US5115761A - Light curing apparatus for a continuous linear product - Google Patents
Light curing apparatus for a continuous linear product Download PDFInfo
- Publication number
- US5115761A US5115761A US07/594,346 US59434690A US5115761A US 5115761 A US5115761 A US 5115761A US 59434690 A US59434690 A US 59434690A US 5115761 A US5115761 A US 5115761A
- Authority
- US
- United States
- Prior art keywords
- end cap
- light
- chamber member
- chamber
- curing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920005989 resin Polymers 0.000 claims abstract description 7
- 239000011347 resin Substances 0.000 claims abstract description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000000873 masking effect Effects 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 13
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 6
- 239000004840 adhesive resin Substances 0.000 abstract description 3
- 229920006223 adhesive resin Polymers 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 229910001873 dinitrogen Inorganic materials 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000001723 curing Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C9/00—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
- B05C9/08—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
- B05C9/14—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
- B05D3/061—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/10—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/12—General methods of coating; Devices therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B13/00—Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
- F26B13/001—Drying and oxidising yarns, ribbons or the like
- F26B13/002—Drying coated, e.g. enamelled, varnished, wires
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/28—Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
- F26B3/283—Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0827—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S118/00—Coating apparatus
- Y10S118/22—Wire and cord miscellaneous
Definitions
- This invention relates to an apparatus suitable for the continuous light curing of an elongated string-like linear product.
- Light curable resins are effective adhesive substances which can be cured with ultraviolet light in a relatively short instant. These resins contain light reactive photoinitiators which interact directly with the intense ultraviolet light energy to induce its polymerization. However, due to the continuousness of the string-like material it has been problematic to apply the resin onto the string-like material and to cure it with the ultraviolet light.
- FIG. 1 is a perspective view of the light curing apparatus according to the present invention.
- FIG. 2 is a section view thereof along line II--II in FIG. 1.
- FIG. 3 is a section view thereof along line III--III in FIG. 1.
- FIG. 4 is a schematic diagram showing the parameters of the formula governing the positioning of the product within the curing chamber.
- the preferred embodiment of the curing apparatus 10 includes a chamber 11 which is preferably cylindrical in shape having a light reflective inner surface 12.
- the cylindrical chamber 11 may be conveniently made of metal with a polished inner side wall to provide the necessary reflective surface.
- a tubular light guide holder 13 is mounted at the centre of the circumferential side wall 14 of the cylindrical chamber 11.
- a light guide 15 may be inserted into the cylindrical chamber 11 through a cylindrical port 16 of the light guide holder 13.
- the light guide 15 is a flexible tubular optical fibre device commonly referred to as a light wand which can be coupled to a light source (not shown) for conducting either an ultraviolet or visible light into the cylindrical chamber 11.
- the light guide 15 may eb securedly mounted in place by a set screw 17 provided at the side of the light guide holder 13.
- a set screw 17 provided at the side of the light guide holder 13.
- One end of the cylindrical chamber 11 intended to be the entrance end is covered by a removable entrance end cap 18, and the other end intended to be the exit end is covered by a similar removable exit end cap 19.
- Transverse slots 20 and 21 are respectively formed on the end caps 18 and 19. These slots 20 and 21 are formed in a diametrical, manner and preferably vertically across the centre of the end caps 18 and 19 respectively.
- the continuous string-like product 22 such as a wire having light curable adhesive resin coated thereon is passed through the cylindrical chamber 11 from the slot 20 at the entrance end cap 18 to the slot 21 at the exit end cap 19.
- Masking plates 23 and 24 are respectively mounted on the end caps 18 and 19 by two bolts 25 and 26 extending through the slots 27 and 28 formed in the masking plates 23 and 24, such that the masking plates 23 and 24 may be slidably adjusted to secure at any selected position between an uppermost position in which the bottom edge of the elongated slot abuts the lower bolt 26, and in a lowermost position in which the upper edge of the elongated slot abuts the upper bolt 25.
- a shallow slot 29 is formed in the inner edge of the masking plates 23 and 24. The inner edge is located adjacent to the longitudinal axis of the cylindrical chamber 11.
- the shallow slot 29 is in registry with the elongated slots in the end caps, and it is located over the uppermost end portion of the elongated slots when the masking plates are positioned at the lowermost position and it is located over the lowermost end portion of the elongated slots when the masking plates are located at the uppermost position.
- the shallow slot 29 in the masking plates 23 and 24 may thus be mounted in a selected position for guiding the string-like product 22 through the cylindrical chamber 11, so as to position the product 22 at a predetermined position relative to the tip 30 of the light guide 15 within the cylindrical chamber 11.
- a curing gas inlet fitting 31 is provided at the entrance end cap 18 and an exhaust fitting 32 is provided at the exit end cap 19. Augmenting gas such as nitrogen may be admitted into the chamber 11 through the inlet fitting 31 and released from the chamber 11 through the exhaust fitting 32 for enhancing the light curing process of the product 22 within the cylindrical chamber 11.
- the product 22 passes through the cylindrical chamber 11, it is exposed to the light conducted into the chamber through the light guide 15.
- the light within the chamber 11 is reflected from the reflective inner surface 12 to concentrate on the product 22, thus exposing the product 22 to the optimum curing light intensity within the chamber 11 so as to produce the fastest possible cure of the curable resin coated thereon.
- the distance of the target, i.e. the product 22 with respect to the longitudinal axis of the chamber 11 may be adjusted depending upon the size of the target i.e. the diameter of the wire.
- the incursion of the tip 30 of the light guide 15 into the chamber 11 may likewise be adjusted according to the following formulas to provide the optimum curing rate:
- D" is the distance between the axis of the chamber and the target
- D' is the incursion of the tip of the light guide into the chamber 11;
- m is the ratio between the target thickness (i.e. wire diameter) and the diameter of the light guide 15;
- D is the inner diameter of the chamber 11.
- the length and diameter of the chamber are depending upon the particular application. It can be appreciated by those skilled in the art that additional light guide holders my be provided over the circumference of the chamber 11 in order that additional light guides may be adapted to conduct more ultraviolet light energy into the chamber 11 so as to enhance the speed of curing of the target 22. These additional light guides may be provided at various selected positions over the circumstances of the chamber 11. In this manner, the apparatus according to the present invention may be used for linear products of various thicknesses and it also provides greater flexibility to locate the product 22 at a wider choice of positions parallel to the longitudinal axis of the chamber 11 to be exposed to the maximum irradiances. Furthermore, finite length of target or thick target having a thickness even larger than the diameter of the light guides may be cured directly within the chamber 11. Morever, several such chambers may be placed in tandem for providing repeated curing of the target and/or to provide curing of selected hemisphere of the target in each chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Coating Apparatus (AREA)
Abstract
Description
D"=[(1-m)/4]×D
D'=[(3×m-1)/(4×m)]×D
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/594,346 US5115761A (en) | 1990-10-09 | 1990-10-09 | Light curing apparatus for a continuous linear product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/594,346 US5115761A (en) | 1990-10-09 | 1990-10-09 | Light curing apparatus for a continuous linear product |
Publications (1)
Publication Number | Publication Date |
---|---|
US5115761A true US5115761A (en) | 1992-05-26 |
Family
ID=24378510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/594,346 Expired - Fee Related US5115761A (en) | 1990-10-09 | 1990-10-09 | Light curing apparatus for a continuous linear product |
Country Status (1)
Country | Link |
---|---|
US (1) | US5115761A (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595620A (en) * | 1993-03-31 | 1997-01-21 | Casio Computer Co., Ltd. | Apparatus and method for manufacturing polymer dispersion type liquid crystal display device |
US6200134B1 (en) | 1998-01-20 | 2001-03-13 | Kerr Corporation | Apparatus and method for curing materials with radiation |
US6331111B1 (en) | 1999-09-24 | 2001-12-18 | Cao Group, Inc. | Curing light system useful for curing light activated composite materials |
US20020163317A1 (en) * | 1999-09-24 | 2002-11-07 | Densen Cao | Curing light |
US20020167283A1 (en) * | 1999-09-24 | 2002-11-14 | Densen Cao | Curing light |
US20020168603A1 (en) * | 1999-09-24 | 2002-11-14 | Cao Group, Inc. | Dental curing light |
US20020177096A1 (en) * | 1999-09-24 | 2002-11-28 | Densen Cao | Method for curing light-curable materials |
US20020182561A1 (en) * | 1999-09-24 | 2002-12-05 | Densen Cao | Curing light |
US6562176B2 (en) * | 1999-07-08 | 2003-05-13 | International Business Machines Corporation | Concentrated UV light curing of adhesive for pivot applications |
US20030142413A1 (en) * | 2002-01-11 | 2003-07-31 | Ultradent Products, Inc. | Cone-shaped lens having increased forward light intensity and kits incorporating such lenses |
US20030148242A1 (en) * | 2002-02-05 | 2003-08-07 | Fischer Dan E. | Lightweight hand held dental curing device |
US20030215766A1 (en) * | 2002-01-11 | 2003-11-20 | Ultradent Products, Inc. | Light emitting systems and kits that include a light emitting device and one or more removable lenses |
US6655433B1 (en) * | 1999-11-30 | 2003-12-02 | Nippon Telegraph And Telephone Corporation | Optical fiber ribbonizing apparatus |
US20040026023A1 (en) * | 2002-08-07 | 2004-02-12 | The Penn State Research Foundation | System and method for bonding and debonding a workpiece to a manufacturing fixture |
US6702576B2 (en) | 2002-02-22 | 2004-03-09 | Ultradent Products, Inc. | Light-curing device with detachably interconnecting light applicator |
US6719559B2 (en) | 1999-09-24 | 2004-04-13 | Densen Cao | Curing light |
US6719558B2 (en) | 1999-09-24 | 2004-04-13 | Densen Cao | Curing light |
US20040101802A1 (en) * | 2002-11-21 | 2004-05-27 | Scott Robert R. | Wide bandwidth led curing light |
US20040121280A1 (en) * | 2002-12-18 | 2004-06-24 | Fischer Dan E. | Light curing device with detachable power supply |
US6780010B2 (en) | 1999-09-24 | 2004-08-24 | Cao Group, Inc. | Curing light |
US6783362B2 (en) | 1999-09-24 | 2004-08-31 | Cao Group, Inc. | Dental curing light using primary and secondary heat sink combination |
US20040214131A1 (en) * | 2003-04-25 | 2004-10-28 | Ultradent Products, Inc., | Spot curing lens used to spot cure a dental appliance adhesive and systems and methods employing such lenses |
US20050042570A1 (en) * | 2003-08-20 | 2005-02-24 | Fischer Dan E. | Dental curing light adapted to emit light at a desired angle |
US6890175B2 (en) | 2002-12-18 | 2005-05-10 | Ultradent Products, Inc. | Cooling system for hand-held curing light |
US6910886B2 (en) | 1999-09-24 | 2005-06-28 | Cao Group, Inc. | Curing light |
US20050142514A1 (en) * | 2003-12-30 | 2005-06-30 | Scott Robert R. | Dental curing device having a heat sink for dissipating heat |
US6926524B2 (en) | 1999-09-24 | 2005-08-09 | Cao Group, Inc. | Curing light |
US6929472B2 (en) | 1999-09-24 | 2005-08-16 | Cao Group, Inc. | Curing light |
US20050221250A1 (en) * | 2004-03-30 | 2005-10-06 | John Kanca | Ball lens for use with a dental curing light |
US20050231983A1 (en) * | 2002-08-23 | 2005-10-20 | Dahm Jonathan S | Method and apparatus for using light emitting diodes |
US6979193B2 (en) | 1999-09-24 | 2005-12-27 | Cao Group, Inc. | Curing light |
US6981867B2 (en) | 1999-09-24 | 2006-01-03 | Cao Group, Inc. | Curing light |
US6988890B2 (en) | 1999-09-24 | 2006-01-24 | Cao Group, Inc. | Curing light |
US20060088797A1 (en) * | 2004-10-26 | 2006-04-27 | Scott Robert R | Heat sink for dental curing light comprising a plurality of different materials |
US20060139722A1 (en) * | 2004-12-23 | 2006-06-29 | Roy Kayser | Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith |
US7077648B2 (en) | 1999-09-24 | 2006-07-18 | Cao Group, Inc. | Curing light |
US7086858B2 (en) | 1999-09-24 | 2006-08-08 | Cao Group, Inc. | Semiconductor curing light system useful for curing light activated composite materials |
US7094054B2 (en) | 1999-09-24 | 2006-08-22 | Cao Group, Inc. | Dental curing light |
US7106523B2 (en) | 2002-01-11 | 2006-09-12 | Ultradent Products, Inc. | Optical lens used to focus led light |
US20060269897A1 (en) * | 2005-05-27 | 2006-11-30 | Gill Owen J | Curing light instrument |
US7144250B2 (en) | 2003-12-17 | 2006-12-05 | Ultradent Products, Inc. | Rechargeable dental curing light |
US20070020578A1 (en) * | 2005-07-19 | 2007-01-25 | Scott Robert R | Dental curing light having a short wavelength LED and a fluorescing lens for converting wavelength light to curing wavelengths and related method |
US20070037113A1 (en) * | 2005-08-10 | 2007-02-15 | Scott Robert R | Dental curing light including a light integrator for providing substantially equal distribution of each emitted wavelength |
US7182597B2 (en) | 2002-08-08 | 2007-02-27 | Kerr Corporation | Curing light instrument |
US20070128577A1 (en) * | 2005-12-05 | 2007-06-07 | Ultradent Products, Inc. | Dental curing lights including a capacitor power source |
US20070221328A1 (en) * | 2006-03-27 | 2007-09-27 | Demeter Edward C | Fixture and method of holding and debonding a workpiece with the fixture |
US7294364B2 (en) | 1999-09-24 | 2007-11-13 | Cao Group, Inc. | Method for curing composite materials |
US7320593B2 (en) | 2000-03-08 | 2008-01-22 | Tir Systems Ltd. | Light emitting diode light source for curing dental composites |
US20080197300A1 (en) * | 2004-12-23 | 2008-08-21 | Roy Kayser | Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith |
US20080205062A1 (en) * | 2006-09-01 | 2008-08-28 | Dahm Jonathan S | Multiple light-emitting element heat pipe assembly |
US20080273329A1 (en) * | 2004-06-15 | 2008-11-06 | Belek Ronald E | High Power Led Electro-Optic Assembly |
US20080272521A1 (en) * | 2007-05-04 | 2008-11-06 | Branson Ultransonics Corporation | Infrared plastic welding with recircualtion of unabsorbed infrared laser light to increase absorption of infrared laser light |
US20090057697A1 (en) * | 2004-10-28 | 2009-03-05 | Henkel Corporation | Led assembly with led-reflector interconnect |
US20090218325A1 (en) * | 2006-04-06 | 2009-09-03 | Thomas Kreischer | Transmission Laser Welding Method for Connecting Shaped Plastic Bodies |
US7645056B1 (en) | 1997-09-25 | 2010-01-12 | Koninklijke Philips Electronics N V | Optical irradiation device having LED and heat pipe |
CN101642751B (en) * | 2008-08-04 | 2012-12-19 | 鸿富锦精密工业(深圳)有限公司 | Ultraviolet irradiation device |
US9066777B2 (en) | 2009-04-02 | 2015-06-30 | Kerr Corporation | Curing light device |
US9072572B2 (en) | 2009-04-02 | 2015-07-07 | Kerr Corporation | Dental light device |
US9726435B2 (en) | 2002-07-25 | 2017-08-08 | Jonathan S. Dahm | Method and apparatus for using light emitting diodes for curing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4594266A (en) * | 1983-07-14 | 1986-06-10 | Cockerill Sambre S.A. | Process and an apparatus for baking an organic coating which has been applied to a substrate |
-
1990
- 1990-10-09 US US07/594,346 patent/US5115761A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4594266A (en) * | 1983-07-14 | 1986-06-10 | Cockerill Sambre S.A. | Process and an apparatus for baking an organic coating which has been applied to a substrate |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595620A (en) * | 1993-03-31 | 1997-01-21 | Casio Computer Co., Ltd. | Apparatus and method for manufacturing polymer dispersion type liquid crystal display device |
US20100073957A1 (en) * | 1997-09-25 | 2010-03-25 | Koninklijke Philips Electronics N V | Optical irradiation device |
US8096691B2 (en) | 1997-09-25 | 2012-01-17 | Koninklijke Philips Electronics N V | Optical irradiation device |
US7645056B1 (en) | 1997-09-25 | 2010-01-12 | Koninklijke Philips Electronics N V | Optical irradiation device having LED and heat pipe |
US7066733B2 (en) | 1998-01-20 | 2006-06-27 | Kerr Corporation | Apparatus and method for curing materials with light radiation |
US7210930B2 (en) | 1998-01-20 | 2007-05-01 | Kerr Corporation | Apparatus and method for curing materials with radiation |
US6692251B1 (en) | 1998-01-20 | 2004-02-17 | Kerr Corporation | Apparatus and method for curing materials with light radiation |
US8568140B2 (en) | 1998-01-20 | 2013-10-29 | Jozef Kovac | Apparatus and method for curing materials with radiation |
US9572643B2 (en) | 1998-01-20 | 2017-02-21 | Kerr Corporation | Apparatus and method for curing materials with radiation |
US20070231769A1 (en) * | 1998-01-20 | 2007-10-04 | Jozef Kovac | Apparatus and method for curing materials with radiation |
US9622839B2 (en) | 1998-01-20 | 2017-04-18 | Kerr Corporation | Apparatus and method for curing materials with radiation |
US20050003322A1 (en) * | 1998-01-20 | 2005-01-06 | Kerr Corporation | Apparatus and method for curing materials with light radiation |
US6200134B1 (en) | 1998-01-20 | 2001-03-13 | Kerr Corporation | Apparatus and method for curing materials with radiation |
US20040043351A1 (en) * | 1998-01-20 | 2004-03-04 | Kerr Corporation | Apparatus and method for curing materials with radiation |
US6562176B2 (en) * | 1999-07-08 | 2003-05-13 | International Business Machines Corporation | Concentrated UV light curing of adhesive for pivot applications |
US6932600B2 (en) | 1999-09-24 | 2005-08-23 | Cao Group, Inc. | Curing light |
US6988890B2 (en) | 1999-09-24 | 2006-01-24 | Cao Group, Inc. | Curing light |
US7294364B2 (en) | 1999-09-24 | 2007-11-13 | Cao Group, Inc. | Method for curing composite materials |
US6719559B2 (en) | 1999-09-24 | 2004-04-13 | Densen Cao | Curing light |
US6719558B2 (en) | 1999-09-24 | 2004-04-13 | Densen Cao | Curing light |
US6331111B1 (en) | 1999-09-24 | 2001-12-18 | Cao Group, Inc. | Curing light system useful for curing light activated composite materials |
US20020163317A1 (en) * | 1999-09-24 | 2002-11-07 | Densen Cao | Curing light |
US6780010B2 (en) | 1999-09-24 | 2004-08-24 | Cao Group, Inc. | Curing light |
US6783362B2 (en) | 1999-09-24 | 2004-08-31 | Cao Group, Inc. | Dental curing light using primary and secondary heat sink combination |
US20020167283A1 (en) * | 1999-09-24 | 2002-11-14 | Densen Cao | Curing light |
US7094054B2 (en) | 1999-09-24 | 2006-08-22 | Cao Group, Inc. | Dental curing light |
US7086858B2 (en) | 1999-09-24 | 2006-08-08 | Cao Group, Inc. | Semiconductor curing light system useful for curing light activated composite materials |
US7077648B2 (en) | 1999-09-24 | 2006-07-18 | Cao Group, Inc. | Curing light |
US6910886B2 (en) | 1999-09-24 | 2005-06-28 | Cao Group, Inc. | Curing light |
US20030151376A9 (en) * | 1999-09-24 | 2003-08-14 | Densen Cao | Curing light |
US6926524B2 (en) | 1999-09-24 | 2005-08-09 | Cao Group, Inc. | Curing light |
US6929472B2 (en) | 1999-09-24 | 2005-08-16 | Cao Group, Inc. | Curing light |
US20020168603A1 (en) * | 1999-09-24 | 2002-11-14 | Cao Group, Inc. | Dental curing light |
US20020177096A1 (en) * | 1999-09-24 | 2002-11-28 | Densen Cao | Method for curing light-curable materials |
US7066732B2 (en) | 1999-09-24 | 2006-06-27 | Cao Group, Inc. | Method for curing light-curable materials |
US20020182561A1 (en) * | 1999-09-24 | 2002-12-05 | Densen Cao | Curing light |
US6971875B2 (en) | 1999-09-24 | 2005-12-06 | Cao Group, Inc. | Dental curing light |
US6974319B2 (en) | 1999-09-24 | 2005-12-13 | Cao Group, Inc. | Curing light |
US6979193B2 (en) | 1999-09-24 | 2005-12-27 | Cao Group, Inc. | Curing light |
US6981867B2 (en) | 1999-09-24 | 2006-01-03 | Cao Group, Inc. | Curing light |
US6988891B2 (en) | 1999-09-24 | 2006-01-24 | Cao Group, Inc. | Curing light |
US6655433B1 (en) * | 1999-11-30 | 2003-12-02 | Nippon Telegraph And Telephone Corporation | Optical fiber ribbonizing apparatus |
US7320593B2 (en) | 2000-03-08 | 2008-01-22 | Tir Systems Ltd. | Light emitting diode light source for curing dental composites |
US20030215766A1 (en) * | 2002-01-11 | 2003-11-20 | Ultradent Products, Inc. | Light emitting systems and kits that include a light emitting device and one or more removable lenses |
US20030142413A1 (en) * | 2002-01-11 | 2003-07-31 | Ultradent Products, Inc. | Cone-shaped lens having increased forward light intensity and kits incorporating such lenses |
US6940659B2 (en) | 2002-01-11 | 2005-09-06 | Ultradent Products, Inc. | Cone-shaped lens having increased forward light intensity and kits incorporating such lenses |
US7106523B2 (en) | 2002-01-11 | 2006-09-12 | Ultradent Products, Inc. | Optical lens used to focus led light |
US20030148242A1 (en) * | 2002-02-05 | 2003-08-07 | Fischer Dan E. | Lightweight hand held dental curing device |
US6702576B2 (en) | 2002-02-22 | 2004-03-09 | Ultradent Products, Inc. | Light-curing device with detachably interconnecting light applicator |
US9726435B2 (en) | 2002-07-25 | 2017-08-08 | Jonathan S. Dahm | Method and apparatus for using light emitting diodes for curing |
US7172676B2 (en) * | 2002-08-07 | 2007-02-06 | The Penn State Research Corporation | System and method for bonding and debonding a workpiece to a manufacturing fixture |
US20040026023A1 (en) * | 2002-08-07 | 2004-02-12 | The Penn State Research Foundation | System and method for bonding and debonding a workpiece to a manufacturing fixture |
US20080011416A1 (en) * | 2002-08-07 | 2008-01-17 | Demeter Edward C | Method for bonding and debonding a workpiece to a manufacturing fixture |
US8231383B2 (en) | 2002-08-08 | 2012-07-31 | Kerr Corporation | Curing light instrument |
US20070134616A1 (en) * | 2002-08-08 | 2007-06-14 | Owen Gill | Curing Light Instrument |
US7182597B2 (en) | 2002-08-08 | 2007-02-27 | Kerr Corporation | Curing light instrument |
US20100219736A1 (en) * | 2002-08-23 | 2010-09-02 | Dahm Jonathan S | Method and apparatus for using light emitting diodes |
US20050231983A1 (en) * | 2002-08-23 | 2005-10-20 | Dahm Jonathan S | Method and apparatus for using light emitting diodes |
US7345320B2 (en) | 2002-08-23 | 2008-03-18 | Dahm Jonathan S | Light emitting apparatus |
US7989839B2 (en) | 2002-08-23 | 2011-08-02 | Koninklijke Philips Electronics, N.V. | Method and apparatus for using light emitting diodes |
US20040101802A1 (en) * | 2002-11-21 | 2004-05-27 | Scott Robert R. | Wide bandwidth led curing light |
US6890175B2 (en) | 2002-12-18 | 2005-05-10 | Ultradent Products, Inc. | Cooling system for hand-held curing light |
US6994546B2 (en) | 2002-12-18 | 2006-02-07 | Ultradent Products, Inc. | Light curing device with detachable power supply |
US20040121280A1 (en) * | 2002-12-18 | 2004-06-24 | Fischer Dan E. | Light curing device with detachable power supply |
US20040214131A1 (en) * | 2003-04-25 | 2004-10-28 | Ultradent Products, Inc., | Spot curing lens used to spot cure a dental appliance adhesive and systems and methods employing such lenses |
US20050042570A1 (en) * | 2003-08-20 | 2005-02-24 | Fischer Dan E. | Dental curing light adapted to emit light at a desired angle |
US7192276B2 (en) | 2003-08-20 | 2007-03-20 | Ultradent Products, Inc. | Dental curing light adapted to emit light at a desired angle |
US7144250B2 (en) | 2003-12-17 | 2006-12-05 | Ultradent Products, Inc. | Rechargeable dental curing light |
US7195482B2 (en) | 2003-12-30 | 2007-03-27 | Ultradent Products, Inc. | Dental curing device having a heat sink for dissipating heat |
US20050142514A1 (en) * | 2003-12-30 | 2005-06-30 | Scott Robert R. | Dental curing device having a heat sink for dissipating heat |
US20050221250A1 (en) * | 2004-03-30 | 2005-10-06 | John Kanca | Ball lens for use with a dental curing light |
US7074040B2 (en) | 2004-03-30 | 2006-07-11 | Ultradent Products, Inc. | Ball lens for use with a dental curing light |
US7540634B2 (en) | 2004-06-15 | 2009-06-02 | Henkel Corporation | High power LED electro-optic assembly |
US20080273329A1 (en) * | 2004-06-15 | 2008-11-06 | Belek Ronald E | High Power Led Electro-Optic Assembly |
US20060088797A1 (en) * | 2004-10-26 | 2006-04-27 | Scott Robert R | Heat sink for dental curing light comprising a plurality of different materials |
US7056116B2 (en) | 2004-10-26 | 2006-06-06 | Ultradent Products, Inc. | Heat sink for dental curing light comprising a plurality of different materials |
US20090057697A1 (en) * | 2004-10-28 | 2009-03-05 | Henkel Corporation | Led assembly with led-reflector interconnect |
US7835057B2 (en) | 2004-12-23 | 2010-11-16 | Exfo Photonic Solutions Inc. | Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith |
US7335901B2 (en) | 2004-12-23 | 2008-02-26 | Exfo Photonic Solutions Inc. | Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith |
US20060139722A1 (en) * | 2004-12-23 | 2006-06-29 | Roy Kayser | Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith |
US20080197300A1 (en) * | 2004-12-23 | 2008-08-21 | Roy Kayser | Method of calibrating light delivery systems, light delivery systems and radiometer for use therewith |
US8113830B2 (en) | 2005-05-27 | 2012-02-14 | Kerr Corporation | Curing light instrument |
US20060269897A1 (en) * | 2005-05-27 | 2006-11-30 | Gill Owen J | Curing light instrument |
US20070020578A1 (en) * | 2005-07-19 | 2007-01-25 | Scott Robert R | Dental curing light having a short wavelength LED and a fluorescing lens for converting wavelength light to curing wavelengths and related method |
US20070037113A1 (en) * | 2005-08-10 | 2007-02-15 | Scott Robert R | Dental curing light including a light integrator for providing substantially equal distribution of each emitted wavelength |
US20070128577A1 (en) * | 2005-12-05 | 2007-06-07 | Ultradent Products, Inc. | Dental curing lights including a capacitor power source |
US7524390B2 (en) | 2006-03-27 | 2009-04-28 | The Penn State Research Foundation | Fixture and method of holding and debonding a workpiece with the fixture |
US20070221328A1 (en) * | 2006-03-27 | 2007-09-27 | Demeter Edward C | Fixture and method of holding and debonding a workpiece with the fixture |
US20090218325A1 (en) * | 2006-04-06 | 2009-09-03 | Thomas Kreischer | Transmission Laser Welding Method for Connecting Shaped Plastic Bodies |
US8778120B2 (en) * | 2006-04-06 | 2014-07-15 | Fresenius Medical Care Deutschland Gmbh | Transmission laser welding method for connecting shaped plastic bodies |
US20080205062A1 (en) * | 2006-09-01 | 2008-08-28 | Dahm Jonathan S | Multiple light-emitting element heat pipe assembly |
US8047686B2 (en) | 2006-09-01 | 2011-11-01 | Dahm Jonathan S | Multiple light-emitting element heat pipe assembly |
US8100161B2 (en) * | 2007-05-04 | 2012-01-24 | Branson Ultrasonics Corporation | Infrared plastic welding with recirculation of unabsorbed infrared laser light to increase absorption of infrared laser light |
US8343299B2 (en) * | 2007-05-04 | 2013-01-01 | Branson Ultrasonics Corporation | Infrared plastic welding with recirculation of unabsorbed infrared laser light to increase absorption of infrared laser light |
US20080272521A1 (en) * | 2007-05-04 | 2008-11-06 | Branson Ultransonics Corporation | Infrared plastic welding with recircualtion of unabsorbed infrared laser light to increase absorption of infrared laser light |
US20120085491A1 (en) * | 2007-05-04 | 2012-04-12 | Branson Ultrasonics Corporation | Infrared Plastic Welding With Recirculation Of Unabsorbed Infrared Laser Light To Increase Absorption Of Infared Laser Light |
CN101642751B (en) * | 2008-08-04 | 2012-12-19 | 鸿富锦精密工业(深圳)有限公司 | Ultraviolet irradiation device |
US9066777B2 (en) | 2009-04-02 | 2015-06-30 | Kerr Corporation | Curing light device |
US9072572B2 (en) | 2009-04-02 | 2015-07-07 | Kerr Corporation | Dental light device |
US9693846B2 (en) | 2009-04-02 | 2017-07-04 | Kerr Corporation | Dental light device |
US9730778B2 (en) | 2009-04-02 | 2017-08-15 | Kerr Corporation | Curing light device |
US9987110B2 (en) | 2009-04-02 | 2018-06-05 | Kerr Corporation | Dental light device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5115761A (en) | Light curing apparatus for a continuous linear product | |
EP1386893B1 (en) | Method for UV-curing a coated fiber | |
DE69817340D1 (en) | DEVICE FOR GENERATING CONTROLLED RADIATION FOR CURING A LIGHT-SENSITIVE RESIN | |
SE8008877L (en) | METHOD AND DEVICE FOR COMPLETELY AUTOMATIC PAINTING OF TAPE MATERIAL | |
US20180326779A1 (en) | Method for lacquering pencils, and lacquering apparatus | |
EP0834351B1 (en) | Process and apparatus for coating elongate objects | |
BR9605444B1 (en) | process for depositing and fixing a thin metal wire on the surface of the thermoplastic film of a laminated pane, and apparatus for carrying out the process. | |
CA2026784C (en) | Light curing apparatus for a continuous linear product | |
OA08931A (en) | Control means of the cutting blade for an apparatus for the simultaneous distribution and cutting of coiled material strips. | |
US6078713A (en) | Beam delivery system for curing of photo initiated inks | |
EP3370969B1 (en) | Device for the polymerization of inks and/or paints in an inert atmosphere | |
US5851288A (en) | Apparatus for marking a continuous substrate | |
SE8204423L (en) | FIBER WINDING METHOD AND DEVICE | |
US7022382B1 (en) | UV-cure of coatings for an optical fiber with a laser | |
JP2003535806A (en) | UV curing of optical fiber coatings using lasers | |
JPH0572339B2 (en) | ||
US6419743B1 (en) | Apparatus and method for passing multiple fibers through a small zone of high intensity radiant energy | |
US5658382A (en) | Arrangement for painting an extended object continuously in its longitudinal direction | |
CN114405750B (en) | Preparation process of non-silicon pressure-sensitive adhesive tape | |
JPH02145460A (en) | Optical fiber coating method | |
KR910003211B1 (en) | Method of forming a colored coating film on a cross-linked polyethylene sheet or electric wire | |
JPH09278495A (en) | Method for executing high-speed film formation and curing of optical fiber | |
SU1269737A3 (en) | Method for colour marking of light guides | |
JP2886224B2 (en) | Compound optical element manufacturing equipment | |
SU1419744A1 (en) | Apparatus for applying coatings on web material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EFOS INC., A COMPANY OF THE PROVINCE OF ONTARIO, C Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HOOD, RANDY;REEL/FRAME:005486/0632 Effective date: 19900924 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20040526 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |