29 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system
US6961575B2 (en) 2000-11-13 2005-11-01 Meshnetworks, Inc. Ad Hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US6904275B2 (en) 2000-11-13 2005-06-07 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system
US7218691B1 (en) 2001-03-05 2007-05-15 Marvell International Ltd. Method and apparatus for estimation of orthogonal frequency division multiplexing symbol timing and carrier frequency offset
US7532693B1 (en) 2001-03-05 2009-05-12 Marvell International Ltd. Method and apparatus for acquistion and tracking of orthogonal frequency division multiplexing symbol timing, carrier frequency offset and phase noise
US8300743B1 (en) 2001-03-05 2012-10-30 Marvell International Ltd. Method and apparatus for acquisition and tracking of orthogonal frequency division multiplexing symbol timing, carrier frequency offset and phase noise
US8929487B1 (en) 2001-03-05 2015-01-06 Marvell International Ltd. Channel estimator for updating channel estimates and carrier frequency offsets
US20030040316A1 (en) * 2001-03-22 2003-02-27 Peter Stanforth Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system based on battery-power levels and type of service
US7151769B2 (en) 2001-03-22 2006-12-19 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system based on battery-power levels and type of service
WO2002089428A1 (en) * 2001-04-27 2002-11-07 Telefonaktiebolaget Lm Ericsson (Publ) A method of initiating data transfer in a wireless communications system
US20020165968A1 (en) * 2001-05-03 2002-11-07 Ncr Corporation Methods and apparatus for wireless operator remote control in document processing systems
US20020191573A1 (en) * 2001-06-14 2002-12-19 Whitehill Eric A. Embedded routing algorithms under the internet protocol routing layer of a software architecture protocol stack in a mobile Ad-Hoc network
US7756041B2 (en) 2001-06-14 2010-07-13 Meshnetworks, Inc. Embedded routing algorithms under the internet protocol routing layer of a software architecture protocol stack in a mobile Ad-Hoc network
WO2003009518A3 (en) * 2001-07-19 2003-07-17 Cape Range Wireless Inc System and method for multipoint to multipoint data communication
WO2003009518A2 (en) * 2001-07-19 2003-01-30 Cape Range Wireless, Inc. System and method for multipoint to multipoint data communication
US7072323B2 (en) 2001-08-15 2006-07-04 Meshnetworks, Inc. System and method for performing soft handoff in a wireless data network
US7349380B2 (en) 2001-08-15 2008-03-25 Meshnetworks, Inc. System and method for providing an addressing and proxy scheme for facilitating mobility of wireless nodes between wired access points on a core network of a communications network
US7206294B2 (en) 2001-08-15 2007-04-17 Meshnetworks, Inc. Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US20030091011A1 (en) * 2001-08-15 2003-05-15 Roberts Robin U. System and method for performing soft handoff in a wireless data network
US7149197B2 (en) 2001-08-15 2006-12-12 Meshnetworks, Inc. Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US20030091012A1 (en) * 2001-08-15 2003-05-15 Barker Charles R. System and method for providing an addressing and proxy scheme for facilitating mobility of wireless nodes between wired access points on a core network of a communications network
US20030035437A1 (en) * 2001-08-15 2003-02-20 Masood Garahi Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US7613458B2 (en) 2001-08-28 2009-11-03 Meshnetworks, Inc. System and method for enabling a radio node to selectably function as a router in a wireless communications network
US20030060202A1 (en) * 2001-08-28 2003-03-27 Roberts Robin U. System and method for enabling a radio node to selectably function as a router in a wireless communications network
US7145903B2 (en) 2001-09-06 2006-12-05 Meshnetworks, Inc. Multi-master bus architecture for system-on-chip designs
US20030043790A1 (en) * 2001-09-06 2003-03-06 Philip Gutierrez Multi-master bus architecture for system -on-chip designs
US20030058886A1 (en) * 2001-09-25 2003-03-27 Stanforth Peter J. System and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
US7280555B2 (en) 2001-09-25 2007-10-09 Meshnetworks, Inc. System and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
US6754188B1 (en) 2001-09-28 2004-06-22 Meshnetworks, Inc. System and method for enabling a node in an ad-hoc packet-switched wireless communications network to route packets based on packet content
US6768730B1 (en) 2001-10-11 2004-07-27 Meshnetworks, Inc. System and method for efficiently performing two-way ranging to determine the location of a wireless node in a communications network
US6937602B2 (en) 2001-10-23 2005-08-30 Meshnetworks, Inc. System and method for providing a congestion optimized address resolution protocol for wireless ad-hoc networks
US20030076837A1 (en) * 2001-10-23 2003-04-24 Whitehill Eric A. System and method for providing a congestion optimized address resolution protocol for wireless Ad-Hoc Networks
US6982982B1 (en) 2001-10-23 2006-01-03 Meshnetworks, Inc. System and method for providing a congestion optimized address resolution protocol for wireless ad-hoc networks
US7181214B1 (en) 2001-11-13 2007-02-20 Meshnetworks, Inc. System and method for determining the measure of mobility of a subscriber device in an ad-hoc wireless network with fixed wireless routers and wide area network (WAN) access points
US7136587B1 (en) 2001-11-15 2006-11-14 Meshnetworks, Inc. System and method for providing simulated hardware-in-the-loop testing of wireless communications networks
US6728545B1 (en) 2001-11-16 2004-04-27 Meshnetworks, Inc. System and method for computing the location of a mobile terminal in a wireless communications network
US7221686B1 (en) 2001-11-30 2007-05-22 Meshnetworks, Inc. System and method for computing the signal propagation time and the clock correction for mobile stations in a wireless network
US7190672B1 (en) 2001-12-19 2007-03-13 Meshnetworks, Inc. System and method for using destination-directed spreading codes in a multi-channel metropolitan area wireless communications network
US7280545B1 (en) 2001-12-20 2007-10-09 Nagle Darragh J Complex adaptive routing system and method for a nodal communication network
US7180875B1 (en) 2001-12-20 2007-02-20 Meshnetworks, Inc. System and method for performing macro-diversity selection and distribution of routes for routing data packets in Ad-Hoc networks
US7106707B1 (en) 2001-12-20 2006-09-12 Meshnetworks, Inc. System and method for performing code and frequency channel selection for combined CDMA/FDMA spread spectrum communication systems
US7072618B1 (en) 2001-12-21 2006-07-04 Meshnetworks, Inc. Adaptive threshold selection system and method for detection of a signal in the presence of interference
US20060092885A1 (en) * 2002-01-12 2006-05-04 Brockmann Ronald A Transmission protection for communications networks having stations operating with different modulation formats
US20030133469A1 (en) * 2002-01-12 2003-07-17 Brockmann Ronald A. Transmission protection for communications networks having stations operating with different modulation formats
US6977944B2 (en) 2002-01-12 2005-12-20 Conexant, Inc. Transmission protection for communications networks having stations operating with different modulation formats
US7953104B2 (en) 2002-01-12 2011-05-31 Xocyst Transfer Ag L.L.C. Transmission protection for communications networks having stations operating with different modulation formats
US6674790B1 (en) 2002-01-24 2004-01-06 Meshnetworks, Inc. System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
US20030147415A1 (en) * 2002-02-01 2003-08-07 Renaud Dore Method for radio link adaptation in a network with contention-based medium access
US8619922B1 (en) 2002-02-04 2013-12-31 Marvell International Ltd. Method and apparatus for acquisition and tracking of orthogonal frequency division multiplexing symbol timing, carrier frequency offset and phase noise
US6617990B1 (en) 2002-03-06 2003-09-09 Meshnetworks Digital-to-analog converter using pseudo-random sequences and a method for using the same
US7058018B1 (en) 2002-03-06 2006-06-06 Meshnetworks, Inc. System and method for using per-packet receive signal strength indication and transmit power levels to compute path loss for a link for use in layer II routing in a wireless communication network
WO2003075514A1 (en) * 2002-03-07 2003-09-12 Koninklijke Philips Electronics N.V. Coexistence of stations capable of different modulation schemes in a wireless local area network
US6771666B2 (en) 2002-03-15 2004-08-03 Meshnetworks, Inc. System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media
US6904021B2 (en) 2002-03-15 2005-06-07 Meshnetworks, Inc. System and method for providing adaptive control of transmit power and data rate in an ad-hoc communication network
US6728232B2 (en) 2002-03-15 2004-04-27 Meshnetworks, Inc. System and method for auto-configuration and discovery of IP to MAC address mapping and gateway presence in wireless peer-to-peer ad-hoc routing networks
US6987795B1 (en) 2002-04-08 2006-01-17 Meshnetworks, Inc. System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network
US7200149B1 (en) 2002-04-12 2007-04-03 Meshnetworks, Inc. System and method for identifying potential hidden node problems in multi-hop wireless ad-hoc networks for the purpose of avoiding such potentially problem nodes in route selection
US6580981B1 (en) 2002-04-16 2003-06-17 Meshnetworks, Inc. System and method for providing wireless telematics store and forward messaging for peer-to-peer and peer-to-peer-to-infrastructure a communication network
US7107498B1 (en) 2002-04-16 2006-09-12 Methnetworks, Inc. System and method for identifying and maintaining reliable infrastructure links using bit error rate data in an ad-hoc communication network
US20040081166A1 (en) * 2002-05-01 2004-04-29 Stanforth Peter J. System and method for using an ad-hoc routing algorithm based on activity detection in an ad-hoc network
US7142524B2 (en) 2002-05-01 2006-11-28 Meshnetworks, Inc. System and method for using an ad-hoc routing algorithm based on activity detection in an ad-hoc network
US6970444B2 (en) 2002-05-13 2005-11-29 Meshnetworks, Inc. System and method for self propagating information in ad-hoc peer-to-peer networks
US7284268B2 (en) 2002-05-16 2007-10-16 Meshnetworks, Inc. System and method for a routing device to securely share network data with a host utilizing a hardware firewall
US20030214921A1 (en) * 2002-05-16 2003-11-20 Alapuranen Pertti O. System and method for performing multiple network routing and provisioning in overlapping wireless deployments
US7016306B2 (en) 2002-05-16 2006-03-21 Meshnetworks, Inc. System and method for performing multiple network routing and provisioning in overlapping wireless deployments
US20040082341A1 (en) * 2002-05-17 2004-04-29 Stanforth Peter J. System and method for determining relative positioning in ad-hoc networks
US7167715B2 (en) 2002-05-17 2007-01-23 Meshnetworks, Inc. System and method for determining relative positioning in AD-HOC networks
US7383577B2 (en) 2002-05-20 2008-06-03 Airdefense, Inc. Method and system for encrypted network management and intrusion detection
US20070192870A1 (en) * 2002-05-20 2007-08-16 Airdefense, Inc., A Georgia Corporation Method and system for actively defending a wireless LAN against attacks
US7058796B2 (en) 2002-05-20 2006-06-06 Airdefense, Inc. Method and system for actively defending a wireless LAN against attacks
US20070094741A1 (en) * 2002-05-20 2007-04-26 Airdefense, Inc. Active Defense Against Wireless Intruders
US20030219008A1 (en) * 2002-05-20 2003-11-27 Scott Hrastar System and method for wireless lan dynamic channel change with honeypot trap
US7526808B2 (en) 2002-05-20 2009-04-28 Airdefense, Inc. Method and system for actively defending a wireless LAN against attacks
US7532895B2 (en) 2002-05-20 2009-05-12 Air Defense, Inc. Systems and methods for adaptive location tracking
US7277404B2 (en) 2002-05-20 2007-10-02 Airdefense, Inc. System and method for sensing wireless LAN activity
US20030217283A1 (en) * 2002-05-20 2003-11-20 Scott Hrastar Method and system for encrypted network management and intrusion detection
US7042852B2 (en) 2002-05-20 2006-05-09 Airdefense, Inc. System and method for wireless LAN dynamic channel change with honeypot trap
US7086089B2 (en) 2002-05-20 2006-08-01 Airdefense, Inc. Systems and methods for network security
US20040008652A1 (en) * 2002-05-20 2004-01-15 Tanzella Fred C. System and method for sensing wireless LAN activity
US20030233567A1 (en) * 2002-05-20 2003-12-18 Lynn Michael T. Method and system for actively defending a wireless LAN against attacks
US20030236990A1 (en) * 2002-05-20 2003-12-25 Scott Hrastar Systems and methods for network security
US8060939B2 (en) 2002-05-20 2011-11-15 Airdefense, Inc. Method and system for securing wireless local area networks
US7779476B2 (en) 2002-05-20 2010-08-17 Airdefense, Inc. Active defense against wireless intruders
US7106703B1 (en) 2002-05-28 2006-09-12 Meshnetworks, Inc. System and method for controlling pipeline delays by adjusting the power levels at which nodes in an ad-hoc network transmit data packets
US20040098610A1 (en) * 2002-06-03 2004-05-20 Hrastar Scott E. Systems and methods for automated network policy exception detection and correction
US7322044B2 (en) 2002-06-03 2008-01-22 Airdefense, Inc. Systems and methods for automated network policy exception detection and correction
US20040203764A1 (en) * 2002-06-03 2004-10-14 Scott Hrastar Methods and systems for identifying nodes and mapping their locations
US20030227935A1 (en) * 2002-06-05 2003-12-11 Alapuranen Pertti O. Arq mac for ad-hoc communication networks and a method for using the same
US7054126B2 (en) 2002-06-05 2006-05-30 Meshnetworks, Inc. System and method for improving the accuracy of time of arrival measurements in a wireless ad-hoc communications network
WO2003105389A3 (en) * 2002-06-05 2004-04-08 Meshnetworks Inc Arq mac for ad-hoc communication networks
US6744766B2 (en) 2002-06-05 2004-06-01 Meshnetworks, Inc. Hybrid ARQ for a wireless Ad-Hoc network and a method for using the same
US7610027B2 (en) 2002-06-05 2009-10-27 Meshnetworks, Inc. Method and apparatus to maintain specification absorption rate at a wireless node
US6687259B2 (en) * 2002-06-05 2004-02-03 Meshnetworks, Inc. ARQ MAC for ad-hoc communication networks and a method for using the same
US20030227895A1 (en) * 2002-06-05 2003-12-11 Strutt Guenael T. System and method for improving the accuracy of time of arrival measurements in a wireless ad-hoc communications network
US20030228875A1 (en) * 2002-06-05 2003-12-11 Alapuranen Pertti O. MAC protocol with duty-cycle limitation for portable devices in a wireless Ad-Hoc communication network and a method for using the same
US20030227934A1 (en) * 2002-06-11 2003-12-11 White Eric D. System and method for multicast media access using broadcast transmissions with multiple acknowledgements in an Ad-Hoc communications network
US7215638B1 (en) 2002-06-19 2007-05-08 Meshnetworks, Inc. System and method to provide 911 access in voice over internet protocol systems without compromising network security
US20040003338A1 (en) * 2002-06-26 2004-01-01 Kostoff Stanley J. Powerline network flood control restriction
US20040001499A1 (en) * 2002-06-26 2004-01-01 Patella James Philip Communication buffer scheme optimized for voip, QoS and data networking over a power line
US7120847B2 (en) 2002-06-26 2006-10-10 Intellon Corporation Powerline network flood control restriction
US8149703B2 (en) 2002-06-26 2012-04-03 Qualcomm Atheros, Inc. Powerline network bridging congestion control
US7826466B2 (en) 2002-06-26 2010-11-02 Atheros Communications, Inc. Communication buffer scheme optimized for VoIP, QoS and data networking over a power line
US20040001440A1 (en) * 2002-06-26 2004-01-01 Kostoff Stanley J. Powerline network bridging congestion control
US20040005902A1 (en) * 2002-07-05 2004-01-08 Belcea John M. System and method for correcting the clock drift and maintaining the synchronization of low quality clocks in wireless networks
US7072432B2 (en) 2002-07-05 2006-07-04 Meshnetworks, Inc. System and method for correcting the clock drift and maintaining the synchronization of low quality clocks in wireless networks
US7796570B1 (en) 2002-07-12 2010-09-14 Meshnetworks, Inc. Method for sparse table accounting and dissemination from a mobile subscriber device in a wireless mobile ad-hoc network
US7046962B1 (en) 2002-07-18 2006-05-16 Meshnetworks, Inc. System and method for improving the quality of range measurement based upon historical data
US8325653B2 (en) 2002-07-29 2012-12-04 Meshnetworks, Inc. System and method for restricting network access to one or more nodes in a wireless communications network
US20040028017A1 (en) * 2002-07-29 2004-02-12 Whitehill Eric A. System and method for determining physical location of a node in a wireless network during an authentication check of the node
US7042867B2 (en) 2002-07-29 2006-05-09 Meshnetworks, Inc. System and method for determining physical location of a node in a wireless network during an authentication check of the node
US20060153075A1 (en) * 2002-07-29 2006-07-13 Whitehill Eric A System and method for determining physical location of a node in a wireless network during an authentication check of the node
US7239874B2 (en) 2002-10-01 2007-07-03 Interdigital Technology Corporation Wireless communication method and system with controlled WTRU peer-to-peer communications
US20040127214A1 (en) * 2002-10-01 2004-07-01 Interdigital Technology Corporation Wireless communication method and system with controlled WTRU peer-to-peer communications
US20040147254A1 (en) * 2002-10-01 2004-07-29 Interdigital Technology Corporation Location based method and system for wireless mobile unit communication
US7231220B2 (en) 2002-10-01 2007-06-12 Interdigital Technology Corporation Location based method and system for wireless mobile unit communication
US20060148516A1 (en) * 2002-10-01 2006-07-06 Interdigital Technology Corporation Wireless communication method and system with controlled WTRU peer-to-peer communications
US7016673B2 (en) 2002-10-01 2006-03-21 Interdigital Technology Corporation Wireless communication method and system with controlled WTRU peer-to-peer communications
US7623542B2 (en) 2002-10-21 2009-11-24 Intellon Corporation Contention-free access intervals on a CSMA network
US20040085993A1 (en) * 2002-11-05 2004-05-06 Wentink Maarten Menzo Shared-medium contention algorithm exhibiting fairness
US20040100929A1 (en) * 2002-11-27 2004-05-27 Nokia Corporation System and method for collision-free transmission scheduling in a network
US7580394B2 (en) 2002-11-27 2009-08-25 Nokia Corporation System and method for collision-free transmission scheduling in a network
WO2004064330A1 (en) * 2003-01-09 2004-07-29 Thomson Licensing S.A. Method and apparatus for bandwidth provisioning in a wlan
CN100525226C (en) 2003-01-09 2009-08-05 汤姆森许可贸易公司 Method and apparatus for bandwidth provisioning in a WLAN
US20060153117A1 (en) * 2003-01-09 2006-07-13 Guillaume Bichot Method and apparatus for bandwidth provisioning in a wlan
US20040143842A1 (en) * 2003-01-13 2004-07-22 Avinash Joshi System and method for achieving continuous connectivity to an access point or gateway in a wireless network following an on-demand routing protocol, and to perform smooth handoff of mobile terminals between fixed terminals in the network
US7522537B2 (en) 2003-01-13 2009-04-21 Meshnetworks, Inc. System and method for providing connectivity between an intelligent access point and nodes in a wireless network
US9439105B2 (en) * 2003-03-05 2016-09-06 Koninklijke Philips N.V. Frame synchronization with acknowledgment timeout in wireless networks
US20060182071A1 (en) * 2003-03-05 2006-08-17 Koninklijke Philips Electronics N.V. Frame synchronization with acknowledgment timeout in wireless networks
US7076259B2 (en) 2003-03-13 2006-07-11 Meshnetworks, Inc. Real-time system and method for improving the accuracy of the computed location of mobile subscribers in a wireless ad-hoc network using a low speed central processing unit
US20050186966A1 (en) * 2003-03-13 2005-08-25 Meshnetworks, Inc. Real-time system and method for improving the accuracy of the computed location of mobile subscribers in a wireless ad-hoc network using a low speed central processing unit
US20040179667A1 (en) * 2003-03-14 2004-09-16 Meshnetworks, Inc. System and method for analyzing the precision of geo-location services in a wireless network terminal
US7171220B2 (en) 2003-03-14 2007-01-30 Meshnetworks, Inc. System and method for analyzing the precision of geo-location services in a wireless network terminal
US7782830B2 (en) 2003-03-18 2010-08-24 Harris Corporation Extended range wireless packetized data communication system
US20040184442A1 (en) * 2003-03-18 2004-09-23 Harris Corporation Relay for extended range point-to-point wireless packetized data communication system
US20040184430A1 (en) * 2003-03-18 2004-09-23 Harris Corporation Extended range wireless packetized data communication system
US20080137586A1 (en) * 2003-03-18 2008-06-12 Harris Corporation Relay for extended range point-to-point wireless packetized data communication system
US7545793B2 (en) 2003-03-18 2009-06-09 Harris Corporation Extended range wireless packetized data communication system
US20090232123A1 (en) * 2003-03-18 2009-09-17 Harris Corporation (A Delaware Corporation) Extended Range Wireless Packetized Data Communication System
US7974229B2 (en) 2003-03-18 2011-07-05 Harris Corporation Relay for extended range point-to-point wireless packetized data communication system
US7355992B2 (en) 2003-03-18 2008-04-08 Harris Corporation Relay for extended range point-to-point wireless packetized data communication system
US7321762B2 (en) * 2003-03-26 2008-01-22 Conexant Systems, Inc. Mechanism for reserving multiple channels of a single medium access control and physical layer
US20040242252A1 (en) * 2003-03-26 2004-12-02 Maarten Hoeben Mechanism for reserving multiple channels of a single medium access control and physical layer
US7522908B2 (en) 2003-04-21 2009-04-21 Airdefense, Inc. Systems and methods for wireless network site survey
US20040209617A1 (en) * 2003-04-21 2004-10-21 Hrastar Scott E. Systems and methods for wireless network site survey systems and methods
US7324804B2 (en) 2003-04-21 2008-01-29 Airdefense, Inc. Systems and methods for dynamic sensor discovery and selection
US20040209634A1 (en) * 2003-04-21 2004-10-21 Hrastar Scott E. Systems and methods for adaptively scanning for wireless communications
US20040218602A1 (en) * 2003-04-21 2004-11-04 Hrastar Scott E. Systems and methods for dynamic sensor discovery and selection
US7359676B2 (en) 2003-04-21 2008-04-15 Airdefense, Inc. Systems and methods for adaptively scanning for wireless communications
US7734809B2 (en) 2003-06-05 2010-06-08 Meshnetworks, Inc. System and method to maximize channel utilization in a multi-channel wireless communication network
US7215966B2 (en) 2003-06-05 2007-05-08 Meshnetworks, Inc. System and method for determining location of a device in a wireless communication network
US20040258040A1 (en) * 2003-06-05 2004-12-23 Meshnetworks, Inc. System and method to maximize channel utilization in a multi-channel wireless communiction network
US7116632B2 (en) 2003-06-05 2006-10-03 Meshnetworks, Inc. System and method for determining synchronization point in OFDM modems for accurate time of flight measurement
US20040252643A1 (en) * 2003-06-05 2004-12-16 Meshnetworks, Inc. System and method to improve the network performance of a wireless communications network by finding an optimal route between a source and a destination
US20040252630A1 (en) * 2003-06-05 2004-12-16 Meshnetworks, Inc. System and method for determining synchronization point in OFDM modems for accurate time of flight measurement
US20040259571A1 (en) * 2003-06-05 2004-12-23 Meshnetworks, Inc. System and method for determining location of a device in a wireless communication network
US7280483B2 (en) 2003-06-05 2007-10-09 Meshnetworks, Inc. System and method to improve the network performance of a wireless communications network by finding an optimal route between a source and a destination
US20040260808A1 (en) * 2003-06-06 2004-12-23 Meshnetworks, Inc. Method to provide a measure of link reliability to a routing protocol in an ad hoc wireless network
US20040246935A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. System and method for characterizing the quality of a link in a wireless network
US7061925B2 (en) 2003-06-06 2006-06-13 Meshnetworks, Inc. System and method for decreasing latency in locating routes between nodes in a wireless communication network
US7349441B2 (en) 2003-06-06 2008-03-25 Meshnetworks, Inc. Method for optimizing communication within a wireless network
US7203497B2 (en) 2003-06-06 2007-04-10 Meshnetworks, Inc. System and method for accurately computing the position of wireless devices inside high-rise buildings
US7412241B2 (en) 2003-06-06 2008-08-12 Meshnetworks, Inc. Method to provide a measure of link reliability to a routing protocol in an ad hoc wireless network
US7126951B2 (en) 2003-06-06 2006-10-24 Meshnetworks, Inc. System and method for identifying the floor number where a firefighter in need of help is located using received signal strength indicator and signal propagation time
US7558818B2 (en) 2003-06-06 2009-07-07 Meshnetworks, Inc. System and method for characterizing the quality of a link in a wireless network
US7075890B2 (en) 2003-06-06 2006-07-11 Meshnetworks, Inc. System and method to provide fairness and service differentation in ad-hoc networks
US20040258013A1 (en) * 2003-06-06 2004-12-23 Meshnetworks, Inc. System and method for accurately computing the position of wireless devices inside high-rise buildings
US20040246986A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. MAC protocol for accurately computing the position of wireless devices inside buildings
US20040246926A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. System and method for identifying the floor number where a firefighter in need of help is located using received signal strength indicator and signal propagation time
US20040246975A1 (en) * 2003-06-06 2004-12-09 Meshnetworks, Inc. System and method to improve the overall performance of a wireless communication network
US20060120399A1 (en) * 2003-06-18 2006-06-08 Claret Jorge V B Method enabling multiple communication nodes to access a transmission means on an electrical grid
US20080130622A1 (en) * 2003-06-25 2008-06-05 Guido Hiertz Method of Decentralized Medium Access Control in a Communications Network
US20050025131A1 (en) * 2003-07-29 2005-02-03 Seong-Yun Ko Medium access control in wireless local area network
US20050029215A1 (en) * 2003-08-08 2005-02-10 Grau Curtiss A. High capacity shear mechanism
US20050048997A1 (en) * 2003-09-02 2005-03-03 Mike Grobler Wireless connectivity module
EP1530316A1 (en) * 2003-11-10 2005-05-11 Go Networks Improving the performance of a wireless packet data communication system
US20050141545A1 (en) * 2003-11-10 2005-06-30 Yaron Fein Performance of a wireless communication system
US7522552B2 (en) 2003-11-10 2009-04-21 Patents - Professional Solutions (Pro-Pats) Ltd Improving the performance of a wireless CSMA-based MAC communication system using a spatially selective antenna
US8052057B2 (en) 2003-11-13 2011-11-08 Metrologic Instruments, Inc. Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols
US8157175B2 (en) 2003-11-13 2012-04-17 Metrologic Instruments, Inc. Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation
US8157174B2 (en) 2003-11-13 2012-04-17 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations
US8087588B2 (en) 2003-11-13 2012-01-03 Metrologic Instruments, Inc. Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDs are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system
US7845561B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquisition cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination
US7845559B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system
US8100331B2 (en) 2003-11-13 2012-01-24 Metrologic Instruments, Inc. Digital image capture and processing system having a printed circuit (PC) board with light transmission aperture, wherein first and second field of view (FOV) folding mirrors project the FOV of a digital image detection array on the rear surface of said PC board, through said light transmission aperture
US7900839B2 (en) 2003-11-13 2011-03-08 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system having a printed circuit board with a light transmission aperture, through which the field of view (FOV) of the image detection array and visible targeting illumination beam are projected using a FOV-folding mirror
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US8047438B2 (en) 2003-11-13 2011-11-01 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination
US7980471B2 (en) 2003-11-13 2011-07-19 Metrologic Instruments, Inc. Method of unlocking restricted extended classes of features and functionalities embodied within a digital image capture and processing system by reading feature/functionality-unlocking type code symbols
US9104930B2 (en) 2003-11-13 2015-08-11 Metrologic Instruments, Inc. Code symbol reading system
US8132731B2 (en) 2003-11-13 2012-03-13 Metrologic Instruments, Inc. Digital image capture and processing system having a printed circuit (PC) board with a light transmission aperture, wherein an image detection array is mounted on the rear side of said PC board, and a linear array of light emitting diodes (LEDS) is mounted on the front surface of said PC board, and aligned with an illumination-focusing lens structure integrated within said imaging window
US8011585B2 (en) 2003-11-13 2011-09-06 Metrologic Instruments, Inc. Digital image capture and processing system employing a linear LED-based illumination array mounted behind an illumination-focusing lens component integrated within the imaging window of the system
US8317105B2 (en) 2003-11-13 2012-11-27 Metrologic Instruments, Inc. Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin
US7997489B2 (en) 2003-11-13 2011-08-16 Metrologic Instruments, Inc. Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDs disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field
US7922089B2 (en) 2003-11-13 2011-04-12 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing automatic object presence detection to control automatic generation of a linear targeting illumination beam within the field of view (FOV), and manual trigger switching to initiate illumination
US7967209B2 (en) 2003-11-13 2011-06-28 Metrologic Instruments, Inc. Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumers during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station
US7988053B2 (en) 2003-11-13 2011-08-02 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having image formation optics providing a field of view (FOV) on an area-type image detection array, and a multi-mode illumination subsystem having near and far field LED-based illumination arrays for illuminating near and far field portions of said FOV
US9992764B2 (en) * 2003-11-20 2018-06-05 Intel Corporation Trained data transmission for communication systems
US7281187B2 (en) 2003-11-20 2007-10-09 Intellon Corporation Using error checking bits to communicated an address or other bits
US20130336247A1 (en) * 2003-11-20 2013-12-19 Adrian P. Stephens Trained data transmission for communication systems
US9013989B2 (en) 2003-11-24 2015-04-21 Qualcomm Incorporated Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US8090857B2 (en) 2003-11-24 2012-01-03 Qualcomm Atheros, Inc. Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US20050114489A1 (en) * 2003-11-24 2005-05-26 Yonge Lawrence W.Iii Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US8654635B2 (en) 2003-11-24 2014-02-18 Qualcomm Incorporated Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US20050165946A1 (en) * 2003-12-22 2005-07-28 Intel Corporation Bi-directional wireless LAN channel access
WO2005067217A1 (en) * 2003-12-22 2005-07-21 Intel Corporation Bi-directional wireless lan channel access
US7660327B2 (en) 2004-02-03 2010-02-09 Atheros Communications, Inc. Temporary priority promotion for network communications in which access to a shared medium depends on a priority level
US20050169231A1 (en) * 2004-02-03 2005-08-04 Sharp Laboratories Of America, Inc. Method and system for detecting pending transmissions in a wireless data network
US20050169296A1 (en) * 2004-02-03 2005-08-04 Srinivas Katar Temporary priority promotion for network communications in which access to a shared medium depends on a priority level
US20050174961A1 (en) * 2004-02-06 2005-08-11 Hrastar Scott E. Systems and methods for adaptive monitoring with bandwidth constraints
US7355996B2 (en) 2004-02-06 2008-04-08 Airdefense, Inc. Systems and methods for adaptive monitoring with bandwidth constraints
US20050190785A1 (en) * 2004-02-26 2005-09-01 Yonge Lawrence W.Iii Channel adaptation synchronized to periodically varying channel
US7715425B2 (en) 2004-02-26 2010-05-11 Atheros Communications, Inc. Channel adaptation synchronized to periodically varying channel
US20050273668A1 (en) * 2004-05-20 2005-12-08 Richard Manning Dynamic and distributed managed edge computing (MEC) framework
US20080144493A1 (en) * 2004-06-30 2008-06-19 Chi-Hsiang Yeh Method of interference management for interference/collision prevention/avoidance and spatial reuse enhancement
US7656901B2 (en) * 2004-08-10 2010-02-02 Meshnetworks, Inc. Software architecture and hardware abstraction layer for multi-radio routing and method for providing the same
US20060034233A1 (en) * 2004-08-10 2006-02-16 Meshnetworks, Inc. Software architecture and hardware abstraction layer for multi-radio routing and method for providing the same
US8640217B2 (en) 2004-08-18 2014-01-28 Broadcom Corporation Method and system for improved communication network setup utilizing extended terminals
US7996664B2 (en) * 2004-08-18 2011-08-09 Broadcom Corporation Method and system for improved communication network setup
US20110194549A1 (en) * 2004-08-18 2011-08-11 Manoj Thawani Method and System for Improved Communication Network Setup Utilizing Extended Terminals
US20060041749A1 (en) * 2004-08-18 2006-02-23 Ptasinki Henry S Method and system for improved communication network setup
US20060146914A1 (en) * 2004-08-27 2006-07-06 Integration Associates Inc. Method and apparatus for frequency hopping medium access control in a wireless network
US7822397B2 (en) 2004-08-27 2010-10-26 Silicon Laboratories Inc. Method and apparatus for frequency hopping medium access control in a wireless network
US7167463B2 (en) 2004-10-07 2007-01-23 Meshnetworks, Inc. System and method for creating a spectrum agile wireless multi-hopping network
US20060077938A1 (en) * 2004-10-07 2006-04-13 Meshnetworks, Inc. System and method for creating a spectrum agile wireless multi-hopping network
US8196199B2 (en) 2004-10-19 2012-06-05 Airdefense, Inc. Personal wireless monitoring agent
US20060123133A1 (en) * 2004-10-19 2006-06-08 Hrastar Scott E Detecting unauthorized wireless devices on a wired network
US20060085543A1 (en) * 2004-10-19 2006-04-20 Airdefense, Inc. Personal wireless monitoring agent
US9661528B2 (en) 2004-12-23 2017-05-23 Electronic And Telecommunications Research Institute Apparatus for transmitting and receiving data to provide high-speed data communication and method thereof
US20060171408A1 (en) * 2005-01-28 2006-08-03 Samsung Electronics Co., Ltd. System and method for asynchronous wireless collision detection with acknowledgment for ad hoc wireless networks
US8279785B2 (en) 2005-01-28 2012-10-02 Samsung Electronics Co., Ltd. System and method for asynchronous wireless collision detection with acknowledgment for ad hoc wireless networks
US7567526B2 (en) * 2005-01-28 2009-07-28 Samsung Electronics Co., Ltd. System and method for asynchronous wireless collision detection with acknowledgement for ad hoc wireless networks
US20090252144A1 (en) * 2005-01-28 2009-10-08 Samsung Electronics Co., Ltd. System and method for asynchronous wireless collision detection with acknowledgment for ad hoc wireless networks
US7636370B2 (en) 2005-03-03 2009-12-22 Intellon Corporation Reserving time periods for communication on power line networks
US20060198387A1 (en) * 2005-03-03 2006-09-07 Yonge Lawrence W Iii Reserving time periods for communication on power line networks
US8416887B2 (en) 2005-07-27 2013-04-09 Qualcomm Atheros, Inc Managing spectra of modulated signals in a communication network
US7822059B2 (en) 2005-07-27 2010-10-26 Atheros Communications, Inc. Managing contention-free time allocations in a network
US8175190B2 (en) 2005-07-27 2012-05-08 Qualcomm Atheros, Inc. Managing spectra of modulated signals in a communication network
US7623545B2 (en) * 2005-10-14 2009-11-24 Menzo Wentink Method and apparatus for extended control over a wireless medium between two or more devices
US20070086346A1 (en) * 2005-10-14 2007-04-19 Conexant Systems, Inc. MAC protection
US20070097903A1 (en) * 2005-11-03 2007-05-03 Interdigital Technology Corporation Method and apparatus of exchanging messages via a wireless distribution system between groups operating in different frequencies
US20070113653A1 (en) * 2005-11-21 2007-05-24 Nasiri Steven S Multiple axis accelerometer
US20070136476A1 (en) * 2005-12-12 2007-06-14 Isaac Rubinstein Controlled peer-to-peer network
US7577424B2 (en) 2005-12-19 2009-08-18 Airdefense, Inc. Systems and methods for wireless vulnerability analysis
US7916703B2 (en) * 2006-01-02 2011-03-29 Samsung Electronics Co., Ltd. Wireless local area network (WLAN) and method of transmitting frame in the WLAN
US20070153755A1 (en) * 2006-01-02 2007-07-05 Jin-Woo Yang Wireless local area network (WLAN) and method of transmitting frame in the WLAN
US7715800B2 (en) 2006-01-13 2010-05-11 Airdefense, Inc. Systems and methods for wireless intrusion detection using spectral analysis
US20070211748A1 (en) * 2006-03-13 2007-09-13 Stephens Adrian P Wireless network channell access techniques
US20070218874A1 (en) * 2006-03-17 2007-09-20 Airdefense, Inc. Systems and Methods For Wireless Network Forensics
US7971251B2 (en) 2006-03-17 2011-06-28 Airdefense, Inc. Systems and methods for wireless security using distributed collaboration of wireless clients
US20070217371A1 (en) * 2006-03-17 2007-09-20 Airdefense, Inc. Systems and Methods for Wireless Security Using Distributed Collaboration of Wireless Clients
US20090021343A1 (en) * 2006-05-10 2009-01-22 Airdefense, Inc. RFID Intrusion Protection System and Methods
US8514822B2 (en) * 2006-06-14 2013-08-20 Zte (Usa) Inc. Efficient acknowledgement messaging in wireless communications
US20070298778A1 (en) * 2006-06-14 2007-12-27 Mary Chion Efficient Acknowledgement Messaging in Wireless Communications
US7970013B2 (en) 2006-06-16 2011-06-28 Airdefense, Inc. Systems and methods for wireless network content filtering
US8281392B2 (en) 2006-08-11 2012-10-02 Airdefense, Inc. Methods and systems for wired equivalent privacy and Wi-Fi protected access protection
US20080052779A1 (en) * 2006-08-11 2008-02-28 Airdefense, Inc. Methods and Systems For Wired Equivalent Privacy and Wi-Fi Protected Access Protection
US9413688B2 (en) 2007-05-10 2016-08-09 Qualcomm Incorporated Managing distributed access to a shared medium
US8493995B2 (en) 2007-05-10 2013-07-23 Qualcomm Incorporated Managing distributed access to a shared medium
US20090013081A1 (en) * 2007-07-06 2009-01-08 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US8599823B2 (en) 2007-07-06 2013-12-03 Qualcomm Incorporated Communications methods and apparatus related to synchronization with respect to a peer to peer timing structure
US20090010231A1 (en) * 2007-07-06 2009-01-08 Qualcomm Incorporated Communications methods and apparatus related to synchronization with respect to a peer to peer timing structure
US8601156B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US20090141738A1 (en) * 2007-12-03 2009-06-04 Qing Li Reservation-Based Distributed Collision Avoidance Channel Access For Wireless Local Area Networks
US8174997B2 (en) * 2008-02-14 2012-05-08 Samsung Electronics Co., Ltd. Communication method and apparatus using received signal strength indicator in wireless sensor network
US20090207748A1 (en) * 2008-02-14 2009-08-20 Hyo Hyun Choi Communication method and apparatus using received signal strength indicator in wireless sensor network
US20100034214A1 (en) * 2008-06-26 2010-02-11 Zhi Gang Zhang Access point device, communication device and method for access to communication media
US9137039B2 (en) * 2008-06-26 2015-09-15 Thomson Licensing Accessing a communication media using both a contention period and a polling period
US8644269B2 (en) * 2008-10-03 2014-02-04 Texas Instruments Incorporated Adaptive transmissions in wireless networks
US20120314661A1 (en) * 2008-10-03 2012-12-13 Texas Instruments Incorporated Adaptive Transmissions in Wireless Networks
US20140023058A1 (en) * 2008-10-03 2014-01-23 Texas Instruments Incorporated Device for Operating Using Multiple Protocols in Wireless Networks
US20100085946A1 (en) * 2008-10-03 2010-04-08 Texas Instruments Incorporated Adaptive transmissions in wireless networks
US8270378B2 (en) * 2008-10-03 2012-09-18 Texas Instruments Incorporated Adaptive transmissions in wireless networks
US9008052B2 (en) * 2008-10-03 2015-04-14 Texas Instruments Incorporated Device for operating using multiple protocols in wireless networks
US20100296496A1 (en) * 2009-05-19 2010-11-25 Amit Sinha Systems and methods for concurrent wireless local area network access and sensing
US8694624B2 (en) 2009-05-19 2014-04-08 Symbol Technologies, Inc. Systems and methods for concurrent wireless local area network access and sensing
US9049725B1 (en) * 2009-10-09 2015-06-02 Sprint Spectrum L.P. Method and system of using an indicator signal that indicates when an access channel is occupied
US8660013B2 (en) 2010-04-12 2014-02-25 Qualcomm Incorporated Detecting delimiters for low-overhead communication in a network
US8781016B2 (en) 2010-04-12 2014-07-15 Qualcomm Incorporated Channel estimation for low-overhead communication in a network
US8693558B2 (en) 2010-04-12 2014-04-08 Qualcomm Incorporated Providing delimiters for low-overhead communication in a network
US9295100B2 (en) 2010-04-12 2016-03-22 Qualcomm Incorporated Delayed acknowledgements for low-overhead communication in a network
US9326316B2 (en) 2010-04-12 2016-04-26 Qualcomm Incorporated Repeating for low-overhead communication in a network
US9001909B2 (en) 2010-04-12 2015-04-07 Qualcomm Incorporated Channel estimation for low-overhead communication in a network
US9326317B2 (en) 2010-04-12 2016-04-26 Qualcomm Incorporated Detecting delimiters for low-overhead communication in a network
US20120329473A1 (en) * 2011-06-21 2012-12-27 Siavash Ekbatani Anonymous Directional Peer-to-Peer Wireless Communication
US8504063B2 (en) * 2011-06-21 2013-08-06 Broadcom Corporation Anonymous directional peer-to-peer wireless communication
US20130078923A1 (en) * 2011-09-26 2013-03-28 Broadcom Corporation Pairing with directional code sequence
US8634777B2 (en) * 2011-09-26 2014-01-21 Broadcom Corporation Pairing with directional code sequence
US8891605B2 (en) 2013-03-13 2014-11-18 Qualcomm Incorporated Variable line cycle adaptation for powerline communications
US9906979B2 (en) 2013-06-17 2018-02-27 Intel Corporation Apparatus, system and method of communicating an authentication request frame
RU2646433C1 (en) * 2013-06-17 2018-03-06 Интел Корпорейшн Improved technology of exclusion of conflicts for wireless communication systems

Also Published As

Publication number Publication date Type
US5231634B1 (en) 1996-04-02 grant
WO1993012595A1 (en) 1993-06-24 application

Similar Documents

Publication Publication Date Title
Weinmiller et al. Performance study of access control in wireless LANs–IEEE 802.11 DFWMAC and ETSI RES 10 HIPERLAN
Tang et al. A protocol for topology-dependent transmission scheduling in wireless networks
Khurana et al. Effect of hidden terminals on the performance of IEEE 802.11 MAC protocol
US5721733A (en) Wireless network access scheme
US7706399B2 (en) Polling in wireless networks
US7251232B1 (en) Point-controlled contention arbitration in multiple access wireless LANs
Brenner A technical tutorial on the IEEE 802.11 protocol
US6118788A (en) Balanced media access methods for wireless networks
US6795418B2 (en) Wireless MAC protocol based on a hybrid combination of slot allocation, token passing, and polling for isochronous traffic
US5339316A (en) Wireless local area network system
US6404756B1 (en) Methods and apparatus for coordinating channel access to shared parallel data channels
US7280555B2 (en) System and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
US20100232324A1 (en) Full-Duplex Wireless Communications
US20050089005A1 (en) Wireless communication system, wireless communication device and wireless communication method, and computer program
US6292494B1 (en) Channel hopping protocol
US5844900A (en) Method and apparatus for optimizing a medium access control protocol
US7180905B2 (en) Access method for periodic contention-free sessions
US6587453B1 (en) Method of communicating first and second data types
US6788702B1 (en) Protocol for neighborhood-established transmission scheduling
US7164671B2 (en) Overlapping network allocation vector (ONAV) for avoiding collision in the IEEE 802.11 WLAN operating under HCF
EP0903891A1 (en) Wireless local area network with enhanced carrier sense provision
US5461627A (en) Access protocol for a common channel wireless network
US20040240426A1 (en) Method for enhancing fairness and performance in a multihop ad hoc network and corresponding system
US20060098604A1 (en) Method and apparatus for contention management in a radio-based packet network
US20060126497A1 (en) Re-transmitting packet of polling-based wireless local area network (WLAN)

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROXIM, INC. A CORPORATION OF CA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GILES, RICK R.;REEL/FRAME:005965/0396

Effective date: 19911217

RR Request for reexamination filed

Effective date: 19941019

B1 Reexamination certificate first reexamination
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:PROXIM CORPORATION;REEL/FRAME:013740/0974

Effective date: 20021227

AS Assignment

Owner name: WARBURG PINCUS PRIVATE EQUITY VIII, L.P., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:PROXIM CORPORATION;REEL/FRAME:014313/0763

Effective date: 20030729

AS Assignment

Owner name: PROXIM WIRELESS NETWORKS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PROXIM, INC.;REEL/FRAME:014546/0366

Effective date: 20030326

Owner name: PROXIM WIRELESS NETWORKS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PROXIM, INC.;REEL/FRAME:014580/0631

Effective date: 20020326

AS Assignment

Owner name: PROXIM CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROXIM WIRELESS NETWORKS, INC.;REEL/FRAME:014580/0623

Effective date: 20030922

AS Assignment

Owner name: WARBURG PINCUS PRIVATE EQUITY VIII, L.P., NEW YORK

Free format text: AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:PROXIM CORPORATION;REEL/FRAME:014634/0934

Effective date: 20031021

AS Assignment

Owner name: WARBURG PINCUS PRIVATE EQUITY VIII, L.P., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:PROXIM CORPORATION;REEL/FRAME:015044/0708

Effective date: 20040730

Owner name: PROXIM CORPORATION, CALIFORNIA

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:WARBURG PINCUS PRIVATE EQUITY VIII, L.P.;REEL/FRAME:015137/0854

Effective date: 20040730

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: PROXIM WIRELESS CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:STUN ACQUISITION CORPORATION;REEL/FRAME:018385/0435

Effective date: 20050810

AS Assignment

Owner name: STUN ACQUISITION CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PROXIM CORPORATION;PROXIM WIRELESS NETWORKS, INC.;PROXIM INTERNATIONAL HOLDINGS, INC.;REEL/FRAME:018385/0001

Effective date: 20050727

AS Assignment

Owner name: TERABEAM, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:PROXIM WIRELESS CORPORATION;REEL/FRAME:020227/0180

Effective date: 20070910

Owner name: TERABEAM, INC.,CALIFORNIA

Free format text: MERGER;ASSIGNOR:PROXIM WIRELESS CORPORATION;REEL/FRAME:020227/0180

Effective date: 20070910

AS Assignment

Owner name: PROXIM WIRELESS CORPORATION, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:TERABEAM, INC.;REEL/FRAME:020243/0352

Effective date: 20070910

Owner name: PROXIM WIRELESS CORPORATION,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:TERABEAM, INC.;REEL/FRAME:020243/0352

Effective date: 20070910

AS Assignment

Owner name: PROXIM WIRELESS CORPORATION, FORMERLY PROXIM CORPO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:020710/0267

Effective date: 20080326

AS Assignment

Owner name: PROXIM WIRELESS CORPORATION F/K/A PROXIM CORPORATI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WARBURG PINCUS PRIVATE EQUITY VIII, L.P.;REEL/FRAME:020909/0116

Effective date: 20080326

AS Assignment

Owner name: PROXIM WIRELESS CORPORATION F/K/A PROXIM CORPORATI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WARBURG PINCUS PRIVATE EQUITY VIII, L.P.;REEL/FRAME:022694/0844

Effective date: 20090428

AS Assignment

Owner name: WI-LAN INC.,CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROXIM WIRELESS CORPORATION;REEL/FRAME:024023/0214

Effective date: 20100302

SULP Surcharge for late payment
AS Assignment

Owner name: PROXAGENT, INC., FLORIDA

Free format text: SECURITY AGREEMENT;ASSIGNOR:PROXIM WIRELESS CORPORATION;REEL/FRAME:025595/0091

Effective date: 20110104

Owner name: PROXAGENT, INC., FLORIDA

Free format text: SECURITY AGREEMENT;ASSIGNOR:PROXIM WIRELESS CORPORATION;REEL/FRAME:025594/0580

Effective date: 20110104

AS Assignment

Owner name: QUARTERHILL INC., CANADA

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:WI-LAN INC.;QUARTERHILL INC.;REEL/FRAME:042914/0894

Effective date: 20170601

AS Assignment

Owner name: WI-LAN INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUARTERHILL INC.;REEL/FRAME:043167/0655

Effective date: 20170601