US5032058A - Calibrated fluid injection system - Google Patents

Calibrated fluid injection system Download PDF

Info

Publication number
US5032058A
US5032058A US07/424,808 US42480889A US5032058A US 5032058 A US5032058 A US 5032058A US 42480889 A US42480889 A US 42480889A US 5032058 A US5032058 A US 5032058A
Authority
US
United States
Prior art keywords
adjustable
marker
injection pump
gauge
restriction device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/424,808
Inventor
James F. Williams
Wilfred D. Pascual
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Williams Instruments Inc
Original Assignee
Williams Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Williams Instruments Inc filed Critical Williams Instruments Inc
Priority to US07/424,808 priority Critical patent/US5032058A/en
Assigned to WILLIAMS INSTRUMENT COMPANY, INC., A CORP. OF CA reassignment WILLIAMS INSTRUMENT COMPANY, INC., A CORP. OF CA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PASCUAL, WILFRED D., WILLIAMS, JAMES F.
Priority to CA002027222A priority patent/CA2027222A1/en
Application granted granted Critical
Publication of US5032058A publication Critical patent/US5032058A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/008Control of flow ratio involving a fluid operating a pump motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/02Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
    • G01F11/021Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the piston type
    • G01F11/023Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the piston type with provision for varying the stroke of the piston
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S33/00Geometrical instruments
    • Y10S33/15Piston position indicator

Definitions

  • the present invention discloses a means for precisely regulating the amount of an additive injected into a pipeline by a fluid injection system.
  • the means disclosed is simple but ingenious.
  • the gauge can be slid up and down the length of the stud, but is generally fastened in one position by use of locking nut 58 and locking nut 59.
  • the gauge is used in conjunction with a marker 62 that is placed between the gauge and the stud.
  • the gauge and marker are slightly separated to avoid displacement of the marker when the gauge is moved.
  • a cover 64 is placed between the marker and the stud.
  • the cover can serve a variety of purposes depending on the type of marker used. For example, the cover can increase the visibility of the marker, facilitate movement of the marker and decrease the likelihood that the marker is damaged when moved. Appropriate positioning of the cover can be achieved by using a heat shrinkable material. Visibility is increased using a white colored cover.
  • the gauge and the marker are used as follows.
  • the stud is screwed fully into the piston chamber.
  • Locking nut 59 is moved into a position immediately adjacent to pump 20 or, alternatively, immediately adjacent to an optional seal 60 that is securely positioned around the stroke adjuster at the location where the stroke adjuster first threads into housing 61.
  • the gauge is then moved into a position immediately adjacent to locking nut 59.
  • the marker 62 is thereafter adjusted to a position that corresponds to the zero indicator 54.

Abstract

A fluid injection system is disclosed. The fluid injection system incorporates an injection pump comprising an adjustable restriction device that is used to control the extent of the movement of the pumping mechanism in the injection pump. An adjustable gauge and an adjustable marker are used to accurately calibrate and accurately position the adjustable restriction device. When the adjustable restriction device is accurately calibrated and correctly positioned, a precise amount of additive is injected into the pipeline.

Description

BACKGROUND OF THE INVENTION
This invention relates to a fluid injection system for injecting additives into a fluid flowing through a pipeline. In particular, this invention relates to an apparatus for accurately calibrating the injection pump used in the fluid injection system.
Injection pumps are used in a variety of applications for injecting additives into pipelines. One industry that extensively uses injection pumps is the gas transmission industry. Transporting pure natural gas is extremely dangerous because the gas is invisible and odorless. Thus, gas leaks are not readily detected by humans. To provide for prompt and effective gas leak detection, odorants are injected into the gas pipelines. Some additional uses for injection pumps include, injecting chlorine into water lines; injecting corrosion and scale inhibitors into petrochemical lines; and injecting coloring agents into food processing lines.
One type of injection pump used for these and other applications is made by Williams Instrument Company, Inc. of Valencia, Calif. 91355. This pump is commonly known by its registered trade name, OSCILLAMATIC. Injection pumps, like the Williams Instrument OSCILLAMATIC pump, generally incorporate a means for regulating the amount of additive injected into the pipeline. The regulation means might comprise an adjustable restriction device that limits the movement of the pumping mechanism. In the case of the Williams Instrument OSCILLAMATIC pump, the pumping mechanism is a plunger connected to a piston. By adjustably restricting the movement of the piston, the stroke length of the plunger is controlled. Adjusting the stroke length of the plunger causes the injection of more or less additive, as desired, into the pipeline. In the Williams Instrument OSCILLAMATIC pump, the adjustable restriction device is a threaded stud screwed into the top of the pump that contacts the top of the piston. By screwing the stud in, the movement of the piston is additionally restricted reducing the stroke length of the pumping plunger, thereby decreasing the amount of fluid injected into the pipeline for each stroke of the pumping plunger. Similarly, screwing the stud out results in an increased plunger stroke length and the injection of more fluid into the pipeline for each stroke of the pumping plunger.
However, heretofore, there was no simple device for accurately calibrating the regulation means to control the precise amount of additive injected into the pipeline. Yet, precision in controlling the amount of additive injected into the pipeline is generally desireable and frequently necessary.
SUMMARY OF THE INVENTION
The present invention discloses a means for precisely regulating the amount of an additive injected into a pipeline by a fluid injection system. The means disclosed is simple but ingenious.
Briefly, the fluid injection system involves the use of an injection pump having an adjustable restriction device that incorporates a moveable and thus adjustable gauge placed over a movable and thus adjustable marker. The gauge and marker are placed over a moveable stroke adjuster and provide for accurate calibration and correct positioning of the stroke adjuster. The stroke adjuster is positioned to limit the movement of the pumping mechanism of the injection pump and thereby controlling the stroke length of the pumping plunger. When the stroke adjuster is accurately calibrated and correctly positioned, the desired amount of an additive is injected into the pipeline.
DESCRIPTION OF THE DRAWINGS
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:
FIG. 1 is a schematic view of the fluid injection system with a partial cross-sectional view of the injection pump.
FIG. 2 is an enlargement of the adjustable restriction device depicted in FIG. 1 with the gauge partially cut away.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now in detail to the drawings, the elements of the fluid injection system are shown in FIG. 1. Main process flow line 10 has a gas or other flowable medium flowing inside. In the preferred embodiment the source of pressure used to activate the injection pump 20 is the fluid pressure in the flow line. Alternatively, an independent source of fluid can be used to actuate the pump. If the flow line fluid pressure is used, the flow line can be connected by means of a conduit 12 to a pressure regulator 14. The pressure regulator is connected by means of a conduit 15 to a valve 16. The valve and the injection pump are connected by means of a conduit 18.
In the preferred embodiment the injection pump has a pumping mechanism that comprises a piston 22 and an injection or pumping plunger 24. The power or downward stroke of the pumping mechanism results from intermittent application of a fluid pressure from the valve 16 into a piston chamber 28. The return or upward stroke of the pumping mechanism is caused by spring 26 when the pressure in the piston chamber is vented. The cycling of the pumping mechanism draws additive fluid into the injection pump through conduit 46 from supply reservoir 48 and forces it out of the injection pump through conduit 44 into main process flow line 10.
The upward movement of the pumping mechanism is limited by an adjustable restriction device 50. Referring to FIG. 2, the adjustable restriction device comprises a stroke adjuster 51, in the preferred embodiment a threaded stud, screwed into the piston chamber 28. The movement of the pumping mechanism can be further restricted, in addition to that depicted, by screwing the stroke adjuster further into the piston chamber. The movement of the pumping mechanism can be less restricted by screwing the stroke adjuster further out of the piston chamber. The positioning of the stroke adjuster thus limits the stroke length of the pumping plunger.
The amount of additive injected into the flow line is directly proportional to the stroke length of the pumping plunger 24. Thus, if screwing the stroke adjuster 0.10 inches further into the piston chamber decreases the amount of additive injected into the flow line by 0.20 gallons each hour; then screwing the stroke adjuster 0.10 inches further out of the piston chamber decreases the amount of additive injected into the flow line by 0.20 gallons each hour.
In the preferred embodiment, the stroke adjuster can be screwed into or out of the piston chamber only if it affects the movement of the pumping plunger. In other words, once the movement of the pumping plunger is entirely restricted, then the stroke adjuster can be screwed no further into the piston chamber. And, once the movement of the pumping plunger is entirely unrestricted, within the limitations of the injection pump, then the stroke adjuster can be screwed no further out of the piston chamber. The inward and outward movement of the stroke adjuster can be limited by a variety of means readily determinable by one skilled in the art.
Placed over the stud is a gauge 53. The gauge incorporates various indicators including those marked 54, 55, 56 and 57. In the preferred embodiment, the first indicator 54 states 0.0 gallons each hour. All other indicators state a particular fluid volume. The indicators are spaced on the gauge a distance equal to the distance the stroke adjuster must travel to increase or decrease the amount of additive injected into the flow line consistent with the change in volumes stated on adjacent indicators. In other words, if indicator 56 states 1.0 gallons each hour and indicator 58 states 1.2 gallons each hour, then the distance between indicator 56 and 58 is equal to the distance that the stroke adjuster must travel into or out of the piston chamber to change the amount of additive injected into the flow line by 0.20 gallons each hour.
The gauge can be slid up and down the length of the stud, but is generally fastened in one position by use of locking nut 58 and locking nut 59. The gauge is used in conjunction with a marker 62 that is placed between the gauge and the stud. In the preferred embodiment, the gauge and marker are slightly separated to avoid displacement of the marker when the gauge is moved. Additionally, in the preferred embodiment, a cover 64 is placed between the marker and the stud. The cover can serve a variety of purposes depending on the type of marker used. For example, the cover can increase the visibility of the marker, facilitate movement of the marker and decrease the likelihood that the marker is damaged when moved. Appropriate positioning of the cover can be achieved by using a heat shrinkable material. Visibility is increased using a white colored cover.
The gauge and the marker are used as follows. In the preferred embodiment, the stud is screwed fully into the piston chamber. Locking nut 59 is moved into a position immediately adjacent to pump 20 or, alternatively, immediately adjacent to an optional seal 60 that is securely positioned around the stroke adjuster at the location where the stroke adjuster first threads into housing 61. The gauge is then moved into a position immediately adjacent to locking nut 59. The marker 62 is thereafter adjusted to a position that corresponds to the zero indicator 54.
In use, the operator screws the stroke adjuster partially or totally out of the piston chamber. Then, the operator locates the gauge so that the marker corresponds with the indicator that states the desired amount of additive that is sought to be injected into the flow line. Both locking nuts are tightened into position to maintain correspondence between the gauge and the marker. Then, the stroke adjuster is screwed into the piston chamber until locking nut 59 is immediately adjacent to housing 61 or seal 60. When actuated, the pump will inject the desired amount of additive into the flow line.
For example, as shown in FIG. 2, the marker corresponds with indicator 55. The gauge has already been secured in position by locking nuts 58 and 59. Additionally, locking nut 59 has been moved immediately adjacent to seal 60. Thus, and assuming proper injection pump construction as described herein and accurate calibration of the stroke adjuster as explained herein, if indicator 55 states 0.4 gallons each hour, when the pump 20 is actuated, precisely 0.4 gallons of additive will be injected into the flow line.
Various changes and modifications may be made in carrying out the instant invention without departing from the spirit and scope thereof. Insofar as these or other changes and modifications are within the purview of the appended claims, they are to be considered as part of the invention.

Claims (9)

I claim:
1. An injection pump comprising:
a) a pumping mechanism wherein the movement of the pumping mechanism injects an additive into a pipeline;
b) a stroke adjuster proximate to the pumping mechanism for regulating the stroke length of the pumping mechanism;
c) an adjustable marker adjacent to the stroke adjuster;
d) an adjustable gauge adjacent to the adjustable marker and used in conjunction with the adjustable marker for calibrating the injection rate of the injection pump; and
e) a means for fixedly locating the adjustable gauge to the stroke adjuster wherein when the adjustable gauge is fixedly located the stroke adjuster can be positioned correctly by using the adjustable gauge to limit the stroke length of the pumping mechanism whereby the rate the additive is injected into the pipeline is established at substantially one amount.
2. The injection pump of claim 1 wherein the adjustable marker is located between the stroke adjuster and the adjustable gauge.
3. The injection pump of claim 2 wherein a cover is located between the adjustable marker and the stroke adjuster.
4. The injection pump of claim 3 wherein the cover is constructed of a shrinkable material.
5. The injection pump of claim 3 wherein the cover is constructed of a white material.
6. The injection pump of claim 2 wherein the adjustable marker and the adjustable gauge are spaced slightly apart.
7. The injection pump of claim 1 wherein the means for fixedly locating the adjustable gauge comprises two locking nuts.
8. The injection pump of claim 1 wherein the adjustable marker is an O-ring.
9. An injection pump comprising:
a) an adjustable restriction device that is calibrated such that a substantially accurate amount of an additive is injected into a pipeline by the injection pump when the adjustable restriction device is positioned correctly;
b) a pumping mechanism proximate to the adjustable restriction device, comprising a piston and a pumping plunger, wherein the movement of the pumping mechanism is limited by the positioning of the adjustable restriction device;
c) a marker placed over the adjustable restriction device;
d) a gauge proximate to the marker that is adjustable and securable to the adjustable restriction device and is used in combination with the marker to calibrate the adjustable restriction device and to correctly position the adjustable restriction device relative to the pumping mechanism when the gauge is secured.
US07/424,808 1989-10-20 1989-10-20 Calibrated fluid injection system Expired - Fee Related US5032058A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/424,808 US5032058A (en) 1989-10-20 1989-10-20 Calibrated fluid injection system
CA002027222A CA2027222A1 (en) 1989-10-20 1990-10-10 Calibrated fluid injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/424,808 US5032058A (en) 1989-10-20 1989-10-20 Calibrated fluid injection system

Publications (1)

Publication Number Publication Date
US5032058A true US5032058A (en) 1991-07-16

Family

ID=23683957

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/424,808 Expired - Fee Related US5032058A (en) 1989-10-20 1989-10-20 Calibrated fluid injection system

Country Status (2)

Country Link
US (1) US5032058A (en)
CA (1) CA2027222A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095769A (en) * 1994-03-29 2000-08-01 Orbital Engine Co. (Australia) Pty Limited Two section pump
US20190301707A1 (en) * 2018-03-28 2019-10-03 Principal Lighting Group, Llc Low profile assembly for led downlight wall wash with low vertical attenuation and high lateral uniformity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576747A (en) * 1946-01-24 1951-11-27 Austin U Bryant Liquid dispenser with means to vary a measured discharge
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump
US4309156A (en) * 1979-03-23 1982-01-05 The Perkin-Elmer Corporation Fluid activated pump having variable discharge
US4370997A (en) * 1980-01-03 1983-02-01 Black & Decker Inc. Pressure regulator and safety valve assembly
US4422830A (en) * 1981-12-14 1983-12-27 Atlantic Richfield Company Performance of a pipeline additive injection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576747A (en) * 1946-01-24 1951-11-27 Austin U Bryant Liquid dispenser with means to vary a measured discharge
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump
US4309156A (en) * 1979-03-23 1982-01-05 The Perkin-Elmer Corporation Fluid activated pump having variable discharge
US4370997A (en) * 1980-01-03 1983-02-01 Black & Decker Inc. Pressure regulator and safety valve assembly
US4422830A (en) * 1981-12-14 1983-12-27 Atlantic Richfield Company Performance of a pipeline additive injection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095769A (en) * 1994-03-29 2000-08-01 Orbital Engine Co. (Australia) Pty Limited Two section pump
US20190301707A1 (en) * 2018-03-28 2019-10-03 Principal Lighting Group, Llc Low profile assembly for led downlight wall wash with low vertical attenuation and high lateral uniformity
US20200248889A1 (en) * 2018-03-28 2020-08-06 Principal Lighting Group, Llc Low profile assembly for led downlight wall wash with low vertical attenuation and high lateral uniformity
US11073255B2 (en) * 2018-03-28 2021-07-27 Principal Lighting Group, Llc Low profile assembly for LED downlight wall wash with low vertical attenuation and high lateral uniformity

Also Published As

Publication number Publication date
CA2027222A1 (en) 1991-04-21

Similar Documents

Publication Publication Date Title
ATE208916T1 (en) METHOD FOR CONTROLLING THE PRESSURE OF A FLUID
ATE169131T1 (en) GAS DISTRIBUTION AND BOTTLE CONTROL UNIT EQUIPPED WITH SUCH UNIT
US5299594A (en) Liquid flow rate detector
KR940003838A (en) Apparatus and methods for the preparation and maintenance of fluid mixtures in predetermined proportions
US8349038B2 (en) Self optimizing odorant injection system
KR880003232A (en) Relative Mass Flow Control System for Different Gases
US4596264A (en) Flow control valve
DE60312904D1 (en) AIR PRESSURE GUN FOR LIQUID DISPENSER
DE69804432D1 (en) Device for controlling a flow
US5032058A (en) Calibrated fluid injection system
US4112959A (en) Adjustable check valve
JPH0658431A (en) Flow regulating valve installing shell type slide valve head
US3100496A (en) Metering control device for supplying additives to fluids
US3131869A (en) Coolant device for machine tools
CA1151893A (en) Device for detecting rate of change in pressure
US6601449B1 (en) Self-regulating bubble tube assembly
US3428080A (en) Flow control device
ES478884A1 (en) Liquid fuel injection pump
DE69420954D1 (en) LOCKABLE FUEL VALVE
CA1138741A (en) Back pressure regulator
US3672794A (en) Injection pump
GB618611A (en) Improvements in, or relating to, fluid flow control valves
US2912995A (en) Apparatus for injecting fluids into fluid streams
US3029840A (en) Gas ratio controller
SU608129A1 (en) Gas pressure reducer

Legal Events

Date Code Title Description
AS Assignment

Owner name: WILLIAMS INSTRUMENT COMPANY, INC., A CORP. OF CA,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:WILLIAMS, JAMES F.;PASCUAL, WILFRED D.;REEL/FRAME:005162/0490

Effective date: 19891018

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 19950719

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362