US5222811A - Lead wire connection for a temperature sensor - Google Patents

Lead wire connection for a temperature sensor Download PDF

Info

Publication number
US5222811A
US5222811A US07/870,668 US87066892A US5222811A US 5222811 A US5222811 A US 5222811A US 87066892 A US87066892 A US 87066892A US 5222811 A US5222811 A US 5222811A
Authority
US
United States
Prior art keywords
terminal
lead wire
end portion
soldered
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/870,668
Inventor
Sotsuo Miyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI DENKI KABUSHIKI KAISHA reassignment MITSUBISHI DENKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MIYOSHI, SOTSUO
Application granted granted Critical
Publication of US5222811A publication Critical patent/US5222811A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K2007/163Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements provided with specially adapted connectors

Definitions

  • the present invention relates to a temperature sensor and more particularly to an improved connection between a terminal and a lead extending from a temperature sensing element.
  • FIG. 10 shows a conventional temperature sensor 1 used for measuring the temperature of cooling water of an automobile.
  • the temperature sensor 1 has a holder 2 made of brass and is dipped into the cooling water of the automobile flowing in the direction of arrow 11.
  • the holder 2 has an elongated protection tube 2a downwardly extending to a bottom of the holder 2.
  • the holder 2 has on an upward end thereof a radially projecting hexagonal flange 2b to which a mounting tool fits when the temperature sensor 1 is mounted to an engine.
  • the holder 2 has a threaded portion 2c below the hexagonal flange 2b, so that the holder 1 is mounted by screwing into a cylinder wall 12 of the engine.
  • the protection tube 2a houses a temperature sensing element 3 in the form of thermistor connected to a lead 4.
  • the temperature sensing element 3 and the lead 4 are embedded in a protective resin filled into the holder 2.
  • the protective resin 5 forms a connector body 6 upwardly extending from the opening of the holder 2.
  • a terminal 7 is connected with the end portion of lead 4 and projects into a socket receiving recess 6a.
  • the connection at which the terminal 7 is connected with the lead 4 is also embedded in the protective resin 5.
  • the terminal 7 is an elongated plate like terminal, as shown in FIG. 11, which is gold-plated for good conduction of a very small current.
  • the lead 4 is soldered at 8 to the surface of terminal 7.
  • a tube 9 covers the lead 4 to protect and insulate it from surroundings.
  • a cap 10 serves as a simple water-proofing material for the temperature sensing element 3.
  • the prior art temperature sensor 1 of the aforementioned construction operates to determine the change in the temperature of cooling water in terms of the change in resistance of the temperature sensing element 3 firmly supported in the protective tube 2a.
  • very small electric power is used when measuring the temperature, so that heat generation due to the current through the thermistor is as low as possible.
  • the current through the thermistor is in the range from 100 uA to 2 mA.
  • the temperature sensor 1 is capable of measuring as wide a temperature range as -40 to +130 degrees.
  • An object of the invention is to provide a temperature sensor having an electrical connection immune to mechanical loads exerted by a lead wire due to different thermal expansion coefficients during heat cycle.
  • a temperature sensor has a holder for housing a temperature sensing element therein, a terminal, and an electrical lead wire.
  • the lead wire has a first end portion thereof electrically connected with the temperature sensing element and a second end portion thereof welded to the terminal.
  • the lead wire is further fastened to the terminal at a portion near the second end portion in a variety of ways so that the mechanical loads are not directly exerted to the second end portion by the lead wire.
  • the terminal may be formed with a hole through which the lead wire is passed and is soldered thereat.
  • the terminal may be formed with a cutout through which the lead wire is passed and is soldered to the terminal at a position closer to the temperature sensing element than the cutout.
  • the terminal may be formed with two slits to define a strap between the two slits, so that the lead wire passes through the first slit from a first side of the terminal to a second side and then from the second side to the first side through the second slit.
  • the lead is soldered to the terminal at a position closer to the temperature sensing element than the strap.
  • FIG. 1 shows a first embodiment of a temperature sensor according the invention
  • FIG. 2A shows a second embodiment of the invention
  • FIG. 2B shows a fragmentary cross-sectional view of the FIG. 2A
  • FIG. 3 shows a third embodiment of the invention
  • FIGS. 4-5 show a fourth embodiment of the invention, FIG. 5A showing the lead soldered and FIG. 5B a cross-sectional view of FIG. 5A;
  • FIGS. 6-9 show a fifth, sixth, and seventh embodiments, respectively.
  • FIG. 10 shows a conventional temperature sensor used for measuring the temperature of cooling water of an automobile.
  • FIG. 11 shows an elongated plate like terminal of the prior art sensor.
  • FIG. 1 shows a first embodiment of the invention.
  • two leads 4 extend along surfaces 7a of terminals 7 and the end portions of the leads 4 are welded at 21 to the surface 7a. Only one of two leads 4 is shown in FIG. 1.
  • the leads 4 are soldered at 22 to the surface 7a.
  • the lead 4 is welded at 21 before being soldered at 22, so that the soldered connection 22 is not adversely affected by an excessive heat generated during welding.
  • the lead when the lead is welded, the cross section of the lead is deformed due to excessive heat and loses mechanical strength thereof considerably. This is another reason why the lead 4 is soldered at 22.
  • the soldered portion serves to prevent the welded portion, which has lost a considerable mechanical strength, from coming off the terminal 7.
  • FIGS. 2 and 3 show a second and third embodiments of the invention.
  • the plate like elongated terminal 7 is formed with a hole 26 therein through which the lead 4 passes to one side of the terminal to the other and is welded at its end portion to the reverse surface 7b of terminal 7.
  • the lead 4 is soldered at 22 to the surface 7a of terminal 7 using a solder similar to that used in the prior art apparatus.
  • the lead 4 extends substantially parallel to the front and reverse surfaces of the terminal except for the kinked portion of lead 4 in the hole 26. It should be noted that the soldered connection 22 is positioned closer to the temperature sensing element 3 than the welded connection 21.
  • the plate like terminal 7 is formed with a cutout 31 therein through which the lead 4 passes from one side of the terminal to the other and is welded at its end portion 21 to the reverse surface 7b of terminal 7.
  • the lead 4 is soldered at 22 to the surface 7a of terminal 7.
  • the soldered connection 22 is closer to the temperature sensing element 3 than the welded connection 21.
  • the kinked portion of lead 4 serves to mechanically fasten the lead 4 to the terminal 7, and cooperates with the soldered connection 22 to prevent the welded connection 21 from being exerted mechanical loads or stresses.
  • the lead 4 is soldered at the hole 26, the melted solder tends to flow into the hole, so that the hole 26 serves just like a "through hole" of a printed circuit board enhancing mechanical strength of the connection 22.
  • FIGS. 4 and 5 show a fourth embodiment of the invention.
  • the terminal 7 is formed with two slits 36a and 36b therein which form a strap 36 therebetween.
  • the strap 36 is then bent to be positioned upright leaving a cutout across which the lead 4 extends.
  • the strap 36 is bent back to its original position so as to forcibly extrude the lead to project to the other surface of the terminal 7 such that the lead 4 is kinked into a substantial U-shape.
  • the lead 4 is welded at its end portion and is soldered at slit 36a to the surface 7a of terminal 7.
  • the forcibly extruded kinked portion of lead 4 serves as a fastening means to fasten the lead 4 to terminal 7.
  • the kinked portion cooperates with the soldered connection 22 to prevent the welded connection from being exerted tensile mechanical loads or stresses by the lead 4 during heat cycle. While the second and third embodiments are not quite suitable for quantity production, the fourth embodiment is more suitable for quantity production at low costs since the lead may be readily assembled to the terminal.
  • FIGS. 6-9 show a fifth, sixth and seventh embodiments which are modifications of the second to fourth embodiments shown in FIGS. 2-5 wherein FIGS. 8 and 9 correspond to FIGS. 5A and 5B, respectively.
  • the fifth to seventh embodiments are different from the second to fourth embodiments in that the soldered connections have been omitted for simple construction.
  • the kinked portion of lead 4 at the hole 26 and cutout 31, or a forcibly extruded portion formed by bending back the strap 36 serve as a fastening means to prevent the welded connection from being exerted mechanical loads and stresses by the lead 4 during heat cycle.
  • the load sustaining characteristics of fifth to seventh embodiments are not as excellent as those with soldered connections.
  • this rather simple construction of fifth to seventh embodiments may find some saving and suitable for quantity production.
  • the lead 4 may be either welded or soldered at its end portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

A temperature sensor has a holder for housing a temperature sensing element therein, a terminal, and an electrical lead wire connecting the temperature sensing element and the terminal. The lead wire has a first end portion thereof electrically connected with the temperature sensing element and a second end portion thereof welded to the terminal. The lead wire is fastened in a variety of ways to the terminal to receive mechanical loads exerted by the lead wire. The terminal may be formed with a hole therein through which the lead wire is passed from one side of the terminal to the other. The lead may be soldered to the terminal at the hole. The terminal may also be formed with a cutout through which the lead wire is passed and is soldered at a portion closer to the temperature sensing element than the cutout. The terminal may be formed with two slits to define a strap between the two slits so that the lead wire is passed through the first slit from a first side of the terminal to a second side and then through the second slit from the second side to the first side. The lead is then soldered to the terminal at a portion of terminal closer to the temperature sensing element than the strap.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a temperature sensor and more particularly to an improved connection between a terminal and a lead extending from a temperature sensing element.
2. Prior Art
FIG. 10 shows a conventional temperature sensor 1 used for measuring the temperature of cooling water of an automobile. The temperature sensor 1 has a holder 2 made of brass and is dipped into the cooling water of the automobile flowing in the direction of arrow 11. The holder 2 has an elongated protection tube 2a downwardly extending to a bottom of the holder 2. The holder 2 has on an upward end thereof a radially projecting hexagonal flange 2b to which a mounting tool fits when the temperature sensor 1 is mounted to an engine. The holder 2 has a threaded portion 2c below the hexagonal flange 2b, so that the holder 1 is mounted by screwing into a cylinder wall 12 of the engine. The protection tube 2a houses a temperature sensing element 3 in the form of thermistor connected to a lead 4. The temperature sensing element 3 and the lead 4 are embedded in a protective resin filled into the holder 2. The protective resin 5 forms a connector body 6 upwardly extending from the opening of the holder 2. A terminal 7 is connected with the end portion of lead 4 and projects into a socket receiving recess 6a. The connection at which the terminal 7 is connected with the lead 4 is also embedded in the protective resin 5. The terminal 7 is an elongated plate like terminal, as shown in FIG. 11, which is gold-plated for good conduction of a very small current. The lead 4 is soldered at 8 to the surface of terminal 7. A tube 9 covers the lead 4 to protect and insulate it from surroundings. A cap 10 serves as a simple water-proofing material for the temperature sensing element 3.
The prior art temperature sensor 1 of the aforementioned construction operates to determine the change in the temperature of cooling water in terms of the change in resistance of the temperature sensing element 3 firmly supported in the protective tube 2a. Generally, very small electric power is used when measuring the temperature, so that heat generation due to the current through the thermistor is as low as possible. In fact, the current through the thermistor is in the range from 100 uA to 2 mA. The temperature sensor 1 is capable of measuring as wide a temperature range as -40 to +130 degrees.
With the prior art temperature sensor, the linear expansion of leads 4 due to elevated temperatures is different from that of resin 5 that holds the temperature sensing element 3 and the leads 4, resulting in the differences in repetitive tensile forces exerted on the lead during heat cycle. The tensile forces are exerted as mechanical loads to the solder 8, which forces tend to pull the leads 4 off the terminal 7. Consequently, the soldered portion gradually loses the effect of securing the leads to the terminal 7 in the long run. The resultant poor soldering effect results in a poor electrical contact between the lead 4 and terminal 7.
SUMMARY OF THE INVENTION
An object of the invention is to provide a temperature sensor having an electrical connection immune to mechanical loads exerted by a lead wire due to different thermal expansion coefficients during heat cycle.
A temperature sensor has a holder for housing a temperature sensing element therein, a terminal, and an electrical lead wire. The lead wire has a first end portion thereof electrically connected with the temperature sensing element and a second end portion thereof welded to the terminal. The lead wire is further fastened to the terminal at a portion near the second end portion in a variety of ways so that the mechanical loads are not directly exerted to the second end portion by the lead wire. The terminal may be formed with a hole through which the lead wire is passed and is soldered thereat. The terminal may be formed with a cutout through which the lead wire is passed and is soldered to the terminal at a position closer to the temperature sensing element than the cutout. The terminal may be formed with two slits to define a strap between the two slits, so that the lead wire passes through the first slit from a first side of the terminal to a second side and then from the second side to the first side through the second slit. The lead is soldered to the terminal at a position closer to the temperature sensing element than the strap.
BRIEF DESCRIPTION OF THE DRAWINGS
Features and other objects of the invention will be more apparent from the description of the preferred embodiments with reference to the accompanying drawings in which:
FIG. 1 shows a first embodiment of a temperature sensor according the invention;
FIG. 2A shows a second embodiment of the invention;
FIG. 2B shows a fragmentary cross-sectional view of the FIG. 2A;
FIG. 3 shows a third embodiment of the invention;
FIGS. 4-5 show a fourth embodiment of the invention, FIG. 5A showing the lead soldered and FIG. 5B a cross-sectional view of FIG. 5A;
FIGS. 6-9 show a fifth, sixth, and seventh embodiments, respectively;
FIG. 10 shows a conventional temperature sensor used for measuring the temperature of cooling water of an automobile; and
FIG. 11 shows an elongated plate like terminal of the prior art sensor.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a temperature sensor according to the invention will now be described in detail with reference to the drawings.
First embodiment
FIG. 1 shows a first embodiment of the invention. In the figure, two leads 4 extend along surfaces 7a of terminals 7 and the end portions of the leads 4 are welded at 21 to the surface 7a. Only one of two leads 4 is shown in FIG. 1. The leads 4 are soldered at 22 to the surface 7a. The lead 4 is welded at 21 before being soldered at 22, so that the soldered connection 22 is not adversely affected by an excessive heat generated during welding.
When the temperature sensor is exposed to large temperature differences during heat cycle, mechanical loads or stresses are exerted on the lead due to different thermal expansion coefficients of leads 4 and resin 5. However, any mechanical load exerted on the leads 4 during heat cycle is first received by the soldered connection 22 which is closer to a temperature sensing element 3 than the welded connection 21. Thus, the welded connection 21 is not directly exposed to mechanical stresses or loads.
Generally speaking, when the lead is welded, the cross section of the lead is deformed due to excessive heat and loses mechanical strength thereof considerably. This is another reason why the lead 4 is soldered at 22. The soldered portion serves to prevent the welded portion, which has lost a considerable mechanical strength, from coming off the terminal 7.
Second and third embodiments
FIGS. 2 and 3 show a second and third embodiments of the invention. In FIG. 2, the plate like elongated terminal 7 is formed with a hole 26 therein through which the lead 4 passes to one side of the terminal to the other and is welded at its end portion to the reverse surface 7b of terminal 7. The lead 4 is soldered at 22 to the surface 7a of terminal 7 using a solder similar to that used in the prior art apparatus. The lead 4 extends substantially parallel to the front and reverse surfaces of the terminal except for the kinked portion of lead 4 in the hole 26. It should be noted that the soldered connection 22 is positioned closer to the temperature sensing element 3 than the welded connection 21.
In FIG. 3, the plate like terminal 7 is formed with a cutout 31 therein through which the lead 4 passes from one side of the terminal to the other and is welded at its end portion 21 to the reverse surface 7b of terminal 7. The lead 4 is soldered at 22 to the surface 7a of terminal 7. Again, it should be noted that the soldered connection 22 is closer to the temperature sensing element 3 than the welded connection 21. The kinked portion of lead 4 serves to mechanically fasten the lead 4 to the terminal 7, and cooperates with the soldered connection 22 to prevent the welded connection 21 from being exerted mechanical loads or stresses. When the lead 4 is soldered at the hole 26, the melted solder tends to flow into the hole, so that the hole 26 serves just like a "through hole" of a printed circuit board enhancing mechanical strength of the connection 22.
Fourth embodiment
FIGS. 4 and 5 show a fourth embodiment of the invention. In FIG. 4, the terminal 7 is formed with two slits 36a and 36b therein which form a strap 36 therebetween. The strap 36 is then bent to be positioned upright leaving a cutout across which the lead 4 extends. Then, the strap 36 is bent back to its original position so as to forcibly extrude the lead to project to the other surface of the terminal 7 such that the lead 4 is kinked into a substantial U-shape. The lead 4 is welded at its end portion and is soldered at slit 36a to the surface 7a of terminal 7.
The forcibly extruded kinked portion of lead 4 serves as a fastening means to fasten the lead 4 to terminal 7. The kinked portion cooperates with the soldered connection 22 to prevent the welded connection from being exerted tensile mechanical loads or stresses by the lead 4 during heat cycle. While the second and third embodiments are not quite suitable for quantity production, the fourth embodiment is more suitable for quantity production at low costs since the lead may be readily assembled to the terminal.
Fifth, sixth, and seventh embodiments
FIGS. 6-9 show a fifth, sixth and seventh embodiments which are modifications of the second to fourth embodiments shown in FIGS. 2-5 wherein FIGS. 8 and 9 correspond to FIGS. 5A and 5B, respectively. The fifth to seventh embodiments are different from the second to fourth embodiments in that the soldered connections have been omitted for simple construction. The kinked portion of lead 4 at the hole 26 and cutout 31, or a forcibly extruded portion formed by bending back the strap 36 serve as a fastening means to prevent the welded connection from being exerted mechanical loads and stresses by the lead 4 during heat cycle. Of course, the load sustaining characteristics of fifth to seventh embodiments are not as excellent as those with soldered connections. However, this rather simple construction of fifth to seventh embodiments may find some saving and suitable for quantity production. In the fifth to seventh embodiments, the lead 4 may be either welded or soldered at its end portion.

Claims (8)

What is claimed is:
1. A temperature sensor, comprising:
a holder for housing a temperature sensing element therein;
a terminal;
an electrical lead wire having a first end portion thereof electrically connected with said temperature sensing element and a second end portion thereof welded to said terminal; and
fastening means for fastening said lead wire to said terminal to receive mechanical loads exerted by said lead wire, said fastening means being provided closer to the temperature sensing element than said second end portion;
said fastening means being a connection at which said lead wire is soldered to said terminal;
said terminal being formed with an opening through which said second end portion of said lead wire extends from a first side of said terminal to a second side of said terminal, said second end portion extending beyond said opening such that said second end portion is welded to said second side of said terminal;
said lead wire being soldered at a position on said terminal on said first side of said terminal closer to said temperature sensing element than said opening to form said fastening means.
2. The temperature sensor as claimed in claim 1, wherein said opening is formed by a hole through which said second end portion of said lead wire extends from said first side of said terminal to said second side of said terminal, said lead wire being soldered at said hole on said first side to form said fastening means.
3. The temperature sensor as claimed in claim 1, wherein said opening is formed by a cutout through which said second end portion of said lead wire extends from said first side of said terminal to said second side of said terminal, said lead wire being soldered at a portion of said terminal closer to said temperature sensing element than said cutout to form said fastening means.
4. A temperature sensor comprising:
a holder for housing a temperature sensing element therein;
a terminal;
an electrical lead wire having a first end portion thereof electrically connected with said temperature sensing element and a second end portion thereof welded to said terminal;
fastening means for fastening said lead wire to said terminal to receive mechanical loads exerted by said lead wire, said fastening means being provided closer to the temperature sensing element than said second end portion; and
an opening being formed in said terminal by a first slit and second slit so as to define a strap between said first and second slits;
said lead wire passing through said first slit from a first side of said terminal to a second side of said terminal and then passing through said second slit from said second side to said first side such that the lead is kinked by said strap;
said lead wire being soldered at a portion on said first side of said terminal closer to said temperature sensing element than said strap to form said fastening means.
5. An electrical connector, comprising:
a terminal;
an electrical lead wire having a first end portion and a second end portion, said second end portion being welded to said terminal; and
fastening means for fastening said lead wire to said terminal to receive mechanical loads exerted by said lead wire, said fastening means being provided along said lead wire away from said second end portion;
said fastening means being a connection at which said lead wire is soldered to said terminal;
said terminal being formed with an opening through which said second end portion of said lead wire extends from a first side of said terminal to a second side of said terminal, said second end portion extending beyond said opening such that said second end portion is welded to said second side of said terminal;
said lead wire being soldered at a position on said terminal on said first side of said terminal to form said fastening means.
6. The electrical connector as claimed in claim 5, wherein said opening is formed a hole through which said second end portion of said lead wire extends from said first side of said terminal to said second side of said terminal, said lead wire being soldered at said hole on said first side to form said fastening means.
7. The electrical connector as claimed in claim 5, wherein said opening is formed by a cutout through which said second end portion of said lead wire extends from said first side of said terminal to said second side of said terminal, said lead wire being soldered at a portion of said terminal on said first side to form said fastening means.
8. An electrical connector comprising:
a terminal;
an electrical lead wire having a first end portion and a second end portion, said second end portion being welded to said terminal;
fastening means for fastening said lead wire to said terminal to receive mechanical loads exerted by said lead wire; and
an opening being formed in said terminal by a first slit and second slit so as to define a strap between said first and second slits;
said lead wire passing through said first slit from a first side of said terminal to a second side of said terminal and then passing through said second slit from said second side to said first side such that the lead is kinked by said strap;
said lead wire being soldered at a portion on said first side of said terminal to form said fastening means.
US07/870,668 1991-04-19 1992-04-17 Lead wire connection for a temperature sensor Expired - Lifetime US5222811A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3088063A JP2601046B2 (en) 1991-04-19 1991-04-19 Temperature sensor
JP3-88063 1991-04-19

Publications (1)

Publication Number Publication Date
US5222811A true US5222811A (en) 1993-06-29

Family

ID=13932395

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/870,668 Expired - Lifetime US5222811A (en) 1991-04-19 1992-04-17 Lead wire connection for a temperature sensor

Country Status (4)

Country Link
US (1) US5222811A (en)
JP (1) JP2601046B2 (en)
KR (1) KR950006016B1 (en)
DE (1) DE4212883C2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749656A (en) * 1995-08-11 1998-05-12 General Motors Corporation Thermal probe assembly with mold-over crimp sensor packaging
US6142838A (en) * 1997-01-09 2000-11-07 Yazaki Corporation Connecting structure between covered wire and terminal
US6287158B1 (en) * 1998-05-14 2001-09-11 Robert Bosch Gmbh Contact element
US6491553B2 (en) * 2000-12-20 2002-12-10 Berg Technology, Inc. Electrical connector having an electrical contact with a formed solder cup
US20030033875A1 (en) * 2001-08-16 2003-02-20 Jun Iijima Wheel speed sensor, method for producing the same, terminal and method for welding terminal and electric wire
US6729908B2 (en) * 2001-07-31 2004-05-04 Delphi Technologies, Inc. Battery pack having perforated terminal arrangement
US20050026514A1 (en) * 2003-07-30 2005-02-03 Zhou Hong Bin Cable connector assembly and method of making the same
US20070132541A1 (en) * 2005-12-09 2007-06-14 Tdk Corporation Thermistor device and method for manufacturing the same
US20070237205A1 (en) * 2006-04-05 2007-10-11 Denso Corporation Temperature sensor and method of manufacturing the same
US20130186592A1 (en) * 2010-10-15 2013-07-25 Toyota Jidosha Kabushiki Kaisha Device for detecting temperature of cooling liquid
US20140059853A1 (en) * 2012-08-29 2014-03-06 Nexans Method for moisture proof covering a connection point between an electrical conductor and a contact element
US20150244133A1 (en) * 2014-02-27 2015-08-27 Yazaki Corporation Terminal-equipped wiring member
WO2015136482A1 (en) * 2014-03-13 2015-09-17 Castfutura Spa Thermocouple and method for making the same
EP3588034A1 (en) * 2018-06-18 2020-01-01 Yazaki Corporation Oil temperature sensor
US10998659B2 (en) * 2017-03-30 2021-05-04 Autonetworks Technologies, Ltd. Female terminal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302934A (en) * 1993-04-02 1994-04-12 Therm-O-Disc, Incorporated Temperature sensor
DE9406402U1 (en) * 1994-04-20 1994-06-16 Gossen-Metrawatt GmbH, 90471 Nürnberg Temperature sensor with a housing for receiving a sensor element
DE102007010403B4 (en) * 2007-03-01 2016-02-11 Heraeus Sensor Technology Gmbh Temperature sensor and its use in a turbocharger overheating fuse
JP5386072B2 (en) * 2007-07-26 2014-01-15 株式会社ケーヒン Brushless motor
JP2009302595A (en) * 2009-09-30 2009-12-24 Sharp Corp Solar battery module, and manufacturing method thereof
WO2013073608A1 (en) * 2011-11-18 2013-05-23 シャープ株式会社 Solar cell module, solar cell module production method, and solar cell module production device
JP7151369B2 (en) * 2018-10-22 2022-10-12 株式会社デンソー temperature sensor

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875241A (en) * 1930-01-13 1932-08-30 Gen Electric Electrical cord terminal
US2356237A (en) * 1942-10-06 1944-08-22 Roman F Geller Heating unit
US2655641A (en) * 1948-10-29 1953-10-13 Aircraft Marine Prod Inc Electrical connector having a mercury amalgam coating on its inner surface
US2906987A (en) * 1955-12-28 1959-09-29 Amp Inc Stabilized crimped connections
US3084546A (en) * 1959-06-26 1963-04-09 Edward P Ney Wire thermometer
FR1359893A (en) * 1963-03-21 1964-04-30 Materiel Electr Soc Ind De New connector
US3263952A (en) * 1964-10-05 1966-08-02 Sun Oil Co Thermocouple mounting assembly
US3437774A (en) * 1967-10-27 1969-04-08 Therm O Disc Inc Terminal structure for thermostats and the like
DE1949957A1 (en) * 1969-10-03 1971-04-15 Bosch Gmbh Robert Connection element for electrical conductors made of different metals
US3593002A (en) * 1969-06-19 1971-07-13 Springfield Wire Sealed tubular electrical resistance heater with ground connection
US3729574A (en) * 1969-05-16 1973-04-24 A Weiner Connector and electrical component assembly
US3779079A (en) * 1972-06-28 1973-12-18 Diginetics Inc Temperature measuring systems for automotive vehicles and the like
US4231041A (en) * 1979-06-18 1980-10-28 General Motors Corporation Electrically conducting lead termination apparatus for a thin film antenna
GB2045433A (en) * 1979-03-30 1980-10-29 Mckee F B A wall mounting arrangement suitable for a thermometer
JPS61296229A (en) * 1985-06-25 1986-12-27 Mitsubishi Heavy Ind Ltd Thermocouple and method for mounting the same
GB2243484A (en) * 1990-04-25 1991-10-30 Condor Coils Ltd Thermocouple flame sensing device
US5088836A (en) * 1989-08-21 1992-02-18 Nkk Corporation Apparatus for temperature measurement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849518A (en) * 1953-10-12 1958-08-26 Charles M Macdonald Temperature indicator
DE1895351U (en) * 1964-04-08 1964-06-25 Scharpf K G Maschinenfabrik In HEAT SENSING DEVICE.
CH673061A5 (en) * 1987-07-13 1990-01-31 Landis & Gyr Gmbh Resistance thermometer with unstressed sensing element in housing - has annular grooves around sheath of cable end pressed into housing protecting element against bending stresses
DE3803531A1 (en) * 1988-02-05 1989-08-17 Ephy Mess Ges Fuer Elektro Phy RESISTANCE THERMOMETER
US4971452A (en) * 1988-02-05 1990-11-20 Finney Philip F RTD assembly
JPH01168971U (en) * 1988-05-20 1989-11-29
JPH01173585U (en) * 1988-05-30 1989-12-08
NL8900283A (en) * 1989-02-06 1990-09-03 Philips Nv ATTACHMENT TEMPERATURE SENSITIVE ELEMENT.
JPH0311702A (en) * 1989-06-09 1991-01-21 Matsushita Electric Ind Co Ltd Temperature sensor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875241A (en) * 1930-01-13 1932-08-30 Gen Electric Electrical cord terminal
US2356237A (en) * 1942-10-06 1944-08-22 Roman F Geller Heating unit
US2655641A (en) * 1948-10-29 1953-10-13 Aircraft Marine Prod Inc Electrical connector having a mercury amalgam coating on its inner surface
US2906987A (en) * 1955-12-28 1959-09-29 Amp Inc Stabilized crimped connections
US3084546A (en) * 1959-06-26 1963-04-09 Edward P Ney Wire thermometer
FR1359893A (en) * 1963-03-21 1964-04-30 Materiel Electr Soc Ind De New connector
US3263952A (en) * 1964-10-05 1966-08-02 Sun Oil Co Thermocouple mounting assembly
US3437774A (en) * 1967-10-27 1969-04-08 Therm O Disc Inc Terminal structure for thermostats and the like
US3729574A (en) * 1969-05-16 1973-04-24 A Weiner Connector and electrical component assembly
US3593002A (en) * 1969-06-19 1971-07-13 Springfield Wire Sealed tubular electrical resistance heater with ground connection
DE1949957A1 (en) * 1969-10-03 1971-04-15 Bosch Gmbh Robert Connection element for electrical conductors made of different metals
US3779079A (en) * 1972-06-28 1973-12-18 Diginetics Inc Temperature measuring systems for automotive vehicles and the like
GB2045433A (en) * 1979-03-30 1980-10-29 Mckee F B A wall mounting arrangement suitable for a thermometer
US4231041A (en) * 1979-06-18 1980-10-28 General Motors Corporation Electrically conducting lead termination apparatus for a thin film antenna
JPS61296229A (en) * 1985-06-25 1986-12-27 Mitsubishi Heavy Ind Ltd Thermocouple and method for mounting the same
US5088836A (en) * 1989-08-21 1992-02-18 Nkk Corporation Apparatus for temperature measurement
GB2243484A (en) * 1990-04-25 1991-10-30 Condor Coils Ltd Thermocouple flame sensing device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749656A (en) * 1995-08-11 1998-05-12 General Motors Corporation Thermal probe assembly with mold-over crimp sensor packaging
US6142838A (en) * 1997-01-09 2000-11-07 Yazaki Corporation Connecting structure between covered wire and terminal
US6287158B1 (en) * 1998-05-14 2001-09-11 Robert Bosch Gmbh Contact element
US6491553B2 (en) * 2000-12-20 2002-12-10 Berg Technology, Inc. Electrical connector having an electrical contact with a formed solder cup
US6729908B2 (en) * 2001-07-31 2004-05-04 Delphi Technologies, Inc. Battery pack having perforated terminal arrangement
US20030033875A1 (en) * 2001-08-16 2003-02-20 Jun Iijima Wheel speed sensor, method for producing the same, terminal and method for welding terminal and electric wire
US6759594B2 (en) * 2001-08-16 2004-07-06 Nissin Kogyo Co., Ltd. Wheel speed sensor, method for producing the same, terminal and method for welding terminal and electric wire
US7000470B2 (en) 2001-08-16 2006-02-21 Nissin Kogyo Co., Ltd. Wheel speed sensor, method for producing the same, terminal and method for welding terminal and electric wire
US20050026514A1 (en) * 2003-07-30 2005-02-03 Zhou Hong Bin Cable connector assembly and method of making the same
US7008273B2 (en) * 2003-07-30 2006-03-07 Hon Hai Precision Ind. Co., Ltd Cable connector assembly and method of making the same
US20070132541A1 (en) * 2005-12-09 2007-06-14 Tdk Corporation Thermistor device and method for manufacturing the same
US7663469B2 (en) * 2005-12-09 2010-02-16 Tdk Corporation Thermistor device and method for manufacturing the same
US20070237205A1 (en) * 2006-04-05 2007-10-11 Denso Corporation Temperature sensor and method of manufacturing the same
US7641388B2 (en) * 2006-04-05 2010-01-05 Denso Corporation Temperature sensor and method of manufacturing the same
US20130186592A1 (en) * 2010-10-15 2013-07-25 Toyota Jidosha Kabushiki Kaisha Device for detecting temperature of cooling liquid
US20140059853A1 (en) * 2012-08-29 2014-03-06 Nexans Method for moisture proof covering a connection point between an electrical conductor and a contact element
US10594103B2 (en) * 2012-08-29 2020-03-17 Nexans Method for moisture proof covering a connection point between an electrical conductor and a contact element
US20150244133A1 (en) * 2014-02-27 2015-08-27 Yazaki Corporation Terminal-equipped wiring member
WO2015136482A1 (en) * 2014-03-13 2015-09-17 Castfutura Spa Thermocouple and method for making the same
US10998659B2 (en) * 2017-03-30 2021-05-04 Autonetworks Technologies, Ltd. Female terminal
EP3588034A1 (en) * 2018-06-18 2020-01-01 Yazaki Corporation Oil temperature sensor

Also Published As

Publication number Publication date
KR920020196A (en) 1992-11-20
DE4212883C2 (en) 1999-04-01
DE4212883A1 (en) 1992-10-22
JPH04319634A (en) 1992-11-10
KR950006016B1 (en) 1995-06-07
JP2601046B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US5222811A (en) Lead wire connection for a temperature sensor
US7573274B2 (en) Current sensor
US6034421A (en) Semiconductor device including molded IC fixed to casing
US5789920A (en) Position sensor housing having duroplastic molding compound and thermoplastic molding compound
US7147485B2 (en) Wiring connection method and wiring connection structure
US6380840B1 (en) Temperature sensor with measuring resistor
US6462925B2 (en) Excess current interrupting structure
JP2006085945A (en) Mounting structure of current sensor
MXPA97003843A (en) Temperature sensor with medic resistor
US20090095059A1 (en) Pressure sensor and structure for attachment of pressure sensor
JP2010539500A (en) Contact module for sensors with limited structural space
US11462850B2 (en) Oil temperature sensor
CN108346767A (en) Connection component
JP4092071B2 (en) Semiconductor power module
JPH03107356A (en) Rectifier of three-phase a.c. generator in vehicle
CA1110366A (en) Fast response temperature sensor
US6447342B1 (en) Pressure sensor connector
US5043836A (en) Noise proof capacitor unit for a vehicular generator
JP4228525B2 (en) Assembly structure of electronic parts
JPH1123378A (en) Temperature sensor
CN112345159A (en) Waterproof force sensitive sensor
CN219780519U (en) Sensor with lead wire
CN215527943U (en) Conductive terminal, electric connector and temperature sensor
JPH0665840U (en) Temperature sensor
JP2000146712A (en) Temperature sensor and manufacture of the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MIYOSHI, SOTSUO;REEL/FRAME:006189/0863

Effective date: 19920609

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12