US4868345A - Process for hydrogenation of esters into alcohols - Google Patents

Process for hydrogenation of esters into alcohols Download PDF

Info

Publication number
US4868345A
US4868345A US07/238,384 US23838488A US4868345A US 4868345 A US4868345 A US 4868345A US 23838488 A US23838488 A US 23838488A US 4868345 A US4868345 A US 4868345A
Authority
US
United States
Prior art keywords
sodium
component
range
hydride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/238,384
Other languages
English (en)
Inventor
Eit Drent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Assigned to SHELL OIL COMPANY, A DE CORP. reassignment SHELL OIL COMPANY, A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DRENT, EIT
Application granted granted Critical
Publication of US4868345A publication Critical patent/US4868345A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process for the hydrogenation of esters and more particularly to a process for the hydrogenation of esters into alcohols in the presence of hydrogen and carbon monoxide and in the presence of a catalyst system.
  • the present invention is a process for the hydrogenation of esters of the formula ##STR2## wherein R 1 is hydrogen or a hydrocarbyl group and preferably an alkyl group containing 1-20 carbon atoms or an aryl alkyl group containing 1-6 carbon atoms in the alkyl residue, the aryl being preferably phenyl, and wherein R 2 is a hydrocarbyl group as specified herein before for R 1 , in the presence of hydrogen and carbon monoxide and a catalyst system, obtainable by combining the following components
  • Component (a) may be a hydride of lithium, sodium, potassium, rubidium, cesium, calcium, strontium, barium or magnesium. Preference is given to sodium hydride.
  • the hydride may be added as such, but it has been found that the hydride may advantageously be added as a suspension in an inert diluent, for example a mineral oil, such as a heavy hydrocarbon oil, preferably a so-called white paraffin oil.
  • the alcohol of component (b) may be cycloaliphatic or aliphatic, but is preferably aliphatic.
  • alkanols Preference is given to alkanols, in particular to those having in the range of from 1 to 20 carbon atoms per molecule. Among the latter alkanols those having in the range of from 4 to 20 carbon atoms per molecule are preferred. Tertiary alcohols are more preferred. Examples of suitable alkanols are tert-butyl alcohol, tert-pentyl alcohol, hexanol, heptanol and alkanols with from 8 to 20 carbon atoms per molecule. Tert-butyl alcohol and tert-pentyl alcohol are particularly preferred.
  • Dihydric alcohols may also be used, for example ethylene glycol, propylene glycol, 1,3-dihydroxypropane, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol or 1,2-pentanediol.
  • Component (b) may also be glycerol.
  • Component (b) may be a mixture of alcohols, for example of tert-butyl alcohol and ethylene glycol or of tert-phenyl alcohol and 1,4-butanediol.
  • the alcoholate to be used is preferably a sodium alcoholate or a potassium alcoholate.
  • the elements of Group VIII of the Periodic Table of the Elements that may be used in the salt of component (a) are iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum. Preference is given to nickel.
  • the anion of the salt in component (c) may be derived from a great variety of acids. It is preferred that the salt in component (c) is a salt of a carboxylic acid or sulphonic acids. Among these acids preference is given to alkanoic acids having 1-10 carbon atoms in the chain or to paratoluene sulphonic acid. More preference is given to formic acid, acetic acid and oxalic acid. Component (c) is most preferably nickel formate, nickel acetate, nickel oxalate or nickel tosylate.
  • carboxylic acids from which component (c) also may be derived are dicarboxylic acids such as malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the carboxylic acids from which component (c) may be derived may contain substituents, for example alkoxy groups, particularly those having not more than five carbon atoms, hydroxy groups, cyano groups and fluorine, chlorine, bromine and iodine atoms.
  • carboxylic acids examples include glycolic acid, 2-hydroxypropionic acid, 3-hydroxypropionic acid, glyceric acid, tartronic acid, malic acid, tartaric acid, tropic acid, benzilic acid, salicylic acid, anisic acid, gallic acid, 3,5-dichlorobenzoic acid, 3,5-dibromobenzoic acid, cyanoacetic acid, monofluoroacetic acid, difluoroacetic acid, trifluoroacetic acid and trichloroacetic acid.
  • Suitable acids from which component (c) may be derived are propanoic acid, butanoic acid, 2-methylpropanoic acid, pentanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, hexanoic acid, heptanoic acid and octanoic acid, hydrochloric acid, sulphuric acid, nitric acid and phosphoric acid.
  • a mixture of the salts in question may be used in component (c), for example of a formate and an oxalate, of a formate and an acetate, of acetate and an oxalate.
  • the salts in component (c) may contain crystal water, but are preferably free therefrom.
  • the activation of the catalyst system may be reached by keeping the mixed components under an atmosphere of nitrogen or any other suitable inert gas during 0.3 to 1 hour at a temperature in the range of from 20°-60° C. and more preferably 35°-50° C.
  • the process according to the present invention may be carried out at a temperature and a pressure which are not critical and may vary within wide ranges.
  • a temperature in the range of from 30° C. to 150° C. and a pressure in the range of from 5 to 100 bar are used.
  • the process according to the present invention may be carried out with an organic diluent in which the catalytic system is dissolved or suspended.
  • an organic diluent in which the catalytic system is dissolved or suspended.
  • a weight ratio of organic diluent to component (c) in the range of from 0.1 to 5000 is used, but this weight ratio may be lower than 0.1 or higher than 5000.
  • any inert diluent may in principle be used.
  • suitable diluents are ethers such as anisole, 2,5,8-trioxanonane (also referred to as "diglyme”), diethyl ether, diphenyl ether, diisopropyl ether and tetrahydrofuran; aromatic hydrocarbons, such as benzene, toluene, the three xylenes and ethylbenzene; halogenated aromatic compounds, such as chlorobenzene and o-dichlorobenzene; halogenated alkanes, such as dichloromethane and carbontetrachloride; alkanes, such as hexane, heptane, octane, 2,2,3-trimethylpentane and kerosene fractions; cycloalkanes, such as cyclohexane and methylcyclohexane; sulphones, such as
  • the process according to the present invention is preferably carried out using a molar ratio of the starting ester to component (c) in the range of from 0.5:1 to 100:1 and, more preferably, from 1:1 to 50:1, but the use of molar ratios below 0.5 and above 100 is not excluded.
  • the process may be carried out using a molar ratio of component (b) to component (c) which is not critical and may vary within wide ranges, preferably in the range of from 0.1:1 to 100:1.
  • the carbon monoxide and hydrogen may be used as pure gases or diluted with an inert gas such as a noble gas or nitrogen.
  • the process according to the present invention may be carried out using a molar ratio carbon monoxide to hydrogen in the gaseous mixture which is not critical and may vary within wide ranges, suitably in the range of from 1:0.2 to 1:20.
  • the carbon monoxide and hydrogen may be obtained by partial oxidation of hydrocarbons, for example of natural gas.
  • methylformate, methylacetate or methyl proprionate is hydrogenated into methanol and/or ethanol and/or n-propanol and methanol at 120° C. and a total pressure of 30-50 bar, leading to more than 90% conversion in 5 hours.
  • methyl succinate may be hydrogenated into butanediol and methanol.
  • Hastelloy C Hastelloy is a trade name
  • reaction mixtures obtained were analyzed by means of gas-liquid chromatography.
  • the autoclave is initially charged with 50 ml diglyme, 10 mmol nickel(II)formate, 60 mmol sodium hydride, 20 mmol tert-amylalcohol.
  • the catalyst system was activated during 0.5 hour at 45° C. under nitrogen.
  • reaction mixture was then heated up to 80° C. and kept at this temperature during two hours, whereafter the reaction mixture was kept for three hours at 120° C.
  • the total reaction pressure had decreased until about 30 bar hydrogen gas was added until a total operational pressure of about 60 bar was reached.
  • the autoclave is filled with carbon monoxide up to a partial pressure of 5 bar and with hydrogen up to 30 bar.
  • the temperature of the reaction mixture was kept at 80 ° C. for two hours and at 100° C. for three hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
US07/238,384 1987-09-15 1988-08-31 Process for hydrogenation of esters into alcohols Expired - Lifetime US4868345A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8721699 1987-09-15
GB878721699A GB8721699D0 (en) 1987-09-15 1987-09-15 Hydrogenation of esters into alcohols

Publications (1)

Publication Number Publication Date
US4868345A true US4868345A (en) 1989-09-19

Family

ID=10623825

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/238,384 Expired - Lifetime US4868345A (en) 1987-09-15 1988-08-31 Process for hydrogenation of esters into alcohols

Country Status (8)

Country Link
US (1) US4868345A (xx)
EP (1) EP0308030A1 (xx)
JP (1) JPH01110637A (xx)
AU (1) AU2212188A (xx)
BR (1) BR8804704A (xx)
GB (1) GB8721699D0 (xx)
NZ (1) NZ226164A (xx)
ZA (1) ZA886815B (xx)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982016A (en) * 1989-06-06 1991-01-01 Carter-Wallace, Inc. Conversion of diethyl phenylmalonate to 2-phenyl-1,3-propanediol
US5091595A (en) * 1989-06-07 1992-02-25 Choi Young M Reduction of diethyl phenylmalonate to 2-phenyl-1,3-propanediol
US5831133A (en) * 1994-10-19 1998-11-03 Firmenich Sa Process for the preparation of alcohols

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315515B2 (ja) * 2007-03-27 2013-10-16 株式会社Ihi エタノール合成方法及び装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232170A (en) * 1979-01-31 1980-11-04 Allied Chemical Corporation Process for homogeneous hydrogenation of esters
US4346240A (en) * 1980-03-24 1982-08-24 Allied Corporation Hydrogenation of esters using alkali doped heterogeneous group VIII transition metal catalysts
US4614749A (en) * 1985-03-12 1986-09-30 Sapienza Richard S Low temperature catalysts for methanol production
US4619946A (en) * 1985-03-12 1986-10-28 Sapienza Richard S Low temperature catalysts for methanol production
US4623634A (en) * 1985-12-23 1986-11-18 Sapienza Richard S Low temperature catalysts for methanol production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969523A (en) * 1960-06-27 1964-09-09 Montedison Spa Catalyst and process for hydrogenation of esters, acids, acetals and aldehydes
DE2246718A1 (de) * 1971-11-04 1973-05-10 Leuna Werke Veb Verfahren zur katalytischen spaltung von ameisensaeureestern in ihren gemischen mit alkoholen
GB8331794D0 (en) * 1983-11-29 1984-01-04 Davy Mckee Ltd Process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4232170A (en) * 1979-01-31 1980-11-04 Allied Chemical Corporation Process for homogeneous hydrogenation of esters
US4346240A (en) * 1980-03-24 1982-08-24 Allied Corporation Hydrogenation of esters using alkali doped heterogeneous group VIII transition metal catalysts
US4614749A (en) * 1985-03-12 1986-09-30 Sapienza Richard S Low temperature catalysts for methanol production
US4619946A (en) * 1985-03-12 1986-10-28 Sapienza Richard S Low temperature catalysts for methanol production
US4623634A (en) * 1985-12-23 1986-11-18 Sapienza Richard S Low temperature catalysts for methanol production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gallois et al, "Activation of Reducing Agents", J. Org. Chem., 45, 1946-1950 (1980).
Gallois et al, Activation of Reducing Agents , J. Org. Chem., 45, 1946 1950 (1980). *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982016A (en) * 1989-06-06 1991-01-01 Carter-Wallace, Inc. Conversion of diethyl phenylmalonate to 2-phenyl-1,3-propanediol
US5091595A (en) * 1989-06-07 1992-02-25 Choi Young M Reduction of diethyl phenylmalonate to 2-phenyl-1,3-propanediol
US5831133A (en) * 1994-10-19 1998-11-03 Firmenich Sa Process for the preparation of alcohols
US6046127A (en) * 1994-10-19 2000-04-04 Firmenich Sa Process for the preparation of alcohols

Also Published As

Publication number Publication date
BR8804704A (pt) 1989-05-30
AU2212188A (en) 1989-03-16
EP0308030A1 (en) 1989-03-22
GB8721699D0 (en) 1987-10-21
ZA886815B (en) 1989-04-26
NZ226164A (en) 1990-06-26
JPH01110637A (ja) 1989-04-27

Similar Documents

Publication Publication Date Title
US6080898A (en) Hydrogenolysis of glycerol
US4888361A (en) Process for the production of methanol and catalyst composition for said process
Knifton et al. Syngas reactions. 6. Aliphatic alcohols and esters from synthesis gas
Matteoli et al. Homogeneous catalytic hydrogenation of dicarboxylic acid esters
EP0285228B1 (en) Process for the production of methanol and a composition suitable for use as a catalyst in said process
KR101644669B1 (ko) 지환식 알코올의 제조방법
EP0033425B1 (en) Production of ethylene glycol from synthesis gas
CA1275112A (en) Process for the production of esters
US4868345A (en) Process for hydrogenation of esters into alcohols
US4268689A (en) Manufacture of vicinal glycol esters from synthesis gas
US4902822A (en) Process for the preparation of carboxylic acids or esters thereof
US4876286A (en) Process for the production of methanol and a composition suitable for use as a catalyst in said process
US3946055A (en) Method of manufacturing carboxylic acid or ester thereof
US4334092A (en) Method of preparing aliphatic carboxylic acids
US4332915A (en) Production of alkanols from synthesis gas
CA1135280A (en) Method of preparing aliphatic carboxylic acids
US4939307A (en) Process for hydrogenation of esters into alcohols
US4485255A (en) Carbonylation of α,β-unsaturated esters to linear saturated diesters
US4332914A (en) Manufacture of alkanols from synthesis gas
US4590311A (en) Process for the preparation of 1,4-butanediol
US4396726A (en) Process for preparing ethylene glycol and lower monohydric alcohols from syn gas using a novel catalyst system
AU603700B2 (en) Process for the production of methanol and catalyst composition for said process
US4323513A (en) Production of methyl esters and ethylene glycol esters from reaction of carbon monoxide and hydrogen in presence of ruthenium catalyst
US4508917A (en) Preparation of alkyl adipates
US4518715A (en) Process for producing ethylene glycol using a ruthenium-copper catalyst

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, A DE CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DRENT, EIT;REEL/FRAME:005132/0166

Effective date: 19880816

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12