US5173032A - Non-clutch compressor - Google Patents

Non-clutch compressor Download PDF

Info

Publication number
US5173032A
US5173032A US07/830,750 US83075092A US5173032A US 5173032 A US5173032 A US 5173032A US 83075092 A US83075092 A US 83075092A US 5173032 A US5173032 A US 5173032A
Authority
US
United States
Prior art keywords
chamber
suction
compressor
pressure
crank chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/830,750
Inventor
Tatsuhisa Taguchi
Yoshikazu Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1170147A external-priority patent/JPH0337378A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US07/830,750 priority Critical patent/US5173032A/en
Application granted granted Critical
Publication of US5173032A publication Critical patent/US5173032A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to a non-clutch compressor for employment in an automobile chilling unit.
  • Known refrigerant compressors for employment in an automobile chilling unit are driven directly by an engine through an electromagnetic clutch and belt in the following manner.
  • the field core of the electromagnetic clutch is energized when the operation of the compressor is required, and a friction plate called an armature is attracted to a rotor pulley by magnetic force to transmit driving force from the engine to a shaft of the compressor.
  • the energizing of the field core is stopped when the operation of the compressor is not required, and only the pulley races.
  • oscillating swash plate type compressors can change the stroke of the piston within 5-100% by changing the pressure in the crank chamber and have high capacity control efficiency.
  • the compressor disclosed therein is of the variable capacity type, and is so constructed that adjustment of the pressure in a crank chamber 2 accommodating an oscillating plate 1 causes the incline angle of the plate 1 to change, so that the discharge capacity can be changed.
  • the variable capacity type compressor the oscillating swash plate type compressor, comprises first and second passages 4 and 5 independently arranged therein and connecting the crank chamber 2 with a suction pressure chamber 3.
  • a third passage 7 connects the crank chamber 2 with a discharge pressure chamber 6.
  • a pressure control valve 8 is arranged in the first passage 4, closing when the pressure in the suction pressure chamber 3 is less than a predetermined set value and opening when the pressure is not less than the value to connect the crank chamber 2 with the suction pressure chamber 3 through the first passage 4.
  • a change valve 9 is provided for closing the first passage 4 and opening the second and third passages 5 and 7 when the pressure in the discharge pressure chamber 6 is less than a predetermined set value, and opening the first passage 4 and closing the second and third passages 5 and 7 when the pressure in the discharge pressure chamber 6 is not less than the values.
  • a throttling mechanism is arranged in the second passage 5 and throttles flow so that the cross-sectional area of the second passage 5 is less than that of the third passage 7.
  • the necessary conditions under which the non-clutch compressor comes in to practice are as follows: (1) it can assure the reliability and durability of the compressor not less than those of a compressor with an electromagnetic clutch; (2) it can prevent fuel consumption drop throughout the year even though it is always operated; (3) the parts added instead of an electromagnetic clutch have no disadvantage in configuration and cost.
  • the non-clutch compressor In order to realize the non-clutch compressor, it is required to remedy the lubricating problems such as wear, burning, and degradation of sealing of parts in the compressor by only adding smaller and lower-cost parts. Furthermore, since the compressor is operated even though the cooling operation is not required, it is constructionally required to greatly reduce the cooling capacity and the load power at that time.
  • an essential object of the present invention is to provide a non-clutch compressor capable of satisfying the conditions, remedying the lubricating problems, and greatly reducing the cooling capacity and the load power when a cooling operation is not required.
  • a non-clutch compressor in which, by controlling a differential pressure between a crank chamber accommodating an oscillating plate therein and a cylinder chamber in a suction stroke, an incline angle of the oscillating plate is sequentially changed so that a maximum stroke of a piston is changeable.
  • the non-clutch compressor comprises a passage opening and closing device arranged at an inlet section of one of a suction pipe connecting with a suction chamber of the compressor and the suction chamber, and a pressure control valve arranged between a discharge chamber and the crank chamber, the valve opening in a case where pressure in the suction chamber is less than a set value.
  • a cross-sectional area (A) of a passage of a discharge hole for connecting the crank chamber with the suction chamber is expressed by an equation: 0.5 ⁇ (A) ⁇ 1.8 mm 2 .
  • the operation is as follows.
  • the passage opening and closing device is opened in normal operation.
  • the device is closed when the discharge from the compressor is not required.
  • the pressure in the suction chamber decreases, the pressure control valve is opened, and high-pressure gas flows into the crank chamber to increase the pressure in the crank chamber and make the oscillating plate move to minimize the incline angle thereof.
  • the stroke of the piston is minimized to greatly reduce a required torque.
  • the inside of the compressor is lubricated by performing the very small reciprocating motion of the piston which is required when gas flow is generated from the discharge chamber to the crank chamber through each sliding section, further from the crank chamber to the suction chamber through the discharge hole serving as a throttling section.
  • FIG. 1 is a longitudinal sectional view showing a state where a passage opening and closing valve of a non-clutch compressor according to one embodiment of the present invention is opened;
  • FIG. 2 is a longitudinal sectional view showing a state where the passage opening and closing valve is closed
  • FIG. 3 is a view showing the construction of a pressure control valve of the compressor
  • FIG. 4 is an enlarged view of a discharge hole of the compressor
  • FIG. 5 is a longitudinal sectional view of a known non-clutch compressor
  • FIG. 6 is a longitudinal sectional view, in detail, showing a pressure control mechanism of the known non-clutch compressor.
  • FIG. 7 is a diagram between the pressure and the torque in operating the compressor according to the embodiment of the present invention.
  • FIG. 1 is a view showing the whole construction of the non-clutch compressor according to one embodiment of the present invention.
  • Reference numeral 51 denotes a shaft normally rotating a driving force from the outside through a pulley 52.
  • the shaft 51 is inserted into a center hole 55a of a drive plate 55 having a projection 54 with a long hole 53 for positioning, under pressure.
  • Reference numeral 56 denotes a rotating journal having a pair of projections 57 on the side of the drive plate 55.
  • the journal 56 is suspended by a positioning pin 58 passing through the long hole 53 and the pair of projections 57 and then rotates while the projection 54 of the drive plate 55 is put between the pair of projections 57 of the journal 56.
  • the journal 56 has a hole 56a having a pair of plain walls at the middle portion thereof.
  • a shaft sleeve 59 is inserted slidably along its axial direction coincident with the axis of the shaft 51 into the hole 56a of the journal 56.
  • the shaft sleeve 59 has a pair of positioning holes 60 on its axis.
  • the operation of the journal 56 is regulated by a positioning pivot pin 61 inserted into the holes 60 of the journal 56. That is, the operation of the journal 56 is regulated with the long hole 53 of the drive plate 55 and the positioning hole 60 of the shaft sleeve 59, resulting in a mechanism capable of changing the incline angle with respect to the shaft 51.
  • oscillating plate 62 On the side opposite to the side of the drive plate 55.
  • the oscillating plate 62 is supported with a thrust bearing 63 and a radial bearing 64.
  • a plurality of rods 65 with universal couplings on both ends thereof are arranged and one end thereof is fastened thereto.
  • a rotary prevention member 66 is arranged to regulate the rotation of the oscillating plate 62, resulting in regulation of the rotation of the oscillating plate 62 by a guide plate 67.
  • a piston 68 is arranged through a universal coupling.
  • Each of the plural pistons 68 can reciprocally move in each of plural cylinder bores 70 arranged at a cylinder 69.
  • Reference numeral 71 denotes a valve plate.
  • a suction valve 72 is fixed, and on the side opposite to the cylinder side, a discharge valve 73 and a discharge valve guard 74 are fixed, with fixing members 75 such as a bolt and a nut.
  • Reference numeral 76 denotes a rear cover with a discharge chamber 77 formed at the middle section thereof and a suction chamber 78 formed at the outer circumferential section thereof.
  • the mechanism such as the oscillating plate 62 is accommodated in a front cover 79.
  • the shaft 51 is rotatably supported with the front cover 79 and the cylinder 69 in a thrust and a radial directions.
  • Reference numeral 80 denotes an electromagnetic valve for opening and closing a passage, the valve 80 arranged in an inlet section to the suction chamber 78.
  • a pressure control valve 81 is arranged in the rear cover 76 .
  • FIG. 3 shows the detail of the pressure control valve 81.
  • Reference numeral 82 denotes a diaphragm. The pressure in the suction chamber 78 is applied to the inside of the diaphragm 82 and the atmospheric pressure is applied to the outside of the diaphragm 82.
  • the valve 81 when the suction pressure is not less than a predetermined set value, the valve 81 is closed, while when the suction pressure is less than the set value, the valve 81 is opened in the following manner. That is, a presser bar 83 connected to the diaphragm 82 presses a steel ball 84 upwardly in FIG. 3. Then, a part of high-pressure gas in the discharge chamber 77 passes through a pressure supply path 85, a passage 86 in the shaft 51, and a gap of a radial bearing 87 and a gap of a thrust bearing 88, and thereafter flows into a crank chamber 89.
  • a presser bar 83 connected to the diaphragm 82 presses a steel ball 84 upwardly in FIG. 3.
  • a part of high-pressure gas in the discharge chamber 77 passes through a pressure supply path 85, a passage 86 in the shaft 51, and a gap of a radial bearing 87 and a gap of a thrust bearing 88, and thereafter flows into
  • reference numeral 90 denotes a discharge hole formed in the cylinder 69, that is, a capillary having high flow resistance and always connecting to the suction chamber 78.
  • a coil-shaped spring 91 is arranged between the shaft sleeve 59 and the thrust bearing 88, with the result that the spring 91 urges in a direction in which the incline angle of the journal 56 is increased.
  • the journal 56 with an incline angle rotates in accordance with the rotation of the shaft 51, so that the oscillating plate 62 carries out oscillating motion.
  • each piston 68 moves reciprocally so as to suck, compress, and discharge refrigerant gas.
  • Such an action normally causes the oscillating plate 62 to receive the gas pressure in the direction in which the incline angle is increased.
  • the pressure in the crank chamber 89 rises from the normal suction pressure, and then when the pressure in the crank chamber 89 is not less than a set value, force is applied in a direction in which the incline angle is decreased.
  • Such an operation makes the pressure in the crank chamber 89 increase sequentially while supplementarily using the urging force of the spring 91.
  • the incline angle is sequentially and gradually decreased by the mechanism.
  • the electromagnetic valve 80 holds an opening state in a normal cooling operation.
  • the compressor performs the known variable capacity operation. That is, when the suction pressure of the compressor is not less than a predetermined set value, the journal 56 rotates in a state where the journal 56 inclines at the maximum incline angle, so that the piston 68 sucks the refrigerant gas until the piston 68 moves to the maximum stroke thereof, and an operation in accordance with the maximum discharge amount of the compressor is performed. Then, when the suction pressure is less than the set value, the pressure control valve 81 is opened and the pressure in the crank chamber 89 increases to start to make the incline angle of the journal 56 reduce.
  • the suction pressure is held to a constant set value, so that the cooling capability is constant irrespective of change of revolution number and the cooling capability thereof is suitably controlled in accordance with each season.
  • the required torque is greatly reduced according to reduction of the discharge pressure and the piston stroke, as compared with a compressor without a variable capacity mechanism, so that the refrigerating cycle with high efficiency can be performed as a cooling system.
  • the electromagnetic valve 80 is closed. Then, it prevents the compressor from sucking, resulting in rapid decrease of the pressure in the suction chamber 78. Thus, it causes the differential pressure between the pressure in the crank chamber 89 and that in the suction chamber 78 to generate.
  • the pressure control valve 81 is opened, so that the pressure in the crank chamber 8 increases according to inflow of the high-pressure gas. As a result, the incline angle of the journal 56 reduces towards the minimum value, resulting in a balanced position between the force of the journal 56 and that of the spring 91 where the journal 56 has the minimum incline angle.
  • the required torque is several percents of that in the maximum stroke operation, in accordance with minimization of the stroke and decrease of the discharge pressure in response to reduction of the discharge.
  • FIG. 7 it appears that the differential pressure holds between the discharge chamber 77, the crank chamber 89, and the suction chamber 78, with the result that the fluid flows in the compressor and the sliding section in the compressor is lubricated with the inlet gas from the discharge chamber 77 described previously.
  • the discharge hole 90 is formed by the capillary between the suction chamber 78 and the crank chamber 89. Fluid resistance in some extent is required therebetween to generate the differential pressure for making the incline angle of the journal 56 be to the minimum value.
  • the extent of the resistance is experimentally determined by the period of time required when the piston returns from the minimum stroke to the maximum stroke.
  • the experimental results of the system showed that the cross-sectional area (A) of the passage of the discharge hole 90 is expressed by the following inequality supposing that the volume of the crank chamber 89 is approximately 1 liter.
  • variable capacity compressor of the oscillating swash plate type is so constructed that a simple opening and closing device such as the electromagnetic valve is arranged at the refrigerant inlet passage of the suction chamber, the cross-sectional area (A) of the discharge hole between the crank chamber and the suction chamber is determined by the equation 0.5 ⁇ (A) ⁇ 1.8 mm 2 , and the pressure control valve for opening in the case where the suction pressure is less than the set value is arranged at the connection passage between the high-pressure chamber and the crank chamber.
  • a simple opening and closing device such as the electromagnetic valve is arranged at the refrigerant inlet passage of the suction chamber
  • the cross-sectional area (A) of the discharge hole between the crank chamber and the suction chamber is determined by the equation 0.5 ⁇ (A) ⁇ 1.8 mm 2
  • the pressure control valve for opening in the case where the suction pressure is less than the set value is arranged at the connection passage between the high-pressure chamber and the crank chamber.
  • the opening and closing device is closed in the operation unnecessary for the cooling operation, so that the refrigerant flows inside the compressor to lubricate while the cooling capability is zero and the required torque is held to a very small value.
  • a cheap and light compressor can be obtained with excellent durability and reliability and reduced power loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

In a non-clutch compressor, by controlling a differential pressure between a crank chamber accommodating an oscillating plate therein and a cylinder chamber in a suction stroke, an incline angle of the oscillating plate is sequentially changed so that a maximum stroke of a piston is changeable. The compressor includes a passage opening and closing device arranged at an inlet section of one of a suction pipe connecting with a suction chamber of the compressor and the suction chamber, and a pressure control valve arranged between a discharge chamber and the crank chamber, the valve opening in a case where pressure in the suction chamber is less than a set value. In the compressor, a cross-sectional area (A) of a passage of a discharge hole for connecting the crank chamber with the suction chamber is expressed by an equation: 0.5<(A)<1.8 mm2.

Description

This application is a continuation of now abandoned application Ser. No. 07/545,894 filed on Jun. 29, 1990.
BACKGROUND OF THE INVENTION
The present invention relates to a non-clutch compressor for employment in an automobile chilling unit.
Known refrigerant compressors for employment in an automobile chilling unit are driven directly by an engine through an electromagnetic clutch and belt in the following manner. The field core of the electromagnetic clutch is energized when the operation of the compressor is required, and a friction plate called an armature is attracted to a rotor pulley by magnetic force to transmit driving force from the engine to a shaft of the compressor. On the other hand, the energizing of the field core is stopped when the operation of the compressor is not required, and only the pulley races.
Recently, refrigerant compressors capable of changing their cooling capacity by themselves have come in to practice. Of the compressors, oscillating swash plate type compressors can change the stroke of the piston within 5-100% by changing the pressure in the crank chamber and have high capacity control efficiency.
On the basis of oscillating swash plate type compressors, various types of compressors having no conventional electromagnetic clutch, which are called non-clutch compressors, have been proposed. For example, such a compressor is disclosed in Japanese Laid-open Patent Publication No. 62-191673, as shown in FIG. 5.
The compressor disclosed therein is of the variable capacity type, and is so constructed that adjustment of the pressure in a crank chamber 2 accommodating an oscillating plate 1 causes the incline angle of the plate 1 to change, so that the discharge capacity can be changed. As shown in FIG. 6, the variable capacity type compressor, the oscillating swash plate type compressor, comprises first and second passages 4 and 5 independently arranged therein and connecting the crank chamber 2 with a suction pressure chamber 3. A third passage 7 connects the crank chamber 2 with a discharge pressure chamber 6. A pressure control valve 8 is arranged in the first passage 4, closing when the pressure in the suction pressure chamber 3 is less than a predetermined set value and opening when the pressure is not less than the value to connect the crank chamber 2 with the suction pressure chamber 3 through the first passage 4. A change valve 9 is provided for closing the first passage 4 and opening the second and third passages 5 and 7 when the pressure in the discharge pressure chamber 6 is less than a predetermined set value, and opening the first passage 4 and closing the second and third passages 5 and 7 when the pressure in the discharge pressure chamber 6 is not less than the values. A throttling mechanism is arranged in the second passage 5 and throttles flow so that the cross-sectional area of the second passage 5 is less than that of the third passage 7.
The necessary conditions under which the non-clutch compressor comes in to practice are as follows: (1) it can assure the reliability and durability of the compressor not less than those of a compressor with an electromagnetic clutch; (2) it can prevent fuel consumption drop throughout the year even though it is always operated; (3) the parts added instead of an electromagnetic clutch have no disadvantage in configuration and cost.
With respect to the above conditions, every mechanisms presently proposed may not be realized. It appears that for example, it is required for the above-described known compressor to remedy some disadvantages, such as problems concerning a lubricating method of parts in the compressor in addition to a complicated pressure control construction in the crank chamber thereof.
In order to realize the non-clutch compressor, it is required to remedy the lubricating problems such as wear, burning, and degradation of sealing of parts in the compressor by only adding smaller and lower-cost parts. Furthermore, since the compressor is operated even though the cooling operation is not required, it is constructionally required to greatly reduce the cooling capacity and the load power at that time.
SUMMARY OF THE INVENTION
Accordingly, an essential object of the present invention is to provide a non-clutch compressor capable of satisfying the conditions, remedying the lubricating problems, and greatly reducing the cooling capacity and the load power when a cooling operation is not required.
In accomplishing these and other objects, according to one preferred embodiment of the present invention, there is provided a non-clutch compressor in which, by controlling a differential pressure between a crank chamber accommodating an oscillating plate therein and a cylinder chamber in a suction stroke, an incline angle of the oscillating plate is sequentially changed so that a maximum stroke of a piston is changeable. The non-clutch compressor comprises a passage opening and closing device arranged at an inlet section of one of a suction pipe connecting with a suction chamber of the compressor and the suction chamber, and a pressure control valve arranged between a discharge chamber and the crank chamber, the valve opening in a case where pressure in the suction chamber is less than a set value. A cross-sectional area (A) of a passage of a discharge hole for connecting the crank chamber with the suction chamber is expressed by an equation: 0.5<(A)<1.8 mm2.
By the above construction of one aspect of the present invention, the operation is as follows. The passage opening and closing device is opened in normal operation. The device is closed when the discharge from the compressor is not required. As a result thereof, the pressure in the suction chamber decreases, the pressure control valve is opened, and high-pressure gas flows into the crank chamber to increase the pressure in the crank chamber and make the oscillating plate move to minimize the incline angle thereof. Thus, the stroke of the piston is minimized to greatly reduce a required torque. The inside of the compressor is lubricated by performing the very small reciprocating motion of the piston which is required when gas flow is generated from the discharge chamber to the crank chamber through each sliding section, further from the crank chamber to the suction chamber through the discharge hole serving as a throttling section.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other objects and features of the present invention will become clear from the following description of the preferred embodiments thereof with reference to the accompanying drawings, in which:
FIG. 1 is a longitudinal sectional view showing a state where a passage opening and closing valve of a non-clutch compressor according to one embodiment of the present invention is opened;
FIG. 2 is a longitudinal sectional view showing a state where the passage opening and closing valve is closed;
FIG. 3 is a view showing the construction of a pressure control valve of the compressor;
FIG. 4 is an enlarged view of a discharge hole of the compressor;
FIG. 5 is a longitudinal sectional view of a known non-clutch compressor;
FIG. 6 is a longitudinal sectional view, in detail, showing a pressure control mechanism of the known non-clutch compressor; and
FIG. 7 is a diagram between the pressure and the torque in operating the compressor according to the embodiment of the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Before the description of the present invention proceeds, it is to be noted that like parts are designated by like reference numerals throughout the accompanying drawings.
FIG. 1 is a view showing the whole construction of the non-clutch compressor according to one embodiment of the present invention. Reference numeral 51 denotes a shaft normally rotating a driving force from the outside through a pulley 52. The shaft 51 is inserted into a center hole 55a of a drive plate 55 having a projection 54 with a long hole 53 for positioning, under pressure. Reference numeral 56 denotes a rotating journal having a pair of projections 57 on the side of the drive plate 55. The journal 56 is suspended by a positioning pin 58 passing through the long hole 53 and the pair of projections 57 and then rotates while the projection 54 of the drive plate 55 is put between the pair of projections 57 of the journal 56. The journal 56 has a hole 56a having a pair of plain walls at the middle portion thereof. A shaft sleeve 59 is inserted slidably along its axial direction coincident with the axis of the shaft 51 into the hole 56a of the journal 56. The shaft sleeve 59 has a pair of positioning holes 60 on its axis. The operation of the journal 56 is regulated by a positioning pivot pin 61 inserted into the holes 60 of the journal 56. That is, the operation of the journal 56 is regulated with the long hole 53 of the drive plate 55 and the positioning hole 60 of the shaft sleeve 59, resulting in a mechanism capable of changing the incline angle with respect to the shaft 51.
There is an oscillating plate 62 on the side opposite to the side of the drive plate 55. The oscillating plate 62 is supported with a thrust bearing 63 and a radial bearing 64. At the outer circumference of the oscillating plate 62, a plurality of rods 65 with universal couplings on both ends thereof are arranged and one end thereof is fastened thereto. On a predetermined portion of the outer circumferential section of the oscillating plate 62, a rotary prevention member 66 is arranged to regulate the rotation of the oscillating plate 62, resulting in regulation of the rotation of the oscillating plate 62 by a guide plate 67.
On the other end of each of the rods 65, a piston 68 is arranged through a universal coupling. Each of the plural pistons 68 can reciprocally move in each of plural cylinder bores 70 arranged at a cylinder 69. Reference numeral 71 denotes a valve plate. On the cylinder side of the valve plate 71, a suction valve 72 is fixed, and on the side opposite to the cylinder side, a discharge valve 73 and a discharge valve guard 74 are fixed, with fixing members 75 such as a bolt and a nut. Reference numeral 76 denotes a rear cover with a discharge chamber 77 formed at the middle section thereof and a suction chamber 78 formed at the outer circumferential section thereof.
The mechanism such as the oscillating plate 62 is accommodated in a front cover 79. The shaft 51 is rotatably supported with the front cover 79 and the cylinder 69 in a thrust and a radial directions.
The variable capacity mechanism section of the compressor will be described hereinbelow. Reference numeral 80 denotes an electromagnetic valve for opening and closing a passage, the valve 80 arranged in an inlet section to the suction chamber 78. In the rear cover 76 a pressure control valve 81 is arranged. FIG. 3 shows the detail of the pressure control valve 81. Reference numeral 82 denotes a diaphragm. The pressure in the suction chamber 78 is applied to the inside of the diaphragm 82 and the atmospheric pressure is applied to the outside of the diaphragm 82. Then, in the pressure control valve 81, when the suction pressure is not less than a predetermined set value, the valve 81 is closed, while when the suction pressure is less than the set value, the valve 81 is opened in the following manner. That is, a presser bar 83 connected to the diaphragm 82 presses a steel ball 84 upwardly in FIG. 3. Then, a part of high-pressure gas in the discharge chamber 77 passes through a pressure supply path 85, a passage 86 in the shaft 51, and a gap of a radial bearing 87 and a gap of a thrust bearing 88, and thereafter flows into a crank chamber 89. In FIG. 4, reference numeral 90 denotes a discharge hole formed in the cylinder 69, that is, a capillary having high flow resistance and always connecting to the suction chamber 78. On the peripheral section of the shaft 51, a coil-shaped spring 91 is arranged between the shaft sleeve 59 and the thrust bearing 88, with the result that the spring 91 urges in a direction in which the incline angle of the journal 56 is increased.
The operation of the compressor will be described hereinbelow.
In the oscillating swash plate type compressor, the journal 56 with an incline angle rotates in accordance with the rotation of the shaft 51, so that the oscillating plate 62 carries out oscillating motion. As a result, each piston 68 moves reciprocally so as to suck, compress, and discharge refrigerant gas. Such an action normally causes the oscillating plate 62 to receive the gas pressure in the direction in which the incline angle is increased. In the variable capacity type compressor, the pressure in the crank chamber 89 rises from the normal suction pressure, and then when the pressure in the crank chamber 89 is not less than a set value, force is applied in a direction in which the incline angle is decreased. Such an operation makes the pressure in the crank chamber 89 increase sequentially while supplementarily using the urging force of the spring 91. As a result, the incline angle is sequentially and gradually decreased by the mechanism.
In addition to the fundamental operation of the variable capacity mechanism in the oscillating swash plate type according to the embodiment described above, the change of the state in accordance with the operation of the electromagnetic valve 80 for opening and closing the passage arranged in the inlet section to the suction chamber 78 will be described hereinbelow.
The electromagnetic valve 80 holds an opening state in a normal cooling operation. The compressor performs the known variable capacity operation. That is, when the suction pressure of the compressor is not less than a predetermined set value, the journal 56 rotates in a state where the journal 56 inclines at the maximum incline angle, so that the piston 68 sucks the refrigerant gas until the piston 68 moves to the maximum stroke thereof, and an operation in accordance with the maximum discharge amount of the compressor is performed. Then, when the suction pressure is less than the set value, the pressure control valve 81 is opened and the pressure in the crank chamber 89 increases to start to make the incline angle of the journal 56 reduce. As a result, the suction pressure is held to a constant set value, so that the cooling capability is constant irrespective of change of revolution number and the cooling capability thereof is suitably controlled in accordance with each season. The required torque is greatly reduced according to reduction of the discharge pressure and the piston stroke, as compared with a compressor without a variable capacity mechanism, so that the refrigerating cycle with high efficiency can be performed as a cooling system.
Next, the operation in a case where it is unnecessary to perform the cooling operation will be described hereinbelow.
In this case, as shown in FIG. 2, the electromagnetic valve 80 is closed. Then, it prevents the compressor from sucking, resulting in rapid decrease of the pressure in the suction chamber 78. Thus, it causes the differential pressure between the pressure in the crank chamber 89 and that in the suction chamber 78 to generate. On the other hand, the pressure control valve 81 is opened, so that the pressure in the crank chamber 8 increases according to inflow of the high-pressure gas. As a result, the incline angle of the journal 56 reduces towards the minimum value, resulting in a balanced position between the force of the journal 56 and that of the spring 91 where the journal 56 has the minimum incline angle. At this time, the required torque is several percents of that in the maximum stroke operation, in accordance with minimization of the stroke and decrease of the discharge pressure in response to reduction of the discharge. Actual experimental results are shown in FIG. 7. As shown in FIG. 7, it appears that the differential pressure holds between the discharge chamber 77, the crank chamber 89, and the suction chamber 78, with the result that the fluid flows in the compressor and the sliding section in the compressor is lubricated with the inlet gas from the discharge chamber 77 described previously.
One of the features in the above-described construction is that the discharge hole 90 is formed by the capillary between the suction chamber 78 and the crank chamber 89. Fluid resistance in some extent is required therebetween to generate the differential pressure for making the incline angle of the journal 56 be to the minimum value. The extent of the resistance is experimentally determined by the period of time required when the piston returns from the minimum stroke to the maximum stroke. The experimental results of the system showed that the cross-sectional area (A) of the passage of the discharge hole 90 is expressed by the following inequality supposing that the volume of the crank chamber 89 is approximately 1 liter.
0.5<(A)<1.8mm.sup.2
According to the embodiment of the present invention, the variable capacity compressor of the oscillating swash plate type is so constructed that a simple opening and closing device such as the electromagnetic valve is arranged at the refrigerant inlet passage of the suction chamber, the cross-sectional area (A) of the discharge hole between the crank chamber and the suction chamber is determined by the equation 0.5<(A)<1.8 mm2, and the pressure control valve for opening in the case where the suction pressure is less than the set value is arranged at the connection passage between the high-pressure chamber and the crank chamber. In addition to the normal variable capacity function, the opening and closing device is closed in the operation unnecessary for the cooling operation, so that the refrigerant flows inside the compressor to lubricate while the cooling capability is zero and the required torque is held to a very small value. Thus, a cheap and light compressor can be obtained with excellent durability and reliability and reduced power loss.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications are apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims unless they depart therefrom.

Claims (4)

What is claimed is:
1. A non-clutch compressor, comprising:
a crank chamber;
a cylinder connected to said crank chamber;
an oscillating plate in said crank chamber having a piston connected thereto, said piston being disposed in said cylinder for movement therein,
means for mounting said oscillating plate in said crank chamber such that said oscillating plate can be oscillated to move said piston in said cylinder and such that said oscillating plate has a variable angle of inclination for varying the amount of movement of said piston in said cylinder;
a suction chamber fluidly connected to said cylinder for a suction stroke of said piston, said suction chamber having a suction inlet;
a discharge chamber fluidly connected to said cylinder for a discharge stroke of said position;
a passage opening and closing means disposed in said suction inlet for opening and closing said suction inlet;
a pressure control valve means connected between said discharge chamber and said crank chamber for fluidly connecting said discharge chamber with said crank chamber when said suction inlet is opened by said passage opening and closing means in a normal cooling operation and when the pressure in said suction chamber is less than a predetermined value for regulating the angle of inclination of said oscillating plate;
a discharge hole fluidly connecting said crank chamber with said suction chamber, said discharge hole having a passage with a predetermined cross-sectional area; and
a driving means for driving said oscillating plate, said driving means including a belt pulley and said means for mounting including a rotary shaft directly connected to said belt pulley.
2. The non-clutch compressor of claim 1, wherein said passage opening and closing means comprises an electromagnetic valve.
3. The non-clutch compressor of claim 1, wherein said predetermined cross-sectional area of said passage of said discharge hole is greater than 0.5 mm2 but less than 1.8 mm2.
4. The non-clutch compressor of claim 1, wherein said pressure control valve means further fluidly connects said discharge chamber with said crank chamber when said suction inlet is closed by said passage opening and closing means and the pressure in said suction chamber is reduced to less than the predetermined value for regulating the angle of inclination of said oscillating plate.
US07/830,750 1989-06-30 1992-02-07 Non-clutch compressor Expired - Lifetime US5173032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/830,750 US5173032A (en) 1989-06-30 1992-02-07 Non-clutch compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1170147A JPH0337378A (en) 1989-06-30 1989-06-30 Clutchless compressor
JP1-170147 1989-06-30
US54589490A 1990-06-29 1990-06-29
US07/830,750 US5173032A (en) 1989-06-30 1992-02-07 Non-clutch compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US54589490A Continuation 1989-06-30 1990-06-29

Publications (1)

Publication Number Publication Date
US5173032A true US5173032A (en) 1992-12-22

Family

ID=27323305

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/830,750 Expired - Lifetime US5173032A (en) 1989-06-30 1992-02-07 Non-clutch compressor

Country Status (1)

Country Link
US (1) US5173032A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316446A (en) * 1991-03-26 1994-05-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity wobbling swash plate type compressing apparatus
EP0628722A1 (en) * 1993-06-08 1994-12-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
DE4439512A1 (en) * 1993-11-05 1995-05-11 Toyoda Automatic Loom Works Piston compressor with changeable displacement
DE4446087A1 (en) * 1993-12-27 1995-06-29 Toyoda Automatic Loom Works Variable displacement piston compressor
DE4446832A1 (en) * 1993-12-27 1995-06-29 Toyoda Automatic Loom Works Variable displacement piston compressor for vehicle air conditioning system
DE19514376A1 (en) * 1994-04-15 1995-10-19 Toyoda Automatic Loom Works Piston-type compressor with swash plate fixed at drive shaft for common rotation
DE19517333A1 (en) * 1994-05-12 1995-11-16 Toyoda Automatic Loom Works Clutchless variable-displacement compressor with internal coolant duct
DE19517334A1 (en) * 1994-05-12 1995-11-16 Toyoda Automatic Loom Works Controllable displacement-type compressor
EP0716228A1 (en) 1994-12-07 1996-06-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5529461A (en) * 1993-12-27 1996-06-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5577894A (en) * 1993-11-05 1996-11-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5584670A (en) * 1994-04-15 1996-12-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5603610A (en) * 1993-12-27 1997-02-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Clutchless piston type variable displacement compressor
US5616008A (en) * 1995-03-30 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
US5653119A (en) * 1994-05-27 1997-08-05 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerating system incorporating therein a variable capacity refrigerant compressor
EP0798461A2 (en) * 1996-03-29 1997-10-01 Sanden Corporation Refrigerant circuit with fluid flow control mechanism
US5681150A (en) * 1994-05-12 1997-10-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5713725A (en) * 1994-05-12 1998-02-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Clutchless piston type variable displacement compressor
EP0711918A3 (en) * 1994-11-11 1998-02-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity type refrigerant compressor
EP0707182A3 (en) * 1994-10-11 1998-06-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control apparatus for variable displacement compressor
EP0857874A1 (en) * 1997-02-06 1998-08-12 Sanden Corporation Compressor
US5807076A (en) * 1995-04-07 1998-09-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Lubrication method and lubrication controlling apparatus for clutchless compressor
US5842834A (en) * 1995-08-21 1998-12-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor employing single-headed pistons
US5865604A (en) * 1995-06-13 1999-02-02 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Displacement controlling structure for clutchless variable displacement compressor
US5871337A (en) * 1995-10-26 1999-02-16 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash-plate compressor with leakage passages through the discharge valves of the cylinders
US5893706A (en) * 1995-04-07 1999-04-13 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Cooling structure for compressor
US5915928A (en) * 1996-03-19 1999-06-29 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compressor having a swash plate with a lubrication hole
US6010312A (en) * 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
US6065943A (en) * 1995-04-18 2000-05-23 Denso Corporation Refrigerant compressor having improved drive power transmission unit
EP0953765A3 (en) * 1998-04-13 2000-05-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement type swash plate compressor and displacement control valve
US6126405A (en) * 1996-06-17 2000-10-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Undulating current supplying means for the solenoid of a displacement control valve in a variable displacement compressor
EP1036940A3 (en) * 1999-03-18 2001-01-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
DE4447648C2 (en) * 1993-11-05 2001-02-01 Toyoda Automatic Loom Works Reciprocating piston compressor for cooling gas
EP1039130A3 (en) * 1999-03-26 2001-03-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
DE19549566C2 (en) * 1994-04-15 2002-04-18 Toyoda Automatic Loom Works Piston-type compressor with swash plate fixed at drive shaft for common rotation
US6481976B2 (en) * 1999-12-09 2002-11-19 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve and variable capacity type compressor having control valve
US6520751B2 (en) * 2000-04-04 2003-02-18 Sanden Corporation Variable displacement compressor having a noise reducing valve assembly
EP1182348A3 (en) * 2000-08-25 2003-07-30 Delphi Technologies, Inc. Clutchless compressor control valve with integral by pass feature
US20030156951A1 (en) * 2002-02-15 2003-08-21 Hirokazu Kamiya Compressor
US6688853B1 (en) 2001-01-08 2004-02-10 Honeywell International Inc. Control valve for regulating flow between two chambers relative to another chamber
US20060067837A1 (en) * 2004-09-27 2006-03-30 Denso Corporation Vehicle air conditioner in which shaft seal is protected
US20060140785A1 (en) * 2003-03-28 2006-06-29 Satoshi Watanabe Reciprocating compressor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62674A (en) * 1985-06-27 1987-01-06 Toyoda Autom Loom Works Ltd Capacity controller for variable angle swing swash type variable capacity compressor
JPS62191673A (en) * 1986-02-17 1987-08-22 Diesel Kiki Co Ltd Variable delivery compressor with swing plate
JPS62282182A (en) * 1986-05-30 1987-12-08 Saginomiya Seisakusho Inc Capacity control mechanism for variable capacity compressor
US4729718A (en) * 1985-10-02 1988-03-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Wobble plate type compressor
US4730986A (en) * 1986-04-25 1988-03-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement wobble plate type compressor with wobble angle control valve
US4747754A (en) * 1986-09-05 1988-05-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement wobble plate type compressor with solenoid-operated wobble angle control unit
US4801248A (en) * 1986-09-05 1989-01-31 Hitachi, Ltd. Variable capacity swash plate compressor
US4842488A (en) * 1986-07-08 1989-06-27 Sanden Corporation Slant plate type compressor with variable displacement mechanism
US4867649A (en) * 1986-05-23 1989-09-19 Hitachi, Ltd. Refrigerating system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62674A (en) * 1985-06-27 1987-01-06 Toyoda Autom Loom Works Ltd Capacity controller for variable angle swing swash type variable capacity compressor
US4729718A (en) * 1985-10-02 1988-03-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Wobble plate type compressor
JPS62191673A (en) * 1986-02-17 1987-08-22 Diesel Kiki Co Ltd Variable delivery compressor with swing plate
US4730986A (en) * 1986-04-25 1988-03-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement wobble plate type compressor with wobble angle control valve
US4867649A (en) * 1986-05-23 1989-09-19 Hitachi, Ltd. Refrigerating system
JPS62282182A (en) * 1986-05-30 1987-12-08 Saginomiya Seisakusho Inc Capacity control mechanism for variable capacity compressor
US4842488A (en) * 1986-07-08 1989-06-27 Sanden Corporation Slant plate type compressor with variable displacement mechanism
US4747754A (en) * 1986-09-05 1988-05-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement wobble plate type compressor with solenoid-operated wobble angle control unit
US4801248A (en) * 1986-09-05 1989-01-31 Hitachi, Ltd. Variable capacity swash plate compressor

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316446A (en) * 1991-03-26 1994-05-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity wobbling swash plate type compressing apparatus
EP0628722A1 (en) * 1993-06-08 1994-12-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
US5797730A (en) * 1993-06-08 1998-08-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor
DE4439512A1 (en) * 1993-11-05 1995-05-11 Toyoda Automatic Loom Works Piston compressor with changeable displacement
DE4447648C2 (en) * 1993-11-05 2001-02-01 Toyoda Automatic Loom Works Reciprocating piston compressor for cooling gas
US5577894A (en) * 1993-11-05 1996-11-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5603610A (en) * 1993-12-27 1997-02-18 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Clutchless piston type variable displacement compressor
DE4446087A1 (en) * 1993-12-27 1995-06-29 Toyoda Automatic Loom Works Variable displacement piston compressor
DE4446832A1 (en) * 1993-12-27 1995-06-29 Toyoda Automatic Loom Works Variable displacement piston compressor for vehicle air conditioning system
DE4446832C2 (en) * 1993-12-27 1998-03-26 Toyoda Automatic Loom Works Couplingless variable displacement swash plate compressor
US5529461A (en) * 1993-12-27 1996-06-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
DE4446087C2 (en) * 1993-12-27 1998-01-29 Toyoda Automatic Loom Works compressor
DE19514376A1 (en) * 1994-04-15 1995-10-19 Toyoda Automatic Loom Works Piston-type compressor with swash plate fixed at drive shaft for common rotation
DE19549566C2 (en) * 1994-04-15 2002-04-18 Toyoda Automatic Loom Works Piston-type compressor with swash plate fixed at drive shaft for common rotation
US5584670A (en) * 1994-04-15 1996-12-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
DE19514376C2 (en) * 1994-04-15 2002-04-18 Toyoda Automatic Loom Works Piston compressor with variable displacement
DE19517333C2 (en) * 1994-05-12 1998-11-12 Toyoda Automatic Loom Works Clutchless, variable displacement compressor of the piston type
DE19517334C2 (en) * 1994-05-12 1998-11-12 Toyoda Automatic Loom Works Swash plate compressor with variable delivery rate
US5681150A (en) * 1994-05-12 1997-10-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5713725A (en) * 1994-05-12 1998-02-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Clutchless piston type variable displacement compressor
DE19517334A1 (en) * 1994-05-12 1995-11-16 Toyoda Automatic Loom Works Controllable displacement-type compressor
DE19517333A1 (en) * 1994-05-12 1995-11-16 Toyoda Automatic Loom Works Clutchless variable-displacement compressor with internal coolant duct
US5653119A (en) * 1994-05-27 1997-08-05 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerating system incorporating therein a variable capacity refrigerant compressor
US5785502A (en) * 1994-10-11 1998-07-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control apparatus for variable displacement compressor
EP1384889A2 (en) * 1994-10-11 2004-01-28 Kabushiki Kaisha Toyota Jidoshokki Control apparatus for variable displacement compressor
EP0707182A3 (en) * 1994-10-11 1998-06-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control apparatus for variable displacement compressor
EP1384889A3 (en) * 1994-10-11 2005-01-12 Kabushiki Kaisha Toyota Jidoshokki Control apparatus for variable displacement compressor
US5762476A (en) * 1994-11-11 1998-06-09 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity single-headed piston refrigement compressor
EP0711918A3 (en) * 1994-11-11 1998-02-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable capacity type refrigerant compressor
US5636973A (en) * 1994-12-07 1997-06-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Crank chamber pressure controlled swash plate compressor with suction passage opening delay during initial load condition
EP0716228A1 (en) 1994-12-07 1996-06-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5616008A (en) * 1995-03-30 1997-04-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
US5807076A (en) * 1995-04-07 1998-09-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Lubrication method and lubrication controlling apparatus for clutchless compressor
US5893706A (en) * 1995-04-07 1999-04-13 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Cooling structure for compressor
US6065943A (en) * 1995-04-18 2000-05-23 Denso Corporation Refrigerant compressor having improved drive power transmission unit
US5865604A (en) * 1995-06-13 1999-02-02 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Displacement controlling structure for clutchless variable displacement compressor
US5842834A (en) * 1995-08-21 1998-12-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type compressor employing single-headed pistons
US5871337A (en) * 1995-10-26 1999-02-16 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash-plate compressor with leakage passages through the discharge valves of the cylinders
CN1083057C (en) * 1996-03-19 2002-04-17 株式会社丰田自动织机制作所 Lubricating structure for compressor
US5915928A (en) * 1996-03-19 1999-06-29 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Compressor having a swash plate with a lubrication hole
EP0798461A2 (en) * 1996-03-29 1997-10-01 Sanden Corporation Refrigerant circuit with fluid flow control mechanism
EP0798461A3 (en) * 1996-03-29 1998-10-21 Sanden Corporation Refrigerant circuit with fluid flow control mechanism
US6126405A (en) * 1996-06-17 2000-10-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Undulating current supplying means for the solenoid of a displacement control valve in a variable displacement compressor
US6010312A (en) * 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
EP0857874A1 (en) * 1997-02-06 1998-08-12 Sanden Corporation Compressor
EP0953765A3 (en) * 1998-04-13 2000-05-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement type swash plate compressor and displacement control valve
US6244159B1 (en) 1998-04-13 2001-06-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement type swash plate compressor and displacement control valve
EP1036940A3 (en) * 1999-03-18 2001-01-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
EP1039130A3 (en) * 1999-03-26 2001-03-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
US6517321B1 (en) 1999-03-26 2003-02-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement compressor
US6481976B2 (en) * 1999-12-09 2002-11-19 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve and variable capacity type compressor having control valve
US6520751B2 (en) * 2000-04-04 2003-02-18 Sanden Corporation Variable displacement compressor having a noise reducing valve assembly
EP1182348A3 (en) * 2000-08-25 2003-07-30 Delphi Technologies, Inc. Clutchless compressor control valve with integral by pass feature
US6688853B1 (en) 2001-01-08 2004-02-10 Honeywell International Inc. Control valve for regulating flow between two chambers relative to another chamber
US20030156951A1 (en) * 2002-02-15 2003-08-21 Hirokazu Kamiya Compressor
US6957950B2 (en) * 2002-02-15 2005-10-25 Denso Corporation Compressor with compact screw connected housing and adjustable mounting means
US20060140785A1 (en) * 2003-03-28 2006-06-29 Satoshi Watanabe Reciprocating compressor
US7607897B2 (en) * 2003-03-28 2009-10-27 Valeo Thermal Systems Japan Corporation Reciprocating compressor
US20060067837A1 (en) * 2004-09-27 2006-03-30 Denso Corporation Vehicle air conditioner in which shaft seal is protected

Similar Documents

Publication Publication Date Title
US5173032A (en) Non-clutch compressor
US6558133B2 (en) Variable displacement compressor
EP1167762B1 (en) Lubrication system for swash plate compressor
US6149397A (en) Pressure pulsations reducing compressor
US6230507B1 (en) Hybrid compressor and control method
JP2555026B2 (en) Variable capacity compressor
US5586870A (en) Bearing structure used in a compressor
US6149398A (en) Variable capacity piston- operated refrigerant compressor with an oil separating means
JPH10325393A (en) Variable displacement swash plate type clutchless compressor
US6742439B2 (en) Variable displacement compressor
EP1122428A2 (en) Piston type compressor and compressor assembly method
KR940011712B1 (en) Clutchless compressor
US6283722B1 (en) Variable displacement type compressor
US6508634B2 (en) Compressor utilizing spaces between cylinder bores
US6250891B1 (en) Variable displacement compressor having displacement controller
KR100212769B1 (en) Variable volume capacity typed compressor
US6203284B1 (en) Valve arrangement at the discharge chamber of a variable displacement compressor
US6659733B1 (en) Variable displacement compressor
EP1001171A2 (en) Variable displacement compressor
US5713725A (en) Clutchless piston type variable displacement compressor
US5299918A (en) Bearing for compressor drive shaft
KR100326199B1 (en) Power train
JP2567549Y2 (en) Variable capacity swash plate compressor
JP2000265948A (en) Variable capacity compressor
JPH0519586Y2 (en)

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12