US4923167A - Slide valve with dosage regulation means - Google Patents

Slide valve with dosage regulation means Download PDF

Info

Publication number
US4923167A
US4923167A US07/288,757 US28875788A US4923167A US 4923167 A US4923167 A US 4923167A US 28875788 A US28875788 A US 28875788A US 4923167 A US4923167 A US 4923167A
Authority
US
United States
Prior art keywords
slide
housing
slide element
channel
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/288,757
Inventor
Alfred Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US4923167A publication Critical patent/US4923167A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • F16K3/262Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member with a transverse bore in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/34Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S251/00Valves and valve actuation
    • Y10S251/90Valves with o-rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage

Definitions

  • the invention relates to a slide valve with dosage regulation means for a fluid wherein a slide member is axially reciprocally movable in a housing chamber of a valve housing.
  • the upstream housing channel has a plurality of holes extending only above the slide channel, which slide channel itself is comprised of a plurality of bores.
  • the dosage regulation brought about by displacement of the slide therefore occurs only when the downstream and upstream housing channels are brought more or less into accurate alignment, whereby the fluid can exhaust after flowing through the region in which the two housing channels are aligned.
  • This dosage regulation means provides little fine variability, taking into account the available translational movement of the slide. The fine-variability can be improved by reducing the cross-sections of the holes, however this introduces an additional risk of blockage of the holes by impurities in the fluid.
  • the object of the invention is to provide a slide valve of the type wherein blockage of the holes by impurities in the fluid does not occur, and wherein there are provided finely variable dosage regulation means.
  • the inventive slide valve which solves this problem is characterized in that the upstream slide channel opening is a varying cross-section recess which narrows with axial progression of the slide towards its closed position.
  • a housing channel in the valve housing communicates with a first external connection and also communicates with a slide channel in the slide via a slide channel opening.
  • the other end of the slide channel has another slide channel opening which communicates with a second external connection via a further housing channel in the valve housing.
  • the fluid is fed to the slide channel via one of the housing channels and is withdrawn from the slide channel via the other of the housing channels.
  • seal means are provided on both sides of the upstream housing channel.
  • the cross-section is smaller under conditions of overlapping relating to the recess than the cross-section of the outlet-side channel, and, in the course of opening of the slide valve, the cross-section increases gradually from zero to a substantial value.
  • impurities will not accumulate and create blockage in the recess.
  • the dosage regulation will have good fine-variability characteristics. Further, the edges of the recess will not damage the seal, or will cause only negligible damage to the seals as these edges slide when the slide is moved back and forth between the closed and open positions.
  • the upstream housing channel and associated recess may optionally be provided in the valve housing itself. However, it is particularly advantageous if the recess which is associated with the upstream housing channel is in the slide, because this location facilitates fabrication of the recess structure.
  • the recess may be in the form of an encircling groove the radial depth of which diminishes with axial distance away from the holes.
  • Such a recess configuration enables a relatively large flow of fluid. It is particularly advantageous, however, if the upstream housing channel is in the form of a unitary cavity and, along with the recess, is limited to a part of the circumference around the center axis of the valve. Under this arrangement, even the maximum passage cross-section under conditions of overlap of the passage openings is kept small.
  • the upstream housing channel comprises a bore
  • the circumferential width generally along the circumference of the slide of the above-described recess is equal to or less than the corresponding circumferential width of the bore.
  • the recess associated with the upstream housing channel bore is in the form of, e.g. a slot, the width of which is variable with radial or axial progression with respect to the slide axis.
  • the base of the recess is planar and is disposed angularly with respect to the center axis of the slide valve, and if the recess narrows in width with progression axially.
  • Such a recess structure is easy to fabricate, particularly if the recess is located at the exterior surface of the slide. Because this recess varies both in its width in the circumferential direction and in its depth in the radial direction there is a substantial improvement in fine-variability of the dosage regulation, in addition to easier fabrication of the recess structure.
  • the recess can be produced directly by grinding rather than with use of a cutting technique. Its axial extent is as a rule more than twice its width in the circumferential direction.
  • the angle between the base of the recess and the center axis of the slide valve is 1°-2°, and if the recess has a maximum depth of 0.2-0.4 mm, an axial length of 9.5-13.5 mm, and a maximum width of 3-5 mm. These dimensions are for the preferred application of the slide valve mentioned below. It is further particularly advantageous if the edges of the recess which are closest to the seals are polished so as to present less hazard to the seals.
  • the seal across which the recess moves is comprised of an O-ring.
  • This O-ring which will be subjected to compression and tension provides a good means of dealing with such stresses which are created when the recess moves across the seal.
  • the invention also includes a slide valve of the type described initially above, which valve is characterized in that, when the slide is in a "closed” position in the sense that fluid cannot pass between the two external connections (or “relief” position), one of the two external connections is connected to an outlet by means of a recess in the slide.
  • the slide valve is essentially a two-way valve, whereby, e.g., the external connection through which the fluid is fed is connected to the outlet, or, more typically, the external connection through which the fluid is exhausted is connected with the outlet.
  • the latter arrangement is of particular practical value in controlling the position of component parts which are subject to a third force, e.g. a mechanical spring, which tends to restore the position of the components parts against the force of the fluid.
  • the recess extends across an encircling seal. Even if the slide is frequently operated, its recess does not damage the seals when the slide is moved axially back and forth. Damage is particularly avoided if the seal comprises an O-ring which is compressed and pre-stressed.
  • the inventive slide valve described herein can be used generally where fine-variability of dosage regulation is desired.
  • the position of such apparatus can be sensitively controlled in a finely variable fashion between two terminal positions.
  • This arrangement generally requires no pressure reducing valve employing a membrane, which type of valve has the drawback of not providing sufficiently reliable uniform characteristics at any justifiable cost level.
  • a small change in position of the apparatus can be achieved by a small displacing movement of the subject slide.
  • the invention additionally consists of the use of the above-described inventive slide valve for controlling the position of a spring-loaded butterfly valve employed as a throttle in a static pressure exhaust-type engine brake.
  • a spring-loaded butterfly valve employed as a throttle in a static pressure exhaust-type engine brake.
  • Such exhaust-operated brakes are per se known (see Ger. OSs No. 34 30 028 and 35 33 393).
  • the throttle valve has been operated in a manner wherein the throttle valve was either fully closed or fully open; whereas according to the present invention the throttle valve can be adjusted to any position between, and including, fully closed and fully open.
  • the invention provides a means of finely varying the setting of the butterfly valve disc, between and including a closed position and various degrees of open positions.
  • a truck driver can close the butterfly valve throttle disc to varying degrees, by depressing a foot pedal with varying amounts of force.
  • Regulation of the pressurized air in the slide valve employed as a control valve for the brake throttle is accomplished by, e.g., an angled surface on the controlling slide which surface leads to the opening of a flow path and continuously provides a bypass across the seals.
  • FIG. 1 is a cross-section of a slide valve with dosage regulation means in accordance with the invention, showing the valve in the open position;
  • FIG. 2 is an elevational view of a detail of the slide valve according to FIG. 1;
  • FIG. 3 is a side elevational view of a static pressure exhaust-type engine brake which can be actuated by the slide valve according to FIG. 1;
  • FIG. 4 is a view similar to FIG. 1 showing the slide valve in a closed position
  • FIG. 5 is a view similar to FIG. 1 showing the slide valve in a relief position.
  • the slide valve has a valve housing 1 comprised of three housing pieces which are fastened together by screws.
  • Housing 1 has an elongated axially extending housing chamber 2, the transverse cross-section of which varies along its length.
  • An elongated piston or slide 3 which is fitted within the housing chamber 2 is reciprocally movable and one end is biased by a compression spring 4.
  • the region of the housing chamber 2 in which spring 4 is located is connected to the external atmosphere via a vent hole 5.
  • An upper actuating terminal end member 6 of the slide 3 extends upward out of the housing 1, and can be slid an arbitrary distance downwards into the housing 1 by means of an actuating member not shown, against the force of the spring 4.
  • the valve housing 1 has a first housing channel 7 to which pressurized air is supplied via a first external connection 8 (as per the arrow), and which channel 7 opens out into the housing chamber 2 via an opening.
  • the cross-section of channel 7 is uniform over its length.
  • a second housing channel 10 is provided on the opposite side to channel 7 with regard to the center axis 9. Housing channel 10 opens out into the housing chamber 2, and also has a cross-section which is uniform over its length. Pressurized air is passed out from channel 10 via a second external connection 11.
  • the housing chamber 2 In the region of housing chamber 2 from which the second housing channel 10 extends, the housing chamber 2 has an increased diameter, thereby forming a ring-shaped void, or annulus, 12 which surrounds the slide 3.
  • the diameter of the slide 3 is essentially uniform over its length.
  • Seals 13 surround the slide 3 on both sides of housing channel 7. Each seal 13 is disposed in a groove in the internal periphery of the valve housing 1.
  • the void 12 begins near one of the seals 13.
  • An additional seal 13 extending generally circularly around the slide 3 is provided near the other end of void 12, which seal 13 is also disposed in an internal peripheral groove in the valve housing 1.
  • slide channel 14 On its end nearest to the second housing channel 10, slide channel 14 has downstream slide channel opening 15 which represents an elongated recess in slide 3, having an increasing radial depth along the direction of center axis 9.
  • downstream recess 15 is greater than that of housing channel 10.
  • the slide On the side of the slide 3 nearest the housing channel 7, the slide has an upstream slide channel opening 16 in the form of a recess whose cross-section decreases along the axial direction downwardly (as shown) and away from the slide channel 14 (see especially FIG. 2).
  • pressurized air flows through the first external connection 8, the housing channel 7, the recess 16, the slide channel 14, the downstream recess 15, the void space 12, the second housing channel 10, and finally to the second external connection 11.
  • a connecting line 17 is connected to the second external connection 11 which line 17 leads to a piston-and-cylinder device 18 of a static pressure exhaust-type engine brake according to FIG. 3.
  • the pressurized air acts on a piston, the opposite end of which is acted on by a spring 19.
  • the piston rod rotates a disc-type butterfly valve 20 which serves as a throttle.
  • the upstream recess 16 extends downwardly beyond the middle seal 13 and is not shut off by middle seal 13.
  • void 21 Slightly above the upper seal 13, there begins a second void 21 in the housing chamber, which void 21 is vented (see arrow 23) via a channel 22 in the valve housing, which channel 22 opens out from void 21.
  • the slide 3 has a flange 24 in the region of void 21, whereby the reciprocating movement of the slide 3 is limited in both directions.
  • a projection 25 is provided in the valve housing 1 in the region between the void 21 and the end member 6, which projection 25 extends into an axially extending groove 26 in the slide 3, thereby preventing rotation of the slide.
  • FIG. 4 shows the slide valve in its fully closed position, wherein the slide 3 is in its middle position.
  • the slide channel 14, with upstream recess 16 and downstream broadened recess 15, is disposed between the middle seal 13 and the upper seal 13, so that pressurized air cannot flow in via external connection 8, and cannot flow out via external connection 11, or be exhausted via outlet 23.
  • FIG. 5 shows the slide valve in a relief position, with the slide 3 disposed in a position in which no force from spring 4 acts on the slide.
  • the upstream recess 16 and the associated end of the slide channel 14 are disposed between the middle and the upper seals 13, so that no pressurized air can enter via the external connection 8.
  • the downstream broadened recess 15 of the slide channel 14 extends across the upper seal 13, thereby connecting the two voids 12 and 21, so that pressurized air can pass through the external connection and outlet 23, if the throttle valve 20 (FIG. 3) is moved into its open position (seen in solid line valve 20) by spring 19.

Abstract

A slide valve for fluid wherein a slide (3) is axially reciprocally movable in a housing chamber (2) of a valve housing (1). A housing channel (7) in the valve housing (1), which housing channel communicates with a first external connection (8), is provided with a recess (16) directed toward the slide (3) and the piston (3) has a slide channel (14) which communicates with a second external connection (11) via a further recess (15). The slide valve is designed such that passage of fluid does not become blocked by impurities in the fluid, and the slide valve is capable of fine-variability. This is achieved in that the upstream recess (16) has a cross-section which narrows in the direction of the slide valve axis toward the housing channel (7) when the slide (3) is in the closed position. In order to achieve finely variable dosage regulation by the slide valve, the upstream recess (16) has variable cross-section, as the slide (3) is moved in the housing chamber (2).

Description

BACKGROUND OF THE INVENTION
The invention relates to a slide valve with dosage regulation means for a fluid wherein a slide member is axially reciprocally movable in a housing chamber of a valve housing.
In a known slide valve of this type (Ger. AS No. 23 24 187), the upstream housing channel has a plurality of holes extending only above the slide channel, which slide channel itself is comprised of a plurality of bores. The dosage regulation brought about by displacement of the slide therefore occurs only when the downstream and upstream housing channels are brought more or less into accurate alignment, whereby the fluid can exhaust after flowing through the region in which the two housing channels are aligned. This dosage regulation means provides little fine variability, taking into account the available translational movement of the slide. The fine-variability can be improved by reducing the cross-sections of the holes, however this introduces an additional risk of blockage of the holes by impurities in the fluid.
SUMMARY OF THE INVENTION
Accordingly, the object of the invention is to provide a slide valve of the type wherein blockage of the holes by impurities in the fluid does not occur, and wherein there are provided finely variable dosage regulation means. The inventive slide valve which solves this problem is characterized in that the upstream slide channel opening is a varying cross-section recess which narrows with axial progression of the slide towards its closed position.
A housing channel in the valve housing communicates with a first external connection and also communicates with a slide channel in the slide via a slide channel opening. The other end of the slide channel has another slide channel opening which communicates with a second external connection via a further housing channel in the valve housing. The fluid is fed to the slide channel via one of the housing channels and is withdrawn from the slide channel via the other of the housing channels. Furthermore, seal means are provided on both sides of the upstream housing channel.
To provide means of dosage regulation in the inventive slide valve, not only is the overlapping region of the two housing channels offset, but the cross-section available for outflow of the fluid after it passes through the overlapping region is changed by moving the slide. The cross-section is smaller under conditions of overlapping relating to the recess than the cross-section of the outlet-side channel, and, in the course of opening of the slide valve, the cross-section increases gradually from zero to a substantial value. There are no constant small cross-sections as in the case of the small holes of the prior art, accordingly, impurities will not accumulate and create blockage in the recess. As long as the overlapping region of the two housing channels occurs in the region of the recess, the dosage regulation will have good fine-variability characteristics. Further, the edges of the recess will not damage the seal, or will cause only negligible damage to the seals as these edges slide when the slide is moved back and forth between the closed and open positions.
The upstream housing channel and associated recess may optionally be provided in the valve housing itself. However, it is particularly advantageous if the recess which is associated with the upstream housing channel is in the slide, because this location facilitates fabrication of the recess structure.
If the upstream housing channel is formed by a ring of generally radial holes arrayed around the center axis of the slide valve, the recess may be in the form of an encircling groove the radial depth of which diminishes with axial distance away from the holes. Such a recess configuration enables a relatively large flow of fluid. It is particularly advantageous, however, if the upstream housing channel is in the form of a unitary cavity and, along with the recess, is limited to a part of the circumference around the center axis of the valve. Under this arrangement, even the maximum passage cross-section under conditions of overlap of the passage openings is kept small.
It is further particularly advantageous if the upstream housing channel comprises a bore, and the circumferential width generally along the circumference of the slide of the above-described recess is equal to or less than the corresponding circumferential width of the bore. This configuration relating to the recess improves the fine-variability of the dosage regulation, and in general is the preferred configuration if there is only one upstream housing channel in the form of a bore.
The recess associated with the upstream housing channel bore is in the form of, e.g. a slot, the width of which is variable with radial or axial progression with respect to the slide axis. However, it is particularly advantageous if the base of the recess is planar and is disposed angularly with respect to the center axis of the slide valve, and if the recess narrows in width with progression axially. Such a recess structure is easy to fabricate, particularly if the recess is located at the exterior surface of the slide. Because this recess varies both in its width in the circumferential direction and in its depth in the radial direction there is a substantial improvement in fine-variability of the dosage regulation, in addition to easier fabrication of the recess structure. The recess can be produced directly by grinding rather than with use of a cutting technique. Its axial extent is as a rule more than twice its width in the circumferential direction.
It is particularly advantageous if the angle between the base of the recess and the center axis of the slide valve is 1°-2°, and if the recess has a maximum depth of 0.2-0.4 mm, an axial length of 9.5-13.5 mm, and a maximum width of 3-5 mm. These dimensions are for the preferred application of the slide valve mentioned below. It is further particularly advantageous if the edges of the recess which are closest to the seals are polished so as to present less hazard to the seals.
It is also particularly advantageous if the seal across which the recess moves is comprised of an O-ring. This O-ring, which will be subjected to compression and tension provides a good means of dealing with such stresses which are created when the recess moves across the seal.
It is particularly advantageous if the position of the recess in the circumferential direction is reliably maintained by radial means whereby the valve housing engages the slide. It is important to have such means of maintaining the proper orientation of the upstream openings relative to the upstream openings in the circumferential direction.
As an option, it is possible to continue the slide channel beyond the slide in the axial direction. It is particularly advantageous, however, if when the slide is in its "open" position the slide channel terminates in a cavity in the valve housing, which cavity is bounded by the slide, wherewith an additional connection is provided from the cavity to the external connection. This improves and facilitates the exhaust or inflow of fluid from or to the slide channel.
The invention also includes a slide valve of the type described initially above, which valve is characterized in that, when the slide is in a "closed" position in the sense that fluid cannot pass between the two external connections (or "relief" position), one of the two external connections is connected to an outlet by means of a recess in the slide. The slide valve is essentially a two-way valve, whereby, e.g., the external connection through which the fluid is fed is connected to the outlet, or, more typically, the external connection through which the fluid is exhausted is connected with the outlet. The latter arrangement is of particular practical value in controlling the position of component parts which are subject to a third force, e.g. a mechanical spring, which tends to restore the position of the components parts against the force of the fluid.
It is particularly advantageous if the recess extends across an encircling seal. Even if the slide is frequently operated, its recess does not damage the seals when the slide is moved axially back and forth. Damage is particularly avoided if the seal comprises an O-ring which is compressed and pre-stressed.
The inventive slide valve described herein can be used generally where fine-variability of dosage regulation is desired. However, it is particularly advantageous to use the slide valve to control the position of a spring-loaded apparatus by means of pressurized gas. The position of such apparatus can be sensitively controlled in a finely variable fashion between two terminal positions. This arrangement generally requires no pressure reducing valve employing a membrane, which type of valve has the drawback of not providing sufficiently reliable uniform characteristics at any justifiable cost level. A small change in position of the apparatus can be achieved by a small displacing movement of the subject slide.
The invention additionally consists of the use of the above-described inventive slide valve for controlling the position of a spring-loaded butterfly valve employed as a throttle in a static pressure exhaust-type engine brake. Such exhaust-operated brakes are per se known (see Ger. OSs No. 34 30 028 and 35 33 393). Heretofore, such brakes have been operated in a manner wherein the throttle valve was either fully closed or fully open; whereas according to the present invention the throttle valve can be adjusted to any position between, and including, fully closed and fully open.
In static pressure exhaust-type engine brakes the pressurized air which is to be controlled has not been cleaned and therefore is capable of blocking narrow passages. In long-term tests it has been found infeasible to employ membrane-type pressure reducing valves to achieve fine variable control of the position of the butterfly valve throttle. Known dosage regulating valves (see Ger. ASs No. 23 24 187 and 17 25 040) cannot be successfully used in connection with static pressure exhaust-type engine brakes because of inadequate fineness of adjustability. A butterfly valve throttle which can only adopt a fully open or fully closed position is hazardous when a slippery spot in the road is encountered. Therefore in the past, static pressure exhaust-type engine brakes have not been used where there are slippery roads. The invention provides a means of finely varying the setting of the butterfly valve disc, between and including a closed position and various degrees of open positions. A truck driver can close the butterfly valve throttle disc to varying degrees, by depressing a foot pedal with varying amounts of force. Regulation of the pressurized air in the slide valve employed as a control valve for the brake throttle is accomplished by, e.g., an angled surface on the controlling slide which surface leads to the opening of a flow path and continuously provides a bypass across the seals. When the butterfly throttle disc is closed to varying degrees, various corresponding braking forces are applied.
BRIEF DESCRIPTION OF THE DRAWINGS
A preferred embodiment of the invention will now be described with reference to the accompanying drawings wherein;
FIG. 1 is a cross-section of a slide valve with dosage regulation means in accordance with the invention, showing the valve in the open position;
FIG. 2 is an elevational view of a detail of the slide valve according to FIG. 1;
FIG. 3 is a side elevational view of a static pressure exhaust-type engine brake which can be actuated by the slide valve according to FIG. 1;
FIG. 4 is a view similar to FIG. 1 showing the slide valve in a closed position; and
FIG. 5 is a view similar to FIG. 1 showing the slide valve in a relief position.
DETAILED DESCRIPTION
The slide valve according to the drawings has a valve housing 1 comprised of three housing pieces which are fastened together by screws. Housing 1 has an elongated axially extending housing chamber 2, the transverse cross-section of which varies along its length. An elongated piston or slide 3 which is fitted within the housing chamber 2 is reciprocally movable and one end is biased by a compression spring 4. The region of the housing chamber 2 in which spring 4 is located is connected to the external atmosphere via a vent hole 5. An upper actuating terminal end member 6 of the slide 3 extends upward out of the housing 1, and can be slid an arbitrary distance downwards into the housing 1 by means of an actuating member not shown, against the force of the spring 4.
The valve housing 1 has a first housing channel 7 to which pressurized air is supplied via a first external connection 8 (as per the arrow), and which channel 7 opens out into the housing chamber 2 via an opening. The cross-section of channel 7 is uniform over its length. A second housing channel 10 is provided on the opposite side to channel 7 with regard to the center axis 9. Housing channel 10 opens out into the housing chamber 2, and also has a cross-section which is uniform over its length. Pressurized air is passed out from channel 10 via a second external connection 11. In the region of housing chamber 2 from which the second housing channel 10 extends, the housing chamber 2 has an increased diameter, thereby forming a ring-shaped void, or annulus, 12 which surrounds the slide 3.
The diameter of the slide 3 is essentially uniform over its length. Seals 13 surround the slide 3 on both sides of housing channel 7. Each seal 13 is disposed in a groove in the internal periphery of the valve housing 1. The void 12 begins near one of the seals 13. An additional seal 13 extending generally circularly around the slide 3 is provided near the other end of void 12, which seal 13 is also disposed in an internal peripheral groove in the valve housing 1. A slide channel 14, generally having the shape of a cylindrical bore, extends through the slide 3 at an angle to the center axis 9. On its end nearest to the second housing channel 10, slide channel 14 has downstream slide channel opening 15 which represents an elongated recess in slide 3, having an increasing radial depth along the direction of center axis 9. The axial extent of downstream recess 15 is greater than that of housing channel 10. On the side of the slide 3 nearest the housing channel 7, the slide has an upstream slide channel opening 16 in the form of a recess whose cross-section decreases along the axial direction downwardly (as shown) and away from the slide channel 14 (see especially FIG. 2). The upstream recess 16, together with the slide channel 14, forms a passage opening. In the open position, illustrated in FIG. 1, pressurized air flows through the first external connection 8, the housing channel 7, the recess 16, the slide channel 14, the downstream recess 15, the void space 12, the second housing channel 10, and finally to the second external connection 11.
A connecting line 17 is connected to the second external connection 11 which line 17 leads to a piston-and-cylinder device 18 of a static pressure exhaust-type engine brake according to FIG. 3. In the cylinder, the pressurized air acts on a piston, the opposite end of which is acted on by a spring 19. When the piston moves, the piston rod rotates a disc-type butterfly valve 20 which serves as a throttle. The more compressed air that is forced into the cylinder, the more strongly the throttle valve 20 is closed; at the same time, spring 19 urges throttle valve 20 into the open position. In the open position of the slide valve illustrated in FIG. 1, the upstream recess 16 extends downwardly beyond the middle seal 13 and is not shut off by middle seal 13.
Slightly above the upper seal 13, there begins a second void 21 in the housing chamber, which void 21 is vented (see arrow 23) via a channel 22 in the valve housing, which channel 22 opens out from void 21. The slide 3 has a flange 24 in the region of void 21, whereby the reciprocating movement of the slide 3 is limited in both directions. A projection 25 is provided in the valve housing 1 in the region between the void 21 and the end member 6, which projection 25 extends into an axially extending groove 26 in the slide 3, thereby preventing rotation of the slide.
FIG. 4 shows the slide valve in its fully closed position, wherein the slide 3 is in its middle position. The slide channel 14, with upstream recess 16 and downstream broadened recess 15, is disposed between the middle seal 13 and the upper seal 13, so that pressurized air cannot flow in via external connection 8, and cannot flow out via external connection 11, or be exhausted via outlet 23.
FIG. 5 shows the slide valve in a relief position, with the slide 3 disposed in a position in which no force from spring 4 acts on the slide. The upstream recess 16 and the associated end of the slide channel 14 are disposed between the middle and the upper seals 13, so that no pressurized air can enter via the external connection 8. The downstream broadened recess 15 of the slide channel 14 extends across the upper seal 13, thereby connecting the two voids 12 and 21, so that pressurized air can pass through the external connection and outlet 23, if the throttle valve 20 (FIG. 3) is moved into its open position (seen in solid line valve 20) by spring 19.

Claims (20)

What is claimed is:
1. Static pressure exhaust-type engine brake comprising:
a butterfly valve means having open, closed and intermediate positions;
a piston-cylinder means operatively connected to said butterfly valve means for closing said butterfly valve means upon actuation of said piston-cylinder means;
spring means operatively connected to said piston-cylinder means for resiliently urging said butterfly valve means towards the open position thereof;
fluid pressure inlet means connected to said piston-cylinder means for admitting pressurized fluid to actuate said piston-cylinder means to close said butterfly valve means against the force of said spring means;
a slide valve having a housing;
a chamber in said housing having a central axis;
a slide element slidably mounted for reciprocating axial movement in said chamber between an open position, closed position, and relief position;
an actuating terminal end on said slide element projecting out of said housing;
an inlet channel in said housing having an inner end communicating with said chamber at a first position;
an outlet channel in said housing having an inner end communicating with said chamber at a second position axially spaced from said first position;
a bore hole slide channel in said slide member extending at an angle relative to said central axis and having an inlet end and an outlet end (for connecting said first position with said second position when said slide member is in said open position);
an upstream control recess in the outer surface of said slide member at said inlet end of said slide channel for connecting said inlet end to said first position when said slide member is in said open position, and having a planar base extending at an angle relative to said central axis and a width that narrows in the axial direction from said inlet end toward said first position;
a downstream recess in said slide element at said outlet end of said slide channel for connecting said outlet end to said second position when said slide element is in said open position;
a first sealing ring mounted in said housing surrounding said slide element between said first and second positions for sealing between said slide element and said chamber; and
a second sealing ring mounted in said housing surrounding said slide element for sealing between said slide element and said chamber on the opposite side of said first position from said second position;
so that when said slide element is in said open position said upstream control recess overlaps said first sealing ring to a varying degree dependent upon a selective axial position of said slide element relative to said housing for controlling flow of pressurized fluid from said inlet channel to said outlet channel, and when said slide element is in said closed position said first sealing ring prevents said flow of pressurized fluid.
2. Static pressure exhaust-type engine brake as claimed in claim 1 wherein:
a relief channel means is provided in said housing having an inner end communicating with said chamber at a third position axially spaced from said second position in the opposite direction to said first position;
a third sealing ring is mounted in said housing surrounding said slide element between said second and third positions for sealing between said slide element and said chamber;
said chamber further comprises an enlarged diameter section forming a cylindrical annular space surrounding said slide element between said first and third sealing rings for connecting with said upstream control recess and said downstream recess when said slide element is in said open position; and
said downstream recess has a narrowing cross-section in the direction of said third sealing ring and overlaps said third sealing ring when said slide element is in said relief position for connecting said outlet channel through said cylindrical annular space to said relief channel means.
3. Static pressure exhaust-type engine brake as claimed in claim 2 wherein:
said upstream control recess has a maximum circumferential width no greater than the circumferential width of said inlet end of said slide channel.
4. Static pressure exhaust-type engine brake as claimed in claim 3 and further comprising:
cooperating means between said slide element and said housing for preventing relative rotation between said slide element and said housing.
5. Static pressure exhaust-type engine brake as claimed in claim 4 wherein said cooperating means comprises:
an axially extending slot in the outer surface of said sliding element; and
a projection substantially radially extending from said housing and slidingly engaging in said axial slot.
6. Static pressure exhaust-type engine brake as claimed in claim 5 wherein:
said chamber further comprises a second cylindrical annular space surrounding said slide element between said third sealing ring and said third position and communicating with said relief channel means; and
said downstream recess connects said cylindrical annular recesses when said slide element is in said relief position.
7. Static pressure exhaust-type engine brake as claimed in claim 6 and further comprising:
a spring cavity at the end of said chamber adjacent the end of said sliding element opposite to said actuating terminal end of said sliding element; and
a spring member in said spring cavity between said chamber and said opposite end of said sliding element for resiliently urging said sliding element towards said closed position.
8. Static pressure exhaust-type engine brake as claimed in claim 2 wherein:
said chamber further comprises a second cylindrical annular space surrounding said slide element between said third sealing ring and said third position and communicating with said relief channel means; and
said downstream recess connects said cylindrical annular recesses when said slide element is in said relief position.
9. Static pressure exhaust-type engine brake as claimed in claim 1 wherein:
said upstream control recess has a maximum circumferential width no greater than the circumferential width of said inlet end of said slide channel.
10. Static pressure exhaust-type engine brake as claimed in claim 1 and further comprising:
cooperating means between said slide element and said housing for preventing relative rotation between said slide element and said housing.
11. Static pressure exhaust-type engine brake as claimed in claim 10 wherein said cooperating means comprises:
an axially extending slot in the outer surface of said sliding element; and
a projection substantially radially extending from said housing and slidingly engaging in said axial slot.
12. Static pressure exhaust-type engine brake as claimed in claim 1 and further comprising:
a spring cavity at the end of said chamber adjacent the end of said sliding element opposite to said actuating terminal end of said sliding element; and
a spring member in said spring cavity between said chamber and said opposite end of said sliding element for resiliently urging said sliding element towards said closed position.
13. Static pressure exhaust-type engine brake as claimed in claim 1 wherein:
said downstream recess has a narrowing cross-section in the axial direction away from said second sealing ring and an axial length greater than that of said inner end of said outlet channel.
14. Static pressure exhaust-type engine brake as claimed in claim 1 wherein:
said downstream recess has an axial length greater than that of said inner end of said outlet channel.
15. Static pressure exhaust-type engine brake as claimed in claim 1 wherein:
said angle of said planar base of said upstream control recess relative to said central axis comprises 1° to 2°; and
said upstream control recess has a maximum depth in the range of 0.2 mm to 0.4 mm, an axial length in the range of 9.5 mm to 13.5 mm, and a maximum width in the range of 3 mm to 5 mm.
16. A variable flow slide valve comprising:
a housing;
a chamber in said housing having a central axis;
a slide element slidably mounted for reciprocating axial movement in said chamber between an open position, closed position, and relief position;
an actuating terminal end on said slide element projecting out of said housing;
an inlet channel in said housing having an inner end communicating with said chamber at a first position;
an outlet channel in said housing having an inner end communicating with said chamber at a second position axially spaced from said first position;
a bore hole slide channel in said slide member extending at an angle relative to said central axis and having an inlet end and an outlet end;
an upstream control recess in the outer surface of said slide member at said inlet end of said slide channel for connecting said inlet end to said first position when said slide member is in said open position and having a planar base extending at an angle relative to said central axis and a width that narrows in the axial direction from said inlet end toward said first position;
a downstream recess in said slide element at said outlet end of said slide channel for connecting said outlet end to said second position when said slide element is in said open position;
a first sealing ring mounted in said housing surrounding said slide element between said first and second positions for sealing between said slide element and said chamber; and
a second sealing ring mounted in said housing surrounding said slide element for sealing between said slide element and said chamber on the opposite side of said first position from said second position;
so that when said slide element is in said open position said upstream control recess overlaps said first sealing ring to a varying degree dependent upon a selective axial position of said slide element relative to said housing for controlling flow of pressurized fluid from said inlet channel to said outlet channel, and when said slide element is in said closed position said first sealing ring prevents said flow of pressurized fluid.
17. A variable flow slide valve as claimed in claim 16 wherein:
a relief channel means is provided in said housing having an inner end communicating with said chamber at a third position axially spaced from said second position in the opposite direction to said first position;
a third sealing ring is mounted in said housing surrounding said slide element between said second and third positions for sealing between said slide element and said chamber;
said chamber further comprises an enlarged diameter section forming a cylindrical annular space surrounding said slide element between said first and third sealing rings for connecting with said upstream control recess and said downstream recess when said slide element is in said open position; and
said downstream recess has a narrowing cross-section in the direction of said third sealing ring and overlaps said third sealing ring when said slide element is in said relief position for connecting said outlet channel through said cylindrical annular space to said relief channel means.
18. A variable flow slide valve as claimed in claim 17 wherein:
said chamber further comprises a second cylindrical annular space surrounding said slide element between said third sealing ring and said third position and communicating with said relief channel means; and
said downstream recess connects said cylindrical annular recesses when said slide element is in said relief position.
19. A variable flow slide valve as claimed in claim 16 wherein:
said downstream recess has a narrowing cross-section in the axial direction away from said second sealing ring and an axial length greater than that of said inner end of said outlet channel.
20. A variable flow slide valve as claimed in claim 16 wherein:
said downstream recess has an axial length greater than that of said inner end of said outlet channel.
US07/288,757 1987-12-22 1988-12-21 Slide valve with dosage regulation means Expired - Fee Related US4923167A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3743569 1987-12-22
DE19873743569 DE3743569A1 (en) 1987-12-22 1987-12-22 SLIDE VALVE WITH QUANTITY CONTROL

Publications (1)

Publication Number Publication Date
US4923167A true US4923167A (en) 1990-05-08

Family

ID=6343295

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/288,757 Expired - Fee Related US4923167A (en) 1987-12-22 1988-12-21 Slide valve with dosage regulation means

Country Status (6)

Country Link
US (1) US4923167A (en)
EP (1) EP0321774B1 (en)
JP (1) JPH01207636A (en)
AT (1) ATE102314T1 (en)
DE (1) DE3743569A1 (en)
ES (1) ES2050145T3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310118A (en) * 1991-08-09 1994-05-10 Colas S.A. Mechanical actuating device for opening or closing a valve controlling a nozzle movable along a present trajectory
US5394901A (en) * 1990-11-13 1995-03-07 Wabco Automotive (Uk) Limited Exhaust pressure modulation valve
US5630392A (en) * 1993-06-16 1997-05-20 Hersham Valves Limited Exhaust brake
US6032920A (en) * 1996-12-26 2000-03-07 Nippon Thermostat Co., Ltd. Actuator and exhaust brake unit thereof
US6726174B2 (en) * 2002-02-23 2004-04-27 Gustav Wahler Gmbh U. Co. Kg Control valve, especially for an internal combustion engine, for the controlled recycling of exhaust gases
CZ304452B6 (en) * 2001-01-25 2014-05-14 J. Eberspächer Gmbh & Co. Metering valve
CN105020424A (en) * 2015-07-24 2015-11-04 吴江万工机电设备有限公司 Flow regulating valve of two-for-one twister
US9228982B2 (en) 2011-09-16 2016-01-05 Agilent Technologies, Inc. Single injection valve for HPLC combining sample introduction, wash cycles and diagnosis
US20190219176A1 (en) * 2016-04-07 2019-07-18 Baser Ashok A control valve having hollow piston for controlling flow of fluid
US11247174B2 (en) 2018-12-24 2022-02-15 Suqian Hanshu Environmental Protection Equipment Co., Ltd Drainage device and system for controlling discharging of concentrated water in water purification process

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028794C2 (en) * 1990-09-11 1999-11-18 Bruno Bachhofer Plant for measuring and throttling a waste water flow rate
US8091582B2 (en) * 2007-04-13 2012-01-10 Cla-Val Co. System and method for hydraulically managing fluid pressure downstream from a main valve between set points
US20080251130A1 (en) 2007-04-13 2008-10-16 Cla-Val Co. System and method for hydraulically managing fluid pressure downstream from a main valve
DE102008006266B4 (en) 2008-01-25 2011-06-09 Dionex Softron Gmbh Sampler for liquid chromatography, in particular for high performance liquid chromatography
US9316324B2 (en) 2008-10-29 2016-04-19 Agilent Technologies, Inc. Shear valve with silicon carbide member
US8438910B2 (en) 2009-05-07 2013-05-14 Agilent Technologies, Inc. Shear valve with DLC comprising multi-layer coated member
CA2764047C (en) 2009-06-03 2016-12-13 Agilent Technologies, Inc. Sample injector with metering device balancing pressure differences in an intermediate valve state
EP3869193A1 (en) 2013-06-12 2021-08-25 Agilent Technologies, Inc. Filling a metering device by solvent from an analysis path of a fluid separation system
WO2016075503A1 (en) 2014-11-10 2016-05-19 Agilent Technologies, Inc. Metering device with defined enabled flow direction
DE202016100451U1 (en) 2015-06-25 2016-02-16 Dionex Softron Gmbh Sampler for liquid chromatography, in particular for high performance liquid chromatography
CN113983192B (en) * 2021-12-23 2022-03-18 艾肯(江苏)工业技术有限公司 Pilot-operated type pressure reducing valve with pressure detection mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3138175A (en) * 1960-11-22 1964-06-23 Futurecraft Corp High pressure modulating valve
US3987999A (en) * 1975-09-22 1976-10-26 Savage Harry A Precision metering valve structure
US4111166A (en) * 1977-02-07 1978-09-05 Caterpillar Tractor Co. Engine mounted exhaust brake
FR2519436A2 (en) * 1980-07-21 1983-07-08 Poclain Sa Jet whistle attenuator for pressure reducing valve - with internal wall of ring breaking up jet of fluid from orifice by internal pressure
DE3430028A1 (en) * 1984-08-16 1986-02-27 Alfred 8573 Pottenstein Schmidt DEVICE FOR LIMITING THE EXHAUST PRESSURE OF AN EXHAUST ENGINE BRAKE
DE3533393A1 (en) * 1985-09-19 1987-03-26 Alfred Schmidt CONSTRUCTION PRESSURE LIMIT WITH SAFETY VALVE
US4705069A (en) * 1984-12-21 1987-11-10 Mannesmann Rexroth Gmbh Directional control valve having a built-in flow control valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB403152A (en) * 1933-07-07 1933-12-21 Donald Easdale Valve giving constant rate of flow
US3477225A (en) * 1967-06-14 1969-11-11 Caterpillar Tractor Co Hydrostatic transmission control system
DE1650415A1 (en) * 1967-10-26 1970-08-27 Hansa Metallwerke Ag One-way mixing valve for cold and hot water
DE6921289U (en) * 1969-05-27 1969-11-20 Mecano Bundy Gmbh VALVE FOR REGULATING A HOT WATER CIRCUIT FOR HEATING THE INTERIOR OF A MOTOR VEHICLE
DE2324187C2 (en) * 1973-05-12 1975-01-16 Apparatebau King-Maschinen Gmbh & Co Kg, 4005 Meerbusch Slide valve, especially hand-operated longitudinal slide
US3955591A (en) * 1975-03-05 1976-05-11 Baumann Hans D Insert type sliding gate valve
DE2914981C3 (en) * 1979-04-12 1993-12-02 Westfalia Becorit Ind Tech Pressure relief valve for hydraulic pit punches
JPS631841A (en) * 1986-06-20 1988-01-06 Kubota Ltd Hydraulic circuit of power transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3138175A (en) * 1960-11-22 1964-06-23 Futurecraft Corp High pressure modulating valve
US3987999A (en) * 1975-09-22 1976-10-26 Savage Harry A Precision metering valve structure
US4111166A (en) * 1977-02-07 1978-09-05 Caterpillar Tractor Co. Engine mounted exhaust brake
FR2519436A2 (en) * 1980-07-21 1983-07-08 Poclain Sa Jet whistle attenuator for pressure reducing valve - with internal wall of ring breaking up jet of fluid from orifice by internal pressure
DE3430028A1 (en) * 1984-08-16 1986-02-27 Alfred 8573 Pottenstein Schmidt DEVICE FOR LIMITING THE EXHAUST PRESSURE OF AN EXHAUST ENGINE BRAKE
US4705069A (en) * 1984-12-21 1987-11-10 Mannesmann Rexroth Gmbh Directional control valve having a built-in flow control valve
DE3533393A1 (en) * 1985-09-19 1987-03-26 Alfred Schmidt CONSTRUCTION PRESSURE LIMIT WITH SAFETY VALVE

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394901A (en) * 1990-11-13 1995-03-07 Wabco Automotive (Uk) Limited Exhaust pressure modulation valve
US5310118A (en) * 1991-08-09 1994-05-10 Colas S.A. Mechanical actuating device for opening or closing a valve controlling a nozzle movable along a present trajectory
US5630392A (en) * 1993-06-16 1997-05-20 Hersham Valves Limited Exhaust brake
US6032920A (en) * 1996-12-26 2000-03-07 Nippon Thermostat Co., Ltd. Actuator and exhaust brake unit thereof
US6113063A (en) * 1996-12-26 2000-09-05 Nippon Thermostat Co., Ltd. Actuator and exhaust brake unit thereof
CZ304452B6 (en) * 2001-01-25 2014-05-14 J. Eberspächer Gmbh & Co. Metering valve
US6726174B2 (en) * 2002-02-23 2004-04-27 Gustav Wahler Gmbh U. Co. Kg Control valve, especially for an internal combustion engine, for the controlled recycling of exhaust gases
US9228982B2 (en) 2011-09-16 2016-01-05 Agilent Technologies, Inc. Single injection valve for HPLC combining sample introduction, wash cycles and diagnosis
CN105020424A (en) * 2015-07-24 2015-11-04 吴江万工机电设备有限公司 Flow regulating valve of two-for-one twister
US20190219176A1 (en) * 2016-04-07 2019-07-18 Baser Ashok A control valve having hollow piston for controlling flow of fluid
US10883612B2 (en) * 2016-04-07 2021-01-05 Swapneshu Ashok Baser Control valve having hollow piston for controlling flow of fluid
US11247174B2 (en) 2018-12-24 2022-02-15 Suqian Hanshu Environmental Protection Equipment Co., Ltd Drainage device and system for controlling discharging of concentrated water in water purification process

Also Published As

Publication number Publication date
ATE102314T1 (en) 1994-03-15
ES2050145T3 (en) 1994-05-16
DE3743569A1 (en) 1989-07-13
EP0321774A3 (en) 1990-01-17
JPH01207636A (en) 1989-08-21
EP0321774A2 (en) 1989-06-28
DE3743569C2 (en) 1992-10-29
EP0321774B1 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US4923167A (en) Slide valve with dosage regulation means
US4699351A (en) Pressure responsive, pilot actuated, modulating valve
US4187884A (en) Four-way valve employing fluid spring
US3601157A (en) Pressure balanced valve
US6371156B1 (en) No-bleed pilot for pressure regulating valve
US20130320252A1 (en) Control valve assembly
US5172722A (en) Stop valve for a vacuum apparatus
EP1601900A2 (en) Valve with adjustable stop
CA2093863A1 (en) Pneumatic control front valve
KR900003570A (en) Gas Pressure / Gas Flow Compensation Direct Acting Pressure Regulator
US4494572A (en) Four-way poppet valve assembly
US6843266B2 (en) Regulator with erosion resistant seal assemblies
US4020863A (en) Fluid pressure regulator construction
US4033233A (en) Fluid pressure operable servo positioner
JPS63180781A (en) Directional control valve unit
CA1230031A (en) Adjustable throttle valve
US6434931B1 (en) Hydraulic brake master cylinder with controlled center port valve gap and method of assembly
JPH08303612A (en) Small-sized flow control valve having cartridge type fittingarrangement
EP1255044B1 (en) Variable pressure control device
US7275559B2 (en) Pressure control valve
US6168134B1 (en) Exhaust gas recirculation valve with variable flow area
US6089528A (en) Poppet valve control with sealing element providing improved load drift control
US6053192A (en) Low operating force pressure regulator
US6481454B2 (en) Regulator with segmented body
GB2032581A (en) Combined pressure reducer and flow control valve

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19980513

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362