US4772567A - Method of producing a semiconductor integrated circuit BI-MOS device - Google Patents
Method of producing a semiconductor integrated circuit BI-MOS device Download PDFInfo
- Publication number
- US4772567A US4772567A US07/004,845 US484587A US4772567A US 4772567 A US4772567 A US 4772567A US 484587 A US484587 A US 484587A US 4772567 A US4772567 A US 4772567A
- Authority
- US
- United States
- Prior art keywords
- region
- layer
- forming
- epitaxial
- leading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 17
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 238000009792 diffusion process Methods 0.000 claims abstract description 15
- 238000000151 deposition Methods 0.000 claims abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 15
- 229920005591 polysilicon Polymers 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 13
- 230000010354 integration Effects 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 8
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 238000002161 passivation Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 claims description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 2
- 229910021344 molybdenum silicide Inorganic materials 0.000 claims description 2
- 229910021339 platinum silicide Inorganic materials 0.000 claims description 2
- 229910021426 porous silicon Inorganic materials 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims 3
- 239000003779 heat-resistant material Substances 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8248—Combination of bipolar and field-effect technology
- H01L21/8249—Bipolar and MOS technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28525—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
Definitions
- the present invention relates to a method of producing a semiconductor integrated circuit device, and more particularly, to that of producing a so-called BI-MOS semiconductor integrated circuit device in which MOS elements and bipolar elements are produced on the same chip.
- bipolar elements have a high driving ability for the amount of chip area occupied by the bipolar elements, and have a high accuracy in the processing of analog quantity.
- bipolar elements exhibit the disadvantages of a low integration density and a low input impedance.
- MOS elements have a high input impedance and a high integration density, and accordingly it is effective to include MOS elements in a chip where bipolar elements are mainly used in order to supplement the disadvantages of the bipolar elements.
- MOS top operational amplifiers where MOS elements are used at the input stage. These amplifiers are already being manufactured and sold.
- npn transistors are used as bipolar elements and p-channel MOS transistors are used as MOS elements.
- the method of producing such a BI-MOS integrated circuit device is described below with reference to FIG. 1.
- an n type high impurity density embedding layer 2 is produced on the p type silicon substrate 1, and thereafter, an n type low impurity density epitaxial layer 3 is grown thereon.
- a selective oxidization is conducted with an anti-oxidization film such as nitride film 4 as a mask, thereby producing thick oxide films 5 to electrically separate the element constituting regions 3a, 3b in the epitaxial layer 3.
- an anti-oxidization film such as nitride film 4 as a mask
- the silicon nitride films 4 are removed, silicon oxide films 6 are produced as protection films at the ion injection, and a photoresist film 7 is produced.
- boron ions are injected to the surface area of the semiconductor substrate through the oxide films 6 with the photoresist film 7 as a mask, and thereafter, the photoresist film 7 is removed, and the injected borons are driving-diffused by a thermal processing, thereby producing a base layer 8, a source layer 9, a drain layer 10 of all p types, and a diffusion resistance (not shown).
- an n type high impurity density (n + ) collector contact layer 11 and an n + emitter layer 12 are produced by an ion injection or a gas diffusion method.
- an oxide film 13 such as phosphite glass film, is deposited thereon, the portions of the oxide films 13 and 6 which portions are to become gates are both removed, and the gate oxide film 14 is produced again.
- contact holes are apertured to the oxide films 13 and 6 at the electrode leading regions, and the base electrode 15, emitter electrode 16, collector electrode 17, source electrode 18, gate electrode 19, and drain electrode 20, and other wirings are produced.
- FIG. 2 which is a plan view of the device of FIG. 1(F)
- the integration density of MOS transistors in BI-MOS devices has become lower than that of the exclusive MOS element based on the overlapping of the gate oxide film 14 and the source/drain 9/10, and the increase of margin which is usually required caused by electrode wirings.
- the heating process at an elevated temperature for producing gate oxide films must be executed after the n + emitter diffusion process, and accordingly, the impurities in the n + layer once diffused will be distributed again. Furthermore, it is quite difficult to control the amplification factor hFE of the npn transistor in the bipolar circuit portion with high accuracy, resulting in the biggest problem in the production process of BI-MOS integrated circuit device.
- the present invention is directed to solve the problems pointed out above with respect to the conventional method, and has for its object to provide a method of producing a semiconductor integrated circuit device capable of obtaining a high frequency operation of the npn transistor and of enhancing the integration density of the MOS transistors without resulting in the uncontrollability of the hFE and the Vth, and or the instability of the Vth.
- a method of producing a semiconductor integrated circuit device in which a bipolar element and a MOS element are produced on the same chip which includes a first process for producing a silicon film on a portion of an electrode leading region of a first conductivity type base layer in the bipolar element and on the gate insulating film in the MOS element; and a second process for producing said base layer in the bipolar element and a source layer and a drain layer of a first conductivity type in the MOS element by using the silicon film.
- FIG. 1(A) to (F) are cross-sectional views showing the product each process of a prior art method of producing a BI-MOS integrated circuit device
- FIG. 2 is a plan view of the device shown in FIG. 1(F);
- FIGS. 3(A) to (C) are cross-sectional views showing the product each process of a first embodiment of the presnt invention.
- FIG. 4 is a plan view of the device of FIG. 3(C).
- a method of producing a BI-MOS integrated circuit device as one embodiment of the present invention will be described in detail with reference to FIG. 3.
- the separate active regions 3a and 3b are produced similarly as in conventional method shown in FIGS. 1(A) to (B). Thereafter, as shown in FIG. 3(A), channel-doped ion injection is conducted on the channel portion of the MOS element so as to control the Vth, and thereafter, the gate oxide film 14 is produced.
- the portion 15a of the gate oxide film 14 for leading the base electrode is apertured by a usual photoresist-etching method, and thereafter, a silicon film 21 is deposited on the total surface thereof.
- the oxide film below the silicon film 21 is used as the gate oxide film in the MOS element, and accordingly, it is better to produce a new clear gate oxide film after removing the oxide film used as the layer below the nitride film 4 when producing the thick oxide film 5 after the ion injection.
- the silicon film 21 may be a polysilicon film, or an epitaxial growth silicon film, or a porous silicon film.
- the base electrode leading layer 21a is produced with the p type impurities as diffusion sources, and the silicon film 21 is patterned by a known photoresist-etching technique so as to produce the gate electrode 21b.
- the layer below the base electrode leading layer, layer 22, is produced by the diffusion from the base electrode leading layer 21a, and the oxide film 6 is produced as an insulating film against the phosphite glass film 13 to be produced thereafter as well as for conducting an ion injection.
- the resist film 7 is produced covering the collector electrode leading region, and the p type impurities are introduced into the base layer 8 with the resist film 7 as a mask, and at the same time, the source 9 and the drain 10 are produced by self-alignment with the polysilicon film 21b which is to become gate electrode in the MOS transistor as a mask, and thereafter, the phosphite glass film 13 (passivation film) is deposited thereon.
- contact holes are apertured to the phosphite glass film 13 and the oxide film 6, an n type high impurity density diffusion is conducted to produce the emitter layer 12 and the collector electrode leading layer 11, and thereafter, contact holes are apertured in the phosphite glass film 13 and the oxide film 6 for the base, source, drain contacts and a contact for the polysilicon film, and aluminum electrodes 15, 16, 17, 18, 20 and other wirings are produced.
- the polysilicon film including p type high density impurities is produced to be utilized for leading out the base electrode and for the gate electrode after the gate oxide film is produced. Accordingly, it is not necessary to conduct a heating process at an elevated temperature such as gate oxidization after producing the emitter diffusion layer which determines the hFE of the bipolar transistor. This provides a device capable of enhancing the controllability of the hFE without resulting in any instability of the Vth.
- the distance D' between the one end of the contact hole 23a for the emitter electrode 16 and the one end of the contact hole 23c for the base electrode 15, which is an important parameter in view of the high frequency operation of the npn transistor, is improved to a value which is less than the half that of the distance D in device of FIG. 2.
- the distance between the aluminum electrodes 15 and 16 which is required to be sufficiently large in the prior art device has become short in the present invention because the base electrode leading region, and the base leading layers are produced through the polysilicon film 21a.
- the base area has been reduced to about four fifths, and high frequency operation of the npn transistor is obtained.
- MOS transistors of the present invention a polysilicon gate is employed, thereby enabling production of the source and drain by self-alignment without the necessity of providing long distances between these elements and the gate electrode 19 which were required in the prior art device.
- the integration density of the present invention has increased to about two times that of the prior art device.
- the characteristics of the MOS transistors of the present invention are enhanced to the same levels as those manufactured as exclusive MOS transistors.
- the separation between elements attained by the oxide films can be applied to those in which the separation between elements is conducted by p + -n junctions.
- the resistances will become high compared with metal wirings such as aluminum. So, if there arises a problem in circuit design, it is possible to decrease the resistance by producing layers 23a to 23f of high conductivity anti-heat material such as molybdenum-silicide or platinum-silicide on the polysilicon film before depositing the phosphite glass film.
- high conductivity anti-heat material such as molybdenum-silicide or platinum-silicide
- a polysilicon film is produced prior to the process for producing the base layer of the bipolar element and the source and drain layers of the MOS element, the leading of the base electrode is conducted from one portion of the polysilicon film, the gate wiring is conducted by using the remaining portions of the polysilicon film, and the source and the drain of the MOS transistor are produced with this polysilicon film, which has become the gate, as a mask.
- the ability to control the hFE is enhanced by conducting the process for producing the gate oxide film prior to the process for producing the emitter layer.
- the high frequency operation of the npn transistor is realized by using a silicon film for leading the base electrode thereby to shorten the above-described distance D and also to minimize the base area.
- the enhancement of the integration density of the MOS transistor is realized by using a polysilicon gate.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
- Element Separation (AREA)
Abstract
A method of producing a semiconductor integrated circuit device in which a bipolar element and a MOS element are produced on a same chip, which includes forming an oxide film on the epitaxial regions of the device; depositing a silicon film on the device over epitaxial regions and forming a base electrode leading region using said silicon; and forming a base leading layer by diffusion from said base electrode leading region to reduce the distance between a collector leading region and the base electrode leading region, thereby enhancing the characteristics of the bipolar element.
Description
This application is a continuation of application Ser. No. 721,699, filed on Apr. 10, 1985, and now abandoned.
The present invention relates to a method of producing a semiconductor integrated circuit device, and more particularly, to that of producing a so-called BI-MOS semiconductor integrated circuit device in which MOS elements and bipolar elements are produced on the same chip.
Generally, bipolar elements have a high driving ability for the amount of chip area occupied by the bipolar elements, and have a high accuracy in the processing of analog quantity. However, bipolar elements exhibit the disadvantages of a low integration density and a low input impedance. In contrast, MOS elements have a high input impedance and a high integration density, and accordingly it is effective to include MOS elements in a chip where bipolar elements are mainly used in order to supplement the disadvantages of the bipolar elements. As a typical example there are MOS top operational amplifiers where MOS elements are used at the input stage. These amplifiers are already being manufactured and sold.
In such a conventional BI-MOS integrated circuit device npn transistors are used as bipolar elements and p-channel MOS transistors are used as MOS elements. The method of producing such a BI-MOS integrated circuit device is described below with reference to FIG. 1.
At first as shown in FIG. 1(A), an n type high impurity density embedding layer 2 is produced on the p type silicon substrate 1, and thereafter, an n type low impurity density epitaxial layer 3 is grown thereon.
Thereafter, as shown in FIG. 1(B), a selective oxidization is conducted with an anti-oxidization film such as nitride film 4 as a mask, thereby producing thick oxide films 5 to electrically separate the element constituting regions 3a, 3b in the epitaxial layer 3.
Thereafter, as shown in FIG. 1(C), the silicon nitride films 4 are removed, silicon oxide films 6 are produced as protection films at the ion injection, and a photoresist film 7 is produced. Thereafter, boron ions are injected to the surface area of the semiconductor substrate through the oxide films 6 with the photoresist film 7 as a mask, and thereafter, the photoresist film 7 is removed, and the injected borons are driving-diffused by a thermal processing, thereby producing a base layer 8, a source layer 9, a drain layer 10 of all p types, and a diffusion resistance (not shown).
Thereafter, as shown in FIG. 1(D), an n type high impurity density (n+) collector contact layer 11 and an n+ emitter layer 12 are produced by an ion injection or a gas diffusion method.
And thereafter, as shown in FIG. 1(E), an oxide film 13, such as phosphite glass film, is deposited thereon, the portions of the oxide films 13 and 6 which portions are to become gates are both removed, and the gate oxide film 14 is produced again.
Finally, as shown in FIG. 1(F), contact holes are apertured to the oxide films 13 and 6 at the electrode leading regions, and the base electrode 15, emitter electrode 16, collector electrode 17, source electrode 18, gate electrode 19, and drain electrode 20, and other wirings are produced.
With respect to such BI-MOS integrated circuit devices, the requirements of high performance and high integration have become more severe. As shown in FIG. 2 which is a plan view of the device of FIG. 1(F), it is necessary to decrease the distance D between the one end of the contact hole 16a for the emitter electrode 16 which is a predetermined distance apart from the one end of the emitter (12)-base(8) junction and the one end of the contact hole 15a for the base electrode 15 in order to reduce the base resistance, and it is also necessary to decrease the area of the base layer 8 in order to reduce the base capacity. Furthermore, the integration density of MOS transistors in BI-MOS devices has become lower than that of the exclusive MOS element based on the overlapping of the gate oxide film 14 and the source/drain 9/10, and the increase of margin which is usually required caused by electrode wirings.
In manufacturing such an integrated circuit device it is an important problem to control the characteristic parameter of each element with high accuracy and high reproducibility. In BI-MOS integrated circuit devices the characteristic parameters which at least must be controlled are as follows:
(1) The junction resistivity of each element;
(2) The amplification factor of the npn transistor (hFE) the amplification factor of the pnp transistor (hFE); and
(3) The threshold voltage of the p-channel MOS transistor (Vth)
(4) The resistance value of the diffusion resistance (R).
As is apparent from the production process shown in FIG. 1, the heating process at an elevated temperature for producing gate oxide films must be executed after the n+ emitter diffusion process, and accordingly, the impurities in the n+ layer once diffused will be distributed again. Furthermore, it is quite difficult to control the amplification factor hFE of the npn transistor in the bipolar circuit portion with high accuracy, resulting in the biggest problem in the production process of BI-MOS integrated circuit device.
The following methods are considered for control the hFE of the npn transistor with high accuracy:
(a) controlling the hFE at the n+ emitter diffusion process considering the variation of the hFE by a heating process conducted thereafter.
(b) conducting only an n+ deposition at the n+ emitter diffusion process, and conducting a heating process in an inert ambient gas after all the heating processes required to produce MOS elements, including that for producing a gate oxide film, are conducted, thereby re-adjusting the value of hFE at the final process; and
(c) conducting the processes which should be conducted after the n+ emitter diffusion, including those for producing the gate oxide film of the MOS elements, at a low temperature, thereby suppressing the variation of hFE to the smallest value.
However, there are problems in all of these methods. For example, in the case of (a), the variations of the heating process to be conducted thereafter become large, making it difficult to predict the variation of the hFE with high reproducibility. In the case of (b), the variation of the Vth of the MOS element changes depending on the heating time in the heating process in an ambient inert gas. In the case of (c), it is difficult to control the energy level of the gate oxide film of the MOS element and that of the silicon substrate with high accuracy, thereby resulting in the instability of the Vth.
The present invention is directed to solve the problems pointed out above with respect to the conventional method, and has for its object to provide a method of producing a semiconductor integrated circuit device capable of obtaining a high frequency operation of the npn transistor and of enhancing the integration density of the MOS transistors without resulting in the uncontrollability of the hFE and the Vth, and or the instability of the Vth.
Other objects and advantages of the present invention will become apparent from the detailed description given hereinafter; it should be understood, however, that the detailed description and specific embodiment are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
According to the present invention, there is provided a method of producing a semiconductor integrated circuit device in which a bipolar element and a MOS element are produced on the same chip, which includes a first process for producing a silicon film on a portion of an electrode leading region of a first conductivity type base layer in the bipolar element and on the gate insulating film in the MOS element; and a second process for producing said base layer in the bipolar element and a source layer and a drain layer of a first conductivity type in the MOS element by using the silicon film.
FIG. 1(A) to (F) are cross-sectional views showing the product each process of a prior art method of producing a BI-MOS integrated circuit device;
FIG. 2 is a plan view of the device shown in FIG. 1(F);
FIGS. 3(A) to (C) are cross-sectional views showing the product each process of a first embodiment of the presnt invention; and
FIG. 4 is a plan view of the device of FIG. 3(C).
A method of producing a BI-MOS integrated circuit device as one embodiment of the present invention will be described in detail with reference to FIG. 3.
At first, the separate active regions 3a and 3b are produced similarly as in conventional method shown in FIGS. 1(A) to (B). Thereafter, as shown in FIG. 3(A), channel-doped ion injection is conducted on the channel portion of the MOS element so as to control the Vth, and thereafter, the gate oxide film 14 is produced. The portion 15a of the gate oxide film 14 for leading the base electrode is apertured by a usual photoresist-etching method, and thereafter, a silicon film 21 is deposited on the total surface thereof.
Thereafter, the oxide film below the silicon film 21 is used as the gate oxide film in the MOS element, and accordingly, it is better to produce a new clear gate oxide film after removing the oxide film used as the layer below the nitride film 4 when producing the thick oxide film 5 after the ion injection. The silicon film 21 may be a polysilicon film, or an epitaxial growth silicon film, or a porous silicon film.
Thereafter, as shown in FIG. 3(B), p type impurities are diffused into the polysilicon film 21, the base electrode leading layer 21a is produced with the p type impurities as diffusion sources, and the silicon film 21 is patterned by a known photoresist-etching technique so as to produce the gate electrode 21b. The layer below the base electrode leading layer, layer 22, is produced by the diffusion from the base electrode leading layer 21a, and the oxide film 6 is produced as an insulating film against the phosphite glass film 13 to be produced thereafter as well as for conducting an ion injection. Thereafter, the resist film 7 is produced covering the collector electrode leading region, and the p type impurities are introduced into the base layer 8 with the resist film 7 as a mask, and at the same time, the source 9 and the drain 10 are produced by self-alignment with the polysilicon film 21b which is to become gate electrode in the MOS transistor as a mask, and thereafter, the phosphite glass film 13 (passivation film) is deposited thereon.
Finally, as shown in FIG. 3(C), contact holes are apertured to the phosphite glass film 13 and the oxide film 6, an n type high impurity density diffusion is conducted to produce the emitter layer 12 and the collector electrode leading layer 11, and thereafter, contact holes are apertured in the phosphite glass film 13 and the oxide film 6 for the base, source, drain contacts and a contact for the polysilicon film, and aluminum electrodes 15, 16, 17, 18, 20 and other wirings are produced.
As evident from the foregoing description, in the method of producing a semiconductor integrated circuit device of the present invention, the polysilicon film including p type high density impurities is produced to be utilized for leading out the base electrode and for the gate electrode after the gate oxide film is produced. Accordingly, it is not necessary to conduct a heating process at an elevated temperature such as gate oxidization after producing the emitter diffusion layer which determines the hFE of the bipolar transistor. This provides a device capable of enhancing the controllability of the hFE without resulting in any instability of the Vth.
Furthermore, as is apparent from FIG. 4 which is a plan view of the FIG. 3(C), the distance D' between the one end of the contact hole 23a for the emitter electrode 16 and the one end of the contact hole 23c for the base electrode 15, which is an important parameter in view of the high frequency operation of the npn transistor, is improved to a value which is less than the half that of the distance D in device of FIG. 2. This is because that the distance between the aluminum electrodes 15 and 16 which is required to be sufficiently large in the prior art device has become short in the present invention because the base electrode leading region, and the base leading layers are produced through the polysilicon film 21a. Thus, the base area has been reduced to about four fifths, and high frequency operation of the npn transistor is obtained. Furthermore, in MOS transistors of the present invention a polysilicon gate is employed, thereby enabling production of the source and drain by self-alignment without the necessity of providing long distances between these elements and the gate electrode 19 which were required in the prior art device. The integration density of the present invention has increased to about two times that of the prior art device. The characteristics of the MOS transistors of the present invention are enhanced to the same levels as those manufactured as exclusive MOS transistors.
In the above-illustrated embodiment, the separation between elements attained by the oxide films, but the present invention can be applied to those in which the separation between elements is conducted by p+ -n junctions.
Furthermore, when polysilicon films are used as the electrode wirings, the resistances will become high compared with metal wirings such as aluminum. So, if there arises a problem in circuit design, it is possible to decrease the resistance by producing layers 23a to 23f of high conductivity anti-heat material such as molybdenum-silicide or platinum-silicide on the polysilicon film before depositing the phosphite glass film.
As described above, according to the present invention, a polysilicon film is produced prior to the process for producing the base layer of the bipolar element and the source and drain layers of the MOS element, the leading of the base electrode is conducted from one portion of the polysilicon film, the gate wiring is conducted by using the remaining portions of the polysilicon film, and the source and the drain of the MOS transistor are produced with this polysilicon film, which has become the gate, as a mask. As a result, the ability to control the hFE is enhanced by conducting the process for producing the gate oxide film prior to the process for producing the emitter layer. The high frequency operation of the npn transistor is realized by using a silicon film for leading the base electrode thereby to shorten the above-described distance D and also to minimize the base area. The enhancement of the integration density of the MOS transistor is realized by using a polysilicon gate.
Claims (5)
1. A method of producing a BI-MOS semiconductor integrated device, comprising the steps of:
forming a plurality of epitaxial regions of a first conductivity type separated by oxide regions on a substrate of a second conductivity type;
forming a first oxide film on said epitaxial regions so as to provide for an aperture over a first portion of a first epitaxial region and so as to cover a second epitaxial region;
depositing a silicon film on said first oxide film, on said oxide regions and through said aperture on said first portion of said first epitaxial region;
forming a base leading electrode region above said first epitaxial region and a gate electrode region above said second epitaxial region by diffusing second conductivity type impurities into said silicon film;
patterning said silicon film by removing portions thereof;
forming a base lower leading region below said base leading electrode region by diffusion of impurities from said base leading electrode region into said base lower leading region;
forming an oxide insulation film on said base leading electrode region, on said gate electrode region, and on said first and second epitaxial regions;
forming a resist film over a second portion of said first epitaxial region;
forming a bipolar element base layer in said first epitaxial region, and a MOS element source layer and a MOS element drain layer in said second epitaxial region by diffusion of second conductivity type impurities into said epitaxial regions, wherein said resist film masks said first epitaxial region so that a collector leading region may be formed and wherein said gate electrode region acts as a mask so that said source layer and said drain layer are self-aligned;
forming a passivation film at least over said oxide insulation layer so as to provide for emitter and collector apertures;
forming an emitter leading layer and a collector leading layer by diffusion of first conductivity type impurities into said first epitaxial region;
forming contact apertures in said passivation film and in said oxide insulation layer; and
forming a base electrode, an emitter electrode, a collector electrode, a source electrode, and a drain electrode in said contact apertures.
2. The method of producing a BI-MOS semiconductor integrated circuit device as defined in claim 1, which further comprises forming conductivity layers between said base leading electrode region, said base layer, said emitter leading layer, said collector leading layer, said source layer, said drain layer and the respective electrodes formed thereon, wherein said conductivity layers comprise high conductivity heat-resistant material and decrease electrical resistance.
3. The method of producing a BI-MOS semiconductor integrated circuit device as defined in claim 2, wherein said silicon film comprises polysilicon, epitaxial grown silicon, or porous silicon, and wherein said conductivity layers comprise molybdenum silicide or platinum silicide.
4. The method of producing a BI-MOS semiconductor integrated circuit device as defined in claim 2, wherein said passivation film comprises phosphite glass and said electrodes comprise aluminum, and wherein the device produced operates at high frequency and has a high integration density.
5. The method of producing a BI-MOS semiconductor integrated circuit device as defined in claim 3, wherein said passivation film comprises phosphite glass and said electrodes comprise aluminum, and wherein the device produced operates at high frequency and has a high integration density.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59074340A JPS60217657A (en) | 1984-04-12 | 1984-04-12 | Manufacture of semiconductor integrated circuit device |
JP59-74340 | 1984-04-12 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06721699 Continuation | 1985-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4772567A true US4772567A (en) | 1988-09-20 |
Family
ID=13544287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/004,845 Expired - Lifetime US4772567A (en) | 1984-04-12 | 1987-01-12 | Method of producing a semiconductor integrated circuit BI-MOS device |
Country Status (3)
Country | Link |
---|---|
US (1) | US4772567A (en) |
JP (1) | JPS60217657A (en) |
GB (1) | GB2157495B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4874717A (en) * | 1982-08-12 | 1989-10-17 | Siemens Aktiengesellschaft | Semiconductor circuit containing integrated bipolar and MOS transistors on a chip and method of producing same |
US4877748A (en) * | 1987-05-01 | 1989-10-31 | Texas Instruments Incorporated | Bipolar process for forming shallow NPN emitters |
US4970174A (en) * | 1987-09-15 | 1990-11-13 | Samsung Electronics Co., Ltd. | Method for making a BiCMOS semiconductor device |
US5014109A (en) * | 1988-08-05 | 1991-05-07 | Kabushiki Kaisha Toshiba | Miniaturization of a contact hole in a semiconductor device |
US5156984A (en) * | 1987-12-31 | 1992-10-20 | Goldstar Co., Ltd. | Manufacturing method for a bi-cmos by trenching |
US5293077A (en) * | 1988-02-29 | 1994-03-08 | Hitachi, Ltd. | Power switching circuit |
US20040007716A1 (en) * | 2001-12-28 | 2004-01-15 | Joe Trogolo | Versatile system for optimizing current gain in bipolar transistor structures |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320217B1 (en) * | 1987-12-07 | 1996-05-01 | Texas Instruments Incorporated | An improved twin-well BiCMOS process |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3865649A (en) * | 1972-10-16 | 1975-02-11 | Harris Intertype Corp | Fabrication of MOS devices and complementary bipolar transistor devices in a monolithic substrate |
US4050965A (en) * | 1975-10-21 | 1977-09-27 | The United States Of America As Represented By The Secretary Of The Air Force | Simultaneous fabrication of CMOS transistors and bipolar devices |
EP0097379A2 (en) * | 1982-06-23 | 1984-01-04 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor devices |
US4445268A (en) * | 1981-02-14 | 1984-05-01 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a semiconductor integrated circuit BI-MOS device |
US4481706A (en) * | 1981-06-26 | 1984-11-13 | Thomson-Csf | Process for manufacturing integrated bi-polar transistors of very small dimensions |
US4505027A (en) * | 1983-02-10 | 1985-03-19 | Siemens Aktiengesellschaft | Method of making MOS device using metal silicides or polysilicon for gates and impurity source for active regions |
US4512075A (en) * | 1980-08-04 | 1985-04-23 | Fairchild Camera & Instrument Corporation | Method of making an integrated injection logic cell having self-aligned collector and base reduced resistance utilizing selective diffusion from polycrystalline regions |
US4529456A (en) * | 1982-09-24 | 1985-07-16 | Hitachi, Ltd. | Method of forming bifets by forming isolation regions connected by diffusion in semiconductor substrate and epitaxial layer |
US4545116A (en) * | 1983-05-06 | 1985-10-08 | Texas Instruments Incorporated | Method of forming a titanium disilicide |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125648A (en) * | 1979-03-22 | 1980-09-27 | Nec Corp | Semiconductor integrated circuit |
JPS5768075A (en) * | 1980-10-16 | 1982-04-26 | Nippon Gakki Seizo Kk | Manufacture of integrated circuit device |
JPS57128058A (en) * | 1980-12-15 | 1982-08-09 | Seiko Epson Corp | Manufacture of semiconductor device |
JPS6052591B2 (en) * | 1981-02-14 | 1985-11-20 | 三菱電機株式会社 | Method for manufacturing semiconductor integrated circuit device |
JPS57147267A (en) * | 1981-03-05 | 1982-09-11 | Mitsubishi Electric Corp | Manufacture of semiconductor integrated circuit device |
JPS57152161A (en) * | 1981-03-16 | 1982-09-20 | Seiko Epson Corp | Manufacture of semiconductor device |
-
1984
- 1984-04-12 JP JP59074340A patent/JPS60217657A/en active Pending
-
1985
- 1985-04-12 GB GB08509363A patent/GB2157495B/en not_active Expired
-
1987
- 1987-01-12 US US07/004,845 patent/US4772567A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3865649A (en) * | 1972-10-16 | 1975-02-11 | Harris Intertype Corp | Fabrication of MOS devices and complementary bipolar transistor devices in a monolithic substrate |
US4050965A (en) * | 1975-10-21 | 1977-09-27 | The United States Of America As Represented By The Secretary Of The Air Force | Simultaneous fabrication of CMOS transistors and bipolar devices |
US4512075A (en) * | 1980-08-04 | 1985-04-23 | Fairchild Camera & Instrument Corporation | Method of making an integrated injection logic cell having self-aligned collector and base reduced resistance utilizing selective diffusion from polycrystalline regions |
US4445268A (en) * | 1981-02-14 | 1984-05-01 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a semiconductor integrated circuit BI-MOS device |
US4486942A (en) * | 1981-02-14 | 1984-12-11 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing semiconductor integrated circuit BI-MOS device |
US4481706A (en) * | 1981-06-26 | 1984-11-13 | Thomson-Csf | Process for manufacturing integrated bi-polar transistors of very small dimensions |
EP0097379A2 (en) * | 1982-06-23 | 1984-01-04 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor devices |
US4484388A (en) * | 1982-06-23 | 1984-11-27 | Tokyo Shibaura Denki Kabushiki Kaishi | Method for manufacturing semiconductor Bi-CMOS device |
US4529456A (en) * | 1982-09-24 | 1985-07-16 | Hitachi, Ltd. | Method of forming bifets by forming isolation regions connected by diffusion in semiconductor substrate and epitaxial layer |
US4505027A (en) * | 1983-02-10 | 1985-03-19 | Siemens Aktiengesellschaft | Method of making MOS device using metal silicides or polysilicon for gates and impurity source for active regions |
US4545116A (en) * | 1983-05-06 | 1985-10-08 | Texas Instruments Incorporated | Method of forming a titanium disilicide |
Non-Patent Citations (2)
Title |
---|
Ghandhi, "VLSI Fabrication Principles", 1983, John Wiley & Sons, pp. 435-437. |
Ghandhi, VLSI Fabrication Principles , 1983, John Wiley & Sons, pp. 435 437. * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4874717A (en) * | 1982-08-12 | 1989-10-17 | Siemens Aktiengesellschaft | Semiconductor circuit containing integrated bipolar and MOS transistors on a chip and method of producing same |
US4877748A (en) * | 1987-05-01 | 1989-10-31 | Texas Instruments Incorporated | Bipolar process for forming shallow NPN emitters |
US4970174A (en) * | 1987-09-15 | 1990-11-13 | Samsung Electronics Co., Ltd. | Method for making a BiCMOS semiconductor device |
US5156984A (en) * | 1987-12-31 | 1992-10-20 | Goldstar Co., Ltd. | Manufacturing method for a bi-cmos by trenching |
US5293077A (en) * | 1988-02-29 | 1994-03-08 | Hitachi, Ltd. | Power switching circuit |
US5014109A (en) * | 1988-08-05 | 1991-05-07 | Kabushiki Kaisha Toshiba | Miniaturization of a contact hole in a semiconductor device |
US20040007716A1 (en) * | 2001-12-28 | 2004-01-15 | Joe Trogolo | Versatile system for optimizing current gain in bipolar transistor structures |
US7226835B2 (en) * | 2001-12-28 | 2007-06-05 | Texas Instruments Incorporated | Versatile system for optimizing current gain in bipolar transistor structures |
US20070205435A1 (en) * | 2001-12-28 | 2007-09-06 | Texas Instruments Incorporated | Versatile system for optimizing current gain in bipolar transistor structures |
US7615805B2 (en) | 2001-12-28 | 2009-11-10 | Texas Instruments Incorporated | Versatile system for optimizing current gain in bipolar transistor structures |
Also Published As
Publication number | Publication date |
---|---|
GB8509363D0 (en) | 1985-05-15 |
GB2157495A (en) | 1985-10-23 |
JPS60217657A (en) | 1985-10-31 |
GB2157495B (en) | 1987-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4445268A (en) | Method of manufacturing a semiconductor integrated circuit BI-MOS device | |
US4609568A (en) | Self-aligned metal silicide process for integrated circuits having self-aligned polycrystalline silicon electrodes | |
US4603468A (en) | Method for source/drain self-alignment in stacked CMOS | |
US4066473A (en) | Method of fabricating high-gain transistors | |
US4734382A (en) | BiCMOS process having narrow bipolar emitter and implanted aluminum isolation | |
US4374454A (en) | Method of manufacturing a semiconductor device | |
US5013678A (en) | Method of making an integrated circuit comprising load resistors arranged on the field oxide zones which separate the active transistor zones | |
US4503603A (en) | Process for manufacturing a monolithic integrated solid-state circuit having at least one insulated-gate field-effect transistor and at least one bipolar transistor | |
US6326674B1 (en) | Integrated injection logic devices including injection regions and tub or sink regions | |
US6215160B1 (en) | Semiconductor device having bipolar transistor and field effect transistor and method of manufacturing the same | |
US3946424A (en) | High frequency field-effect transistors and method of making same | |
US4512075A (en) | Method of making an integrated injection logic cell having self-aligned collector and base reduced resistance utilizing selective diffusion from polycrystalline regions | |
KR880014679A (en) | BICMOS Method to Form Shallow NPN Emitters and MOSFET Sources / Drains | |
US5389553A (en) | Methods for fabrication of transistors | |
US4772567A (en) | Method of producing a semiconductor integrated circuit BI-MOS device | |
JPS62237754A (en) | Semiconductor integrated circuit device and manufacture thereof | |
US4159561A (en) | Method of making a substrate contact for an integrated circuit | |
US5063167A (en) | Method of producing a bipolar transistor with spacers | |
US6596600B1 (en) | Integrated injection logic semiconductor device and method of fabricating the same | |
US4883772A (en) | Process for making a self-aligned silicide shunt | |
EP0151347A1 (en) | Integrated circuit having bipolar and field effect devices and method of fabrication | |
US5116770A (en) | Method for fabricating bipolar semiconductor devices | |
KR940002834B1 (en) | Semiconductor integrated circuit and fabricating method thereof | |
US5089430A (en) | Method of manufacturing semiconductor integrated circuit bipolar transistor device | |
US5236851A (en) | Method for fabricating semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |