US4805351A - Blade airfoil holding system - Google Patents
Blade airfoil holding system Download PDFInfo
- Publication number
- US4805351A US4805351A US07/153,263 US15326388A US4805351A US 4805351 A US4805351 A US 4805351A US 15326388 A US15326388 A US 15326388A US 4805351 A US4805351 A US 4805351A
- Authority
- US
- United States
- Prior art keywords
- blade
- concave surface
- holding
- airfoil portion
- stacking axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000011888 foil Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000003754 machining Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B19/00—Single-purpose machines or devices for particular grinding operations not covered by any other main group
- B24B19/14—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
- B24B41/06—Work supports, e.g. adjustable steadies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49336—Blade making
Definitions
- This invention relates generally to turbine blades as for use in a gas turbine engine and, more specifically, to a method of, and apparatus for, assuring that all blades on a rotational disk are balanced and have desired airflow characteristics within predetermined tolerances.
- a plurality of turbine blades are connected with and extend radially from a rotational disk or hub.
- Each blade includes a root form portion which is serrated to fit within similarly configured slots in the disk to lock the blades in place and may have a shroud for holding the blade at its tip end.
- Each turbine blade has a precise configuration, the tolerances of which are determined by the accuracy of the root form and of the shroud, if it has one.
- the present invention relates to a system for securely holding a turbine blade during machining or grinding of the shroud and of the serrations in the root form.
- the root form and the shroud may be ground more accurately, thereby improving the tolerances of the entire configuration of the blade.
- the airfoil portion of the blade After a turbine blade has been cast, it was known in the art to arrange the airfoil portion of the blade in a mold or matrix block and to fill the mold with molten lead which hardens to form a lead matrix block.
- the root form portion of the blade extends from the lead matrix block, the block is mounted in a fixture, and the serrations are ground in the protruding root form portion of the blade.
- lead matrix blocks A major drawback of the use of lead matrix blocks is that the lead is porous and flexible, even when in the solid state. Thus, the lead matrix block cannot be securely held during grinding of the root form, whereby inaccuracies in the root form are developed. Since the root form provides the basis for all of the critical dimensions in the blade, the entire blade will be inaccurate when the root form is not ground to the proper specifications.
- Turbine blade holding devices are also known in the patented prior art as evidenced by the U.S. Pat. Nos. 3,331,166 to Brenning, 3,331,166 and 4,400,915 to Arrigoni. While these devices normally operate satisfactorily, they are designed for machining the air foil portion of the blade rather than the root form portion.
- a significant problem with the prior art resides in its failure to account for variations in the shape and size of an airfoil resulting from the casting operation. No two blades are absolutely identical no matter how carefully the casting process is performed. For that reason, positioning of the blade within a preestablished, but minimized, range of tolerances is important before performing the operation of grinding either the root form or the shroud.
- a major drawback of known blade holders is that they are incapable of accurately and securely holding a plurality of successive turbine blades during grinding of the root form portions of the blades, whereby each root form, and thus each blade, will be uniform in dimension and configuration.
- the present invention was developed to overcome the drawbacks of the prior devices and methods by accommodating for variations in the shape and size of the airfoil while assuring an end product which will have a stacking axis which lies within an acceptable range of tolerances. According to the invention, the desired angular relationship of the airfoil to the root form is also assured.
- the present invention is directed toward a method and apparatus for accurately positioning successive turbine blades in a fixture in preparation for grinding of the root form and/or of the shroud thereof.
- the leading edge of each blade is supported by, or nested in, a vee block at first and second pairs of spaced locations and the concave surface of the blade is additionally supported adjacent its trailing edge by means of a pad member having a planar surface so oriented that the entire surface thereof coextensive with the concave surface is substantially contiguous therewith.
- the pad member is also so positioned relative to the vee block to assure a proper chord angle when the turbine blade is mounted on the rotational disk of the engine. In this manner, the stacking axis of each blade is substantially aligned with a predetermined axis within a tolerance range less than that of the airfoil envelope tolerance.
- a primary feature of the invention is to compensate for differences or irregularities across the surface of the blade.
- tilt and lean are avoided.
- supporting the concave surface of the blade by means of a pad located at a single location adjacent the trailing edge and intermediate the ends of the blade, the chord angle is properly placed.
- FIG. 1 is a perspective view of a typical turbine blade to which the invention can be applied;
- FIG. 2 is a front plan view of a turbine blade holding apparatus according to the invention arranged adjacent a grinding wheel;
- FIG. 3 is a cross section view of an airfoil portion of the blade illustrated in FIG. 1 depicting a range of possible contours following a casting operation forming the blade;
- FIG. 4 is a diagrammatic perspective view illustrating the blade positioning apparatus and the method of the invention.
- FIG. 5 is a cross section view, certain parts being cut away and in section, illustrating the blade positioning apparatus and the method of the invention.
- FIG. 6 is a diagrammatic end elevation view illustrating spatial relationships between the blade and the blade positioning apparatus of the invention.
- a major consideration of turbine blade manufacturing is the alignment of the mass of the airfoil, as defined by its stacking axis, over the blade attachment device or root form.
- the root form is generally machined after the airfoil shape is generated.
- the objective then becomes one of positioning the airfoil center of mass in a consistent manner when presenting the root form for machining.
- Airfoil shape variations are often of the same magnitude as the tolerance allowed to position the center of mass over the finished root form. These variations must be dealt with during machining to insure correct air flow and balance during engine operation.
- the present invention accommodates these variations.
- the angular relationship of the airfoil to the root form is also of primary importance.
- this angular relationship may be controlled in different ways. The two most common ways are to control the exit angle when gas reaction vectors are of primary concern or the chord angle when the total assembly throat opening is of primary concern.
- the present invention also satisfies this requirement to assure the proper angular relationship of the airfoil to the root form.
- the invention is a blade airfoil holding system which minimizes the effect of airfoil variations on the center of mass position and angular relationship of the airfoil to root form.
- FIG. 1 The blade includes a root form portion 22, a platform portion 24, an airfoil portion 26 having a leading edge 28 and a trailing edge 30, and an optional shroud 32.
- Turbine blades are normally cast as an integral unit.
- Each turbine blade has a stacking axis 34 which corresponds with the centerline of the airfoil portion of the blade, that is, with a line through the centroids of many successive transverse sections through the airfoil portion of the blade. Rotation o the airfoil 26 about the stacking axis 34 is referred to as twist as shown by arrows 35.
- the point 36 at which the stacking axis 34 emerges from the shroud 32 is the stacking point.
- a datum point 38 may be located at a predetermined distance from the shroud where the stacking axis enters the same. Where no shroud is provided on the blade, the datum point 38 is located on the platform 24 at a predetermined distance from where the stacking axis passes therethrough.
- Deflection of the airfoil 26 from front to rear relative to the root form 22 is referred to as tilt as shown by arrows 40.
- Deflection of the airfoil 26 from side to side is referred to as lean as shown by arrows 42.
- a chord line 44 is that line adjacent the platform 24 and normal to the stacking axis 34 which is defined between the leading and trailing edges of the airfoil portion.
- the chord angle 46 is defined as the angle between the chord line 44 and a line through the datum point 38 parallel to the root form centerline 48.
- the airfoil portion 26 of a turbine blade can be divided into an infinite number of sections which are stacked upon one another.
- the configuration of each section is designated around the stacking point therefor, the stacking point being located along the stacking axis 34 at the location bisected by the horizontal plane through which an individual airfoil section is taken.
- the root form portion 22 of the blade 20 is ground to form a plurality of serrations 50.
- the orientation of the serrations 50 is critical to insure that the entire blade is properly arranged in a turbine assembly.
- a turbine assembly (not shown) comprises a plurality of turbine blades connected with and extending radially from a central, rotatable disk.
- the disk contains a plurality of slots or recesses, there being one recess for each blade.
- Each recess is configured to receive the serrated root form of the blade.
- the blades and their root forms must be accurately shaped for cooperation with the other blades of the assembly.
- the shrouds of adjoining blades are designed to be in continuous relation to each other.
- the orientation and configuration of the root form serrations are critical.
- a holding fixture 52 according to the present invention is shown mounted in a fixed orientation on a table 54 or the like adjacent a grinding wheel 56.
- the rotating grinding wheel may be displaced relative to a turbine blade root form secured in the holding fixture in a conventional manner to grind the root form in order to form the serrations 50 therein.
- a plurality of turbine blade holding devices 52 may be arranged in parallel opposite the grinding wheel. With such an arrangement, the wheel may be reciprocated adjacent the plurality of turbine blade holders to thereby accurately machine or grind a plurality of root forms substantially simultaneously.
- FIG. 3 depicts a cross section of a typical airfoil portion 26 of the blade 20.
- the casting process for producing a blade is a reasonably accurate one. Nevertheless, the size and shape of the outer contour of one blade will differ from another within a predetermined range of tolerances.
- a blade with a nominal contour is indicated at 58A
- a blade of maximum contour is indicated at 58B
- a blade of minimum contour is indicated at 58C.
- any one blade may exhibit a maximum contour at one location on its surface and a minimum contour at another location on its surface. However, no blade would have a contour outside of the range depicted, otherwise it would be rejected. Utilizing the nominal contour 58A as depicted in FIG.
- airfoil portion 26 has a stagnation point 60 which represents a point in the boundary layer of fluid flow across the airfoil in which viscous friction has brought part of the boundary layer to rest.
- the fluid to one side of this point which is arbitrarily located in FIG. 3, will flow across the convex side 62 of the airfoil portion and fluid to the other side of this point will flow across the concave side 64 of the airfoil portion.
- the stagnation point 60 is not a fixed point, but may move through a limited range at the leading edge 28 of the blade depending upon the attitude of the airfoil portion relative to the oncoming flow of air.
- FIG. 4 depicts the primary features of the invention, specifically, the provision and placement of a vee block 66 and of a support pad 68.
- the vee block 66 and the support pad 68 are fixedly mounted in an appropriate manner on the holding fixture 52. They are specially formed and positioned for each design of blade 20 to be operated upon. That is, with each different blade design, the block 66 will be differently designed as will be the support pad 68 and its position relative to the vee block.
- the vee block 66 includes first and second cooperating holding members 70 and 72 each of which terminates a blunt surface 74 and 76, respectively.
- the holding members 70 and 72 are able to receive the leading edge 28 of the airfoil portion 26 in a nesting relationship.
- nesting can be defined as engaging the leading edge 28 simultaneously at least at one point spaced from the stagnation point 60 in the direction of the convex side 62 and at least at one point spaced from the stagnation 60 in the direction of the concave side 64. This will assure that the airfoil portion 26 will be held such that the angular relationship between the chord line 44 and the root form centerline 48 is maintained substantially constant. In this manner, while the airfoil portion 26 is free to be pivoted along its outer surfaces at its leading edge 28, its translational position is thereby fixed.
- a similar arrangement is provided by means of third and fourth holding members 78 and 80, respectively, which similarly terminate at blunt surfaces 82 and 84.
- the holding members 78, 80 are spaced from the holding members 70, 72.
- the surfaces 74, 76, 82, and 84 are smooth and preferably flat so as to provide some measure of a bearing surface able to distribute a load without causing any substantial deformation or gouging or scratching of the outer surfaces of the airfoil portion 26. It will also be appreciated that the surfaces 74 and 82 may not, and need not, be coplanar by reason of twist which may be present in the airfoil portion. Similarly, the surfaces 76 and 84 may not, and need not, be coplanar.
- the mutual surfaces 74 and 76 and 82 and 84 may define an appropriate angle between them to assure proper nesting of the airfoil. That is, those surfaces may define an included angle which is obtuse, acute, or right, as desired. In some instances, a particular included angle may be chosen in order to accommodate a parting line formed at the leading edge 28 as a result of the casting process.
- the next step in the procedure utilizing the system of the invention is to properly position the trailing edge 30 so that the airfoil portion 26 assumes the correct angle of attack, that is, the correct chord angle 46.
- the pad 68 is a trailing edge support member which, in cooperation with the vee block 66, is positioned to receivably engage the concave side 64 of the airfoil portion 26 adjacent the trailing edge 30.
- the airfoil portion 26 is pivoted in its nested relationship on the vee block 66 until the concave side engages the pad 68.
- the pad is so formed and positioned as to be substantially coplanar with the concave side 64 of the blade.
- the entire surface of the pad 68 which is coextensive with the concave side 64 is substantially contiguous therewith.
- the pad 68 is located intermediate a tip end 86 and a platform end 88 of the airfoil portion 26 and, preferably, intermediate generally parallel planes containing the first and second holding members and the third and fourth holding members.
- the pad 68 will also be oriented to take into account any twist in the airfoil portion 26.
- a clamping member 90 suitably mounted on the holding fixture 52 is brought to bear against the convex side of the airfoil portion 26 to thereby maintain the previously described orientation of the blade 20.
- the clamping member 90 includes a rod-like arm 92 with a rounded terminal end 94 and an annular groove 96 spaced from the end 94.
- a cup shaped bearing head 98 is received over the terminal end 94 of the arm 92 and is suitably drilled to receive a holding pin 100 which engages with the groove 96 to secure the bearing head 98 to the arm 92.
- the extreme end of a bearing head is hollowed out to define an annular rim 102.
- the annular rim 12 which is preferably reasonably blunt, will be caused to engage the convex side 62 of the airfoil portion. Since the rim 102 is circular and substantially planar, it engages the convex side 62 at two diametrically opposed locations.
- the stacking axes 34 of subsequent blades 20 will be maintained within a tolerance range which is less than that of the airfoil envelope tolerance.
- the shift of the stacking axis 34 from one blade to the next of a given design or contour would never be greater than the product of either the sine or of the cosine of the chord angle and the variation in the contour of the airfoil portion at the leading edge 28 or adjacent to, but not at, the trailing edge.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/153,263 US4805351A (en) | 1988-02-08 | 1988-02-08 | Blade airfoil holding system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/153,263 US4805351A (en) | 1988-02-08 | 1988-02-08 | Blade airfoil holding system |
Publications (1)
Publication Number | Publication Date |
---|---|
US4805351A true US4805351A (en) | 1989-02-21 |
Family
ID=22546453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/153,263 Expired - Fee Related US4805351A (en) | 1988-02-08 | 1988-02-08 | Blade airfoil holding system |
Country Status (1)
Country | Link |
---|---|
US (1) | US4805351A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869194A (en) * | 1996-04-30 | 1999-02-09 | United Technologies Corporation | Blank for manufacturing precisely shaped parts |
US5901435A (en) * | 1995-10-18 | 1999-05-11 | Electricite De France Service National | Device for installing aerial beacons on a cable |
US6017263A (en) * | 1996-04-30 | 2000-01-25 | United Technologies Corporation | Method for manufacturing precisely shaped parts |
US6068541A (en) * | 1997-12-22 | 2000-05-30 | United Technologies Corporation | Method for using a fixture enabling more accurate machining of a part |
US6139412A (en) * | 1996-04-30 | 2000-10-31 | United Technologies Corporation | Fixture for manufacturing precisely shaped parts |
US6568993B1 (en) | 2001-12-13 | 2003-05-27 | General Electric Company | Fixture for clamping a gas turbine component and its use in shaping the gas turbine component |
US20030114080A1 (en) * | 2001-12-13 | 2003-06-19 | Jones Daniel Edward | Fixture for clamping a gas turbine component blank and its use in shaping the gas turbine component blank |
US6652369B2 (en) | 2001-12-13 | 2003-11-25 | General Electric Company | Fixture for clamping a gas turbine component and its use in shaping the gas turbine component |
US20040171330A1 (en) * | 2003-02-28 | 2004-09-02 | Whitmarsh Robert Duane | Apparatus and method for consistently retaining a gas turbine engine blade in a predetermined position and orientation |
US6792655B2 (en) * | 2001-11-09 | 2004-09-21 | General Electric Company | Apparatus for correcting airfoil twist |
US6820468B2 (en) | 2001-03-26 | 2004-11-23 | General Electric Company | Fixture for holding a gas turbine engine blade |
US20070084052A1 (en) * | 2005-10-14 | 2007-04-19 | General Electric Company | Methods and apparatus for manufacturing components |
US7303461B1 (en) * | 2006-12-05 | 2007-12-04 | Pratt & Whitney Canada Corp. | Method of machining airfoils by disc tools |
EP1884312A1 (en) * | 2006-08-04 | 2008-02-06 | Ansaldo Energia S.P.A. | A device for blocking a blade of a turbine and a method for blade machining using said blocking device |
US20090211091A1 (en) * | 2008-02-21 | 2009-08-27 | Hlavaty Kirk D | Non-metallic cover for a fixture |
US20090278294A1 (en) * | 2008-05-09 | 2009-11-12 | Rolls-Royce Plc | Clamping system |
US20130015618A1 (en) * | 2010-03-05 | 2013-01-17 | Snecma | Mounting for locking a vane by means of the blade thereof during machining of the root of said vane |
US20130173043A1 (en) * | 2012-01-04 | 2013-07-04 | General Electric Company | Robotic machining apparatus method and system for turbine buckets |
US20150218955A1 (en) * | 2012-08-22 | 2015-08-06 | United Technologies Corporation | Compliant cantilevered airfoil |
EP2861830A4 (en) * | 2012-06-13 | 2016-04-20 | United Technologies Corp | Tip fabrication for rotor blade or stator vane airfoil |
US20160297044A1 (en) * | 2015-04-10 | 2016-10-13 | Rolls-Royce Corporation | Machining parameter control based on acoustic monitoring |
CN107225472A (en) * | 2016-03-25 | 2017-10-03 | 西门子公司 | A kind of blade damps the grinding attachment of platform |
US20180093761A1 (en) * | 2016-09-30 | 2018-04-05 | Sikorsky Aircraft Corporation | De-ice fairing bond fixture |
US10228669B2 (en) | 2015-05-27 | 2019-03-12 | Rolls-Royce Corporation | Machine tool monitoring |
US10295475B2 (en) | 2014-09-05 | 2019-05-21 | Rolls-Royce Corporation | Inspection of machined holes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2565925A (en) * | 1946-04-10 | 1951-08-28 | Rolls Royce | Method of manufacturing guide vanes for axial flow turbines and compressors |
US3331166A (en) * | 1964-11-27 | 1967-07-18 | Brenning Albert | Jig for grinding turbine blades of jet engines |
US3818646A (en) * | 1973-01-12 | 1974-06-25 | Trw Inc | Fixture for holding precisely shaped parts |
US4033569A (en) * | 1976-10-15 | 1977-07-05 | Dunn Garf L | Deformation-preventing workpiece-holding fixture for machine tools |
US4128929A (en) * | 1977-03-15 | 1978-12-12 | Demusis Ralph T | Method of restoring worn turbine components |
US4400915A (en) * | 1980-06-02 | 1983-08-30 | United Technologies Corporation | Fixture for restoring a face on the shroud of a rotor blade |
US4589175A (en) * | 1980-06-02 | 1986-05-20 | United Technologies Corporation | Method for restoring a face on the shroud of a rotor blade |
US4638602A (en) * | 1986-01-03 | 1987-01-27 | Cavalieri Dominic A | Turbine blade holding device |
-
1988
- 1988-02-08 US US07/153,263 patent/US4805351A/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2565925A (en) * | 1946-04-10 | 1951-08-28 | Rolls Royce | Method of manufacturing guide vanes for axial flow turbines and compressors |
US3331166A (en) * | 1964-11-27 | 1967-07-18 | Brenning Albert | Jig for grinding turbine blades of jet engines |
US3818646A (en) * | 1973-01-12 | 1974-06-25 | Trw Inc | Fixture for holding precisely shaped parts |
US4033569A (en) * | 1976-10-15 | 1977-07-05 | Dunn Garf L | Deformation-preventing workpiece-holding fixture for machine tools |
US4128929A (en) * | 1977-03-15 | 1978-12-12 | Demusis Ralph T | Method of restoring worn turbine components |
US4400915A (en) * | 1980-06-02 | 1983-08-30 | United Technologies Corporation | Fixture for restoring a face on the shroud of a rotor blade |
US4589175A (en) * | 1980-06-02 | 1986-05-20 | United Technologies Corporation | Method for restoring a face on the shroud of a rotor blade |
US4638602A (en) * | 1986-01-03 | 1987-01-27 | Cavalieri Dominic A | Turbine blade holding device |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5901435A (en) * | 1995-10-18 | 1999-05-11 | Electricite De France Service National | Device for installing aerial beacons on a cable |
US6017263A (en) * | 1996-04-30 | 2000-01-25 | United Technologies Corporation | Method for manufacturing precisely shaped parts |
US6139412A (en) * | 1996-04-30 | 2000-10-31 | United Technologies Corporation | Fixture for manufacturing precisely shaped parts |
US5869194A (en) * | 1996-04-30 | 1999-02-09 | United Technologies Corporation | Blank for manufacturing precisely shaped parts |
US6068541A (en) * | 1997-12-22 | 2000-05-30 | United Technologies Corporation | Method for using a fixture enabling more accurate machining of a part |
US6287182B1 (en) | 1997-12-22 | 2001-09-11 | United Technologies Corporation | Fixture for manufacturing precisely shaped parts |
US6820468B2 (en) | 2001-03-26 | 2004-11-23 | General Electric Company | Fixture for holding a gas turbine engine blade |
US6792655B2 (en) * | 2001-11-09 | 2004-09-21 | General Electric Company | Apparatus for correcting airfoil twist |
US6652369B2 (en) | 2001-12-13 | 2003-11-25 | General Electric Company | Fixture for clamping a gas turbine component and its use in shaping the gas turbine component |
US6568993B1 (en) | 2001-12-13 | 2003-05-27 | General Electric Company | Fixture for clamping a gas turbine component and its use in shaping the gas turbine component |
US20030114080A1 (en) * | 2001-12-13 | 2003-06-19 | Jones Daniel Edward | Fixture for clamping a gas turbine component blank and its use in shaping the gas turbine component blank |
US6855033B2 (en) | 2001-12-13 | 2005-02-15 | General Electric Company | Fixture for clamping a gas turbine component blank and its use in shaping the gas turbine component blank |
US20040171330A1 (en) * | 2003-02-28 | 2004-09-02 | Whitmarsh Robert Duane | Apparatus and method for consistently retaining a gas turbine engine blade in a predetermined position and orientation |
US6890248B2 (en) | 2003-02-28 | 2005-05-10 | General Electric Company | Apparatus and method for consistently retaining a gas turbine engine blade in a predetermined position and orientation |
US20070084052A1 (en) * | 2005-10-14 | 2007-04-19 | General Electric Company | Methods and apparatus for manufacturing components |
US7752755B2 (en) * | 2005-10-14 | 2010-07-13 | General Electric Company | Methods and apparatus for manufacturing components |
EP1884312A1 (en) * | 2006-08-04 | 2008-02-06 | Ansaldo Energia S.P.A. | A device for blocking a blade of a turbine and a method for blade machining using said blocking device |
US7303461B1 (en) * | 2006-12-05 | 2007-12-04 | Pratt & Whitney Canada Corp. | Method of machining airfoils by disc tools |
US20090211091A1 (en) * | 2008-02-21 | 2009-08-27 | Hlavaty Kirk D | Non-metallic cover for a fixture |
US20120096715A1 (en) * | 2008-02-21 | 2012-04-26 | Hlavaty Kirk D | Non-metallic cover for a fixture |
US8997351B2 (en) * | 2008-02-21 | 2015-04-07 | United Technologies Corporation | Non-metallic cover for a fixture |
US8151458B2 (en) * | 2008-02-21 | 2012-04-10 | United Technologies Corporation | Non-metallic cover for a fixture |
US20090278294A1 (en) * | 2008-05-09 | 2009-11-12 | Rolls-Royce Plc | Clamping system |
US8061699B2 (en) * | 2008-05-09 | 2011-11-22 | Rolls-Royce Plc | Clamping system |
US20130015618A1 (en) * | 2010-03-05 | 2013-01-17 | Snecma | Mounting for locking a vane by means of the blade thereof during machining of the root of said vane |
US10112275B2 (en) * | 2010-03-05 | 2018-10-30 | Safran Aircraft Engines | Mounting for locking a vane by means of the blade thereof during machining of the root of said vane |
US20130173043A1 (en) * | 2012-01-04 | 2013-07-04 | General Electric Company | Robotic machining apparatus method and system for turbine buckets |
US9043011B2 (en) * | 2012-01-04 | 2015-05-26 | General Electric Company | Robotic machining apparatus method and system for turbine buckets |
EP2861830A4 (en) * | 2012-06-13 | 2016-04-20 | United Technologies Corp | Tip fabrication for rotor blade or stator vane airfoil |
US20150218955A1 (en) * | 2012-08-22 | 2015-08-06 | United Technologies Corporation | Compliant cantilevered airfoil |
US10584598B2 (en) * | 2012-08-22 | 2020-03-10 | United Technologies Corporation | Complaint cantilevered airfoil |
US10295475B2 (en) | 2014-09-05 | 2019-05-21 | Rolls-Royce Corporation | Inspection of machined holes |
US20160297044A1 (en) * | 2015-04-10 | 2016-10-13 | Rolls-Royce Corporation | Machining parameter control based on acoustic monitoring |
US10228669B2 (en) | 2015-05-27 | 2019-03-12 | Rolls-Royce Corporation | Machine tool monitoring |
CN107225472B (en) * | 2016-03-25 | 2019-07-09 | 西门子公司 | A kind of grinding attachment of blade damping platform |
CN107225472A (en) * | 2016-03-25 | 2017-10-03 | 西门子公司 | A kind of blade damps the grinding attachment of platform |
US20180093761A1 (en) * | 2016-09-30 | 2018-04-05 | Sikorsky Aircraft Corporation | De-ice fairing bond fixture |
US10875638B2 (en) * | 2016-09-30 | 2020-12-29 | Sikorsky Aircraft Corporation | De-ice fairing bond fixture |
US12071229B2 (en) | 2016-09-30 | 2024-08-27 | Sikorsky Aircraft Corporation | De-ice fairing bond fixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4805351A (en) | Blade airfoil holding system | |
US4638602A (en) | Turbine blade holding device | |
US4589175A (en) | Method for restoring a face on the shroud of a rotor blade | |
US6287182B1 (en) | Fixture for manufacturing precisely shaped parts | |
CN101291764B (en) | Aligned multi-diamond cutting tool assembly for creating microreplication tools | |
US3818646A (en) | Fixture for holding precisely shaped parts | |
CN101678515B (en) | Method of manufacture using same datum features on different workpieces | |
US3909157A (en) | Turbine nozzle-vane construction | |
US3802046A (en) | Method of making or reconditioning a turbine-nozzle or the like assembly | |
US9205522B2 (en) | Equipment comprising a rotatable cradle and intended for encasing the airfoil of a turbine blade in order to machine the root | |
US7080434B2 (en) | Fixture having integrated datum locators | |
EP1452275B1 (en) | Apparatus for consistently retaining a gas turbine engine blade in a predetermined position and orientation | |
US10112275B2 (en) | Mounting for locking a vane by means of the blade thereof during machining of the root of said vane | |
JPH10501749A (en) | Fixing system for machining both sides of a workpiece in parallel | |
BR112015010132B1 (en) | TAPERED GEAR FACE CUTTER HEAD FOR MILLING AND FACING TAPERED AND HYPOID GEARS AND GRINDING METHOD AT LEAST ONE CUTTING BLADE POSITIONED ON A TAPERED GEAR FACE CUTTER HEAD | |
US3963894A (en) | Turbine-nozzle manufacturing apparatus | |
JPH068032A (en) | Fixing blade | |
US2565925A (en) | Method of manufacturing guide vanes for axial flow turbines and compressors | |
US2577747A (en) | Method of making turbine blades | |
US3920947A (en) | Turbine-nozzle manufacturing apparatus and method | |
CN106363431A (en) | Machining method for tenon tooth of shrouded turbine blade | |
CN214533081U (en) | Plate sheet of aero-engine | |
US4033018A (en) | Indexable milling cutter | |
CN114367713A (en) | Machining method for split type 3D printing turbine guide blade blank | |
JP2001073706A (en) | Repair method of turbine rotor blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AVCO CORPORATION, 40 WESTMINSTER STREET, PROVIDENC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DOBSON, KEITH F.;STEEVES, WALTER E.;REEL/FRAME:004875/0203 Effective date: 19880202 Owner name: AVCO CORPORATION,RHODE ISLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOBSON, KEITH F.;STEEVES, WALTER E.;REEL/FRAME:004875/0203 Effective date: 19880202 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ALLIEDSIGNAL INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVCO CORPORATION;REEL/FRAME:007183/0633 Effective date: 19941028 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20010221 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |