US4695944A - Computer system comprising a data, address and control signal bus which comprises a left bus and a right bus - Google Patents
Computer system comprising a data, address and control signal bus which comprises a left bus and a right bus Download PDFInfo
- Publication number
- US4695944A US4695944A US06/910,796 US91079686A US4695944A US 4695944 A US4695944 A US 4695944A US 91079686 A US91079686 A US 91079686A US 4695944 A US4695944 A US 4695944A
- Authority
- US
- United States
- Prior art keywords
- bus
- station
- signal
- signals
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4004—Coupling between buses
- G06F13/4027—Coupling between buses using bus bridges
- G06F13/4045—Coupling between buses using bus bridges where the bus bridge performs an extender function
Definitions
- the invention relates to a computer system which comprises a primary processor station and a first random access read-write memory having a first address space interconnected by a primary bus for data, address and control signals; which furthermore comprises a second random access read-write memory having a second address space outside of said first address space, and at least one first peripheral apparatus interconnected by a secondary bus for data, address and control signals; which furthermore comprsies a coupler having a first and a second interfacing circuit for interfacing to said secondary bus, said coupler having a closed state for allowing coexistent primary bus requests on the primary bus and data transfer between respective stations connected to the secondary bus, said coupler having an open state for exchange of data characteris, addresses, data request signals and data acknowledge signals between said primary bus and said secondary bus.
- a computer system of this kind is known from U.S. Pat. No. 4,257,099 to D.R. Appelt.
- the known system deal with a communication bus coupler for a so-called polysystem.
- Each element of a polysystem is comprised of a multiprocessor system with a plurality of master stations and a plurality of slave stations. Therefore, the level of cooperation in the couplers of the known system is high and the complexity thereof is great.
- the known system offers a solution when the system is bus through put limited and allows selective communication among various stations across the couplers or within the local system.
- the present invention is directed to the problem that occurs when the capacity of the bus is temporarily taken up fully by interperipheral or memory/peripheral transports. On the one hand, such transports may have a fast data throughout. On the other hand, the necessary control may be of limited extent, so that no processor station is always required to monitor this transport.
- said coupler has directional gating device for selectively and unidirectionlly gating command signals exclusively from said primary bus to said secondary bus
- said second interfacing means comprises timing control means for controlling bus allocation signals (BUSRN, MSN, BSIN) and bus handshake signals (TMRN, TMPN) for the secondary bus
- said coupler is also transmissive for a start signal emanated from the primary processor station for a peripheral apparatus connected to the secondary bus and also for an interrupt signal from a peripheral connected to the secondary bus to said primary processor station.
- the transport capacities of the input/output apparatus (d) and (d) are even higher, so that in many cases a data transport from/to such an apparatus can completely block the bus for a substantial period of time (for example from 10 -4 to 10 -3 seconds).
- a data transport from/to such an apparatus can completely block the bus for a substantial period of time (for example from 10 -4 to 10 -3 seconds).
- it is feasible to provide a completely separate second bus for such a bulk data transport but this increases the cost of wiring and also the complexity of the control system.
- the known system is often inadequate, because many stations share a common bus while on the time scale of such bulk-data transport the processor station often must exchange data with other peripherals and/or memory.
- the processor station being constructed, for example, as a 16-bit microcomputer, will then also comprise a local read-only memory so that the data exchange therewith need not take place via the system bus; in that case the latter transport is performed inside the microcomputer (usually via an internal bus).
- a right bus request is a request which concerns a data transport via the secondary bus, that is to say between a station on the primary bus and a station on the secondary bus.
- the information transported may contain data as well as an addres.
- a request for the secondary arriving from the primary bus can be applied to the controller of the secondary bus via the primary bush only if the primary bus has been allocated for the transport of the latter request.
- an arbitration process may be required to select the ultimate master station.
- a start signal concerns, for example, an instruction to start an electromechanical operation, such as the starting or stopping of a drive or positioning a motor, or the control of a hold and release mechanism of a memory cassette or memory disc.
- Interrupt signals may be generated by a station connected to the secondary bus.
- a first category forms a response (I/O-complete) to a start signal in order to indicate that, for example, a drive motor has reached its operating speed or that a cassette has been mechanically released. Subsequently, usually an intervention by the operator is required. In this case the period of time expiring between the start signal and the interrupt signal is very long in comparison with a bus transport cycle.
- the second category is formed by an alert signal which is automatically formed by a station connected to the secondary bus, for example in order to indicate that an amount of information is ready for transport.
- a bulk transport can thus be quickly performed on the secondary bus without the processor station on the primary bus being seriously disturbed thereby.
- the peripheral apparatus acts, for example, as the background memory and the second read/write memory as the foreground memory.
- said coupler has a priority circuit for signalling a priority rank signal to said secondary bus
- said couler has a directional gating device for selectively and unidirectionally gating command signals exclusively from said primary bus to said secondarybus
- said second interfacing circuit comprises timing control for controlling bus allocation signals (BUSRN), MSN, BSIN) and bus handshake signals (TMRN, TMPN) for the secondary bus
- said coupler is also transmissive for a start signal emanated from the primary processor station for a peripheral apparatus connected to the secondary bus and also for an interrupt signal from a peripheral connected to the secondary bus to said primary processor station.
- the processor station while present, can control the signalization on the secondary bus, while the coupler simply relinquishes such control in the closed state. It has become conventional to give the processor station the lowest priority rank. If such processor station is not present, the coupler function as a virtual processor station for the secondary bus.
- the secondary bus can simultaneously perform, in the closed state of the first coupler, two character-wise organized bulk data transports from the first peripheral apparatus to the second memory can from the second memory to a further first peripheral apparatus.
- the simultaneous organization of two bulk data transports via a non-divided bus is known per se; an attractive implementation thereof is disclosed in the previous U.S. patent application Ser. No. 407,194, filed Aug. 11, 1982 assigned to the assignee of the present application which is incorporated herein by way of reference.
- the entire second read-write memory, or even a part thereof, then forms a buffer memory having a virtually unlimited storage capacity.
- a corresponding number of secondary buses can be connected to the primary bus in parallel.
- a subordinate bus may be connected to a secondary bus. It is to be ensured that each memory location which can be addressed from a given primary or secondary bus than has a unique addres on the relevant bus.
- a second processor station is connected to at least one said secondary bus.
- the second processor station may have the same construction as the first processor station, but alternatively it may comprise, for example, a processor for a special purpose having a lesser flexibility.
- a processor station is to be understood to mean herein a station which is constructed first of all for the processing of the data received via the associated bus and for the subsequent transport of the processing results to the bus.
- Peripheral apparatus are to be understood to mean herein apparatus which serve either for bulk data storage or for communication with the environment. In many cases such peripheral apparatus include a control unit which has processor means. The operation of these processor means, however, is not influenced by the user of the system in the same way as he influences a processor station.
- a second processor station is connected to the secondary bus which is connected to the primary bus by the first coupler, the first coupler comprising an address converter for converting a memory address received within a request for teh secondarybus.
- the accessible address spaces maybe arbitrarily positioned for both processors.
- the address space on the primary bus then extends, for example, from 0 to 2 M (byte numbers), the first 1 M addresses thereof being situated in the first read-write memory.
- the first 256 addresses thereof are reserved for the software of the first processor station itself (for example, as index registers).
- the second 1M addresses are situated in the second read-write memory but are addressed on the secondary bus by the addresses 0-1M.
- the same first 256 addresses on the right secondary bus are reserved for the second processor station and the part of the software which controls the management of these 256 address locations may be the same for both processor stations.
- FIGS. 1a, 1b show two block diagrams of exemplary computer systems in accordance with the invention
- FIG. 2 shows a time diagram of the allocation
- FIG. 3 shows a time diagram of a data exchange
- FIG. 4 is a block diagram of the subsystems of the circuit BUSLSI
- FIG. 5 is a detailed representation of the "master" section of the gating device
- FIG. 6 is a detailed representation of the "slave" section of the gating device.
- FIG. 1a shows an exemplary overall block diagram of a computer system in accordance with the invention.
- the central element is formed by a bus which is divided into a primary or "left" bus 36 and a secondary or “right” bus 38 which are interconnected by way of a gating device 34.
- the relevant conductors for data signals, address signals and control signals are not separately shown.
- a first processor station 20 is connected to the left bus 36.
- This station comprises, for example, an arithmetic and logic unit, registers, a read-only memory for the storage of control information, a scratchpad memory and an external interface unit, said elements being interconnected by means of a processor bus.
- This internal structure has been omitted for the sake of brevity.
- processor stations of this kind are available as ready-to-use modules; the program information is partly present in the read-only memory and is partly applied as instructions from the environment, for example from a read-write memory.
- a first random access read/write memory MEM1 (22).
- the left bus comprises 16 data lines and 24 address lines.
- a peripheral apparatus 24 for example a video monitor, a character printer, a keyboard, a background memory or a control unit for connection to a data communication link. Obviously, several of such peripheral apparatus may be connected to the left bus.
- a second read-write memory MEM2 (26) is connected to the right bus (38).
- a peripheral apparatus 28 and a further peripheral apparatus 30 are also connected to the right bus.
- peripheral apparatus will be background memories, for example in the form of a magnetic memory with a rotating magnetic disc of flexible (floppy) or unflexible properties, a magnetic tape memory or a memory comprising a rotating, optically scanned disc on which the information is stored in local recesses in the disc surface.
- peripheral apparatus may also be other peripheral apparatus such as a line printer or a display apparatus comprising a high-resolution cathode ray tube.
- the peripheral apparatus can in principle be exchanged between the left and the right bus; peripheral apparatus having a high throughput will usually be connected to the right bus. In gien cases peripheral apparatus can be addressed as if they were mapped on an address location of the read-write memory connected to the associated bus.
- a second processor station 44 may be connected to the right bus.
- This may be a special processor station, for example a data base processor; its construction may also be the same as that of the first processor station 20. It is denoted by broken lines. Even when it has the same physical construction as the first processor station it may operate differently, for example by way of a different set of instructions or by way of a different operating system. It may also operate exclusively for data communication operations with respect to an external connection.
- the computer system also comprises a coupling or gating device 34 which is connected between the left bus and the right bus.
- the gating device 34 has an open state for data, addres, data request and data acknowledge signals and a closed state. Its operation will be elaborated upon hereinafter.
- peripheral apparatus also comprise their own control unit which is not shown in the figure and which may inter alia include a data buffer; viewed from the relevant bus, the actual physical function of the relevant peripheral apparatus is then absent, so that no problems are experienced as regards rotational delay times of memory discs, seek times of read/write heads, and the like.
- FIG. 1b shows a further exemplary block diagram of a computer system.
- the system comprises a left bus 36 whereto the staions 20, 22, 24 described with reference to FIG. 1a are connected.
- the computer system also comprises four gating devices 34, 106, 114, 118 for the connection of the right buses 100, 116 and the secondary right buses 108, 120, respectively.
- the random access read-write memories 102, 110, 126, 122 and the peripheral apparatuses 103, 112, 128, 124 can thus be connected.
- Each of the gating devices has an open state and a closed state. Data transports can thus be realized between different stations.
- the bus consists of a number of parallel conductors for bindar signals. First of all there are 16 data lines. Also provided are 24 address lines by means of which a master station can address a slave station. During each data transfer there is one master station; the allocation of the master function may be dynamic. The selection of a slave station by the relevant master station may also be dynamic. A processor station always acts as the master station; a random access read/write memory always acts as a slave station. Many peripheral apparatus are capable of performing the master function as well as the slave function. The gating devices can also perform both functions as will be explained hereinafter.
- the definition of the master/slave station is embodied in the control signals are transported via control lines which are all singular (width 1 bit). The control lines are identified by the following mnemonics of the relevant signals.
- CHA makes a selection between an 8-bit character and a 16-bit word when a memory is addessed. In the former case only eight predetermined data lines are used each time; the difference between character and word, however, will be ignored in the following description.
- WRITE selects the transfer direction between master station and slave station.
- TMPN transfer/master peripheral
- TMPN transfer/master peripheral
- TMRN transfer master/register
- TMPN transfer master/register
- TMPN random access read/write memory
- TMEN transfer master/external
- TMPN transfer master/external
- peripheral apparatus so-called "dumb” peripheral apparatus, for example a punched tape reader or hexadecimal display elements comprising light-emitting diodes (acting as peripheral apparatus).
- Other external registers can also be used in this way; in that case TMEN replaces TMPN.
- TSMN response pulse to the synchronization pulses TMPN, TMRN and TMEN; this response pulse is despatched by a slave station in order to indicate:
- BUSRN request signal for the bus which is formed on the basis of request signals from stations wishing to become the master station of the bus; when there are request signals from said stations the request signal BUSRN is formed as a logic OR-function of the relevant individual request signals.
- MSN signalling pulse which indicates that the selection of the master station has taken place.
- BSYN signalling pulse indicating that the bus is occupied.
- OKI/OKO these signals are not true bus signals but serve (each time separately per left bus/right bus) to indicate a priority sequence among prospecitve master stations.
- Each of the latter stations receives a signal OKI from the station of next-higher priority and outputs a signal OKO to the station of next-lower priority.
- this is achieved by means of wired connections which form a daisy chain.
- the connections for the signals OKI/OKO are pairwise interconnected because these stations can serve only as slave stations.
- INCL interrupt clock
- BCI (binary coded interrupt) signal having a width of one bit from the control unit of a peripheral apparatus to a processor station; an interrupt signal is specified therein by way of a serial code. This may signal, for example, an alert signal.
- CLEARN intialization signal from the central processor station to all stations/memories/peripheral apparatus connected.
- bus connection or interface units 40, 42 (FIG. 1a; the relevant bus connection units are not separately shown in FIG. 1b) of the gating device 34 also act as a station with respect to the left bus and the right bus, respectively.
- Control of the left bus is centralized in the first processor station.
- the control of the right bus 38 is centralized in the processor station 44 in FIG. 1a.
- the set-up of FIG. 1a may include a mechanism to interchange the functions of the left bus and the right bus by means of an externally controlled additional facility, for example a manual switch.
- the processor station 44 must then be present.
- FIG. 2 shows a time diagram of the allocation.
- a master station initially in all circumstances (after the appearance of the signal CLEARN).
- a station for example a peripheral apparatus which thus far acted as a slave station, could now pretend to become the master station.
- a request function generated in the relevant station is treated on the bus by rendering the signal BUSRN low; the relevant line operates according to the open collector system and carries a high potential only if all stations connected to this line supply a high signal.
- This open collector system is followed for most control signals (however, not for the signals OKI/OKO). When there are no other requests, a request from the necessary station will be treated because it has the lowest priority.
- the processor station detects that the signal BUSRN is high and can occupy the bus by directly making the signal BSYN low, thus preventing further bus requests. However, if the signal BUSRN is low, the request from the processor station must yield to the request having a higher priority.
- the fact that the signal BUSRN becomes low is detected by the bus control unit whose output signal OKO then becomes a high (second line in FIG. 2). This is passed on via the previously stated chain connection of the OKO/OKI signals, so that the second line of FIG. 2 also represents the signal OKI for the acting master station.
- Each potential master station which has not despatched a signal BUSRN immediately despatches the signal OKO to the potential master station of next-lower priority when it receives the signal OKI.
- the stations which can operate only as a slave station are not effective in this daisy chain.
- the third line of FIG. 2 illustrates the situation for the potential master station which has despatched the signal BUSRN.
- this station When this station receives the signal OKI, it does not output a signal OKO (not even to potential master stations of lower priority which have despatched the signal BUSRN) but activates the signal MSN (master selected). This indicates the termination of the arbitration phase. Subsequently, all signals OKO are deactivated. When this has occurred, the relevant new master station waits for the bus to become free. This is signalled in that the signal BSYN is high or becomes high after termination of a previous data transfer operation. Thus, the next allocation operation can be performed during a data transfer. The time difference between the negative-going edges of the signals MSN and BSYN may thus be much larger than shown in the figure.
- the signals BUSRN are rendered inactive (high) by all stations in order to indicate that their bus requests have been inhibited or are in the waiting situation.
- the data transfer phase commences (BSYN becomes low) and the signals BUSRN are high, the signal MSN may become high in order to inidcate that a new allocation phase may commence; the cycle of operations shown in FIG. 2 may then commence again.
- FIG. 3 shows a time diagram of a data exchange between a master station and a random access read/write memory.
- TMPN different signal
- TMEN different signal
- the actual data exchange commences only after the signal BSYN has been rendered low by the master station.
- the relevant master station subsequently applies its address information MAD and the control signals CHA, WRITE to the relevant bus lines and, in the case of a write operation, also the relevant data information (BIO).
- the crossing lines indicate that these signals may have an arbitrary value.
- the master station makes the signal TMRN low.
- the slave station makes the signal TSMN low.
- the gating device (element 34 in FIG. 1a) is suitable for use in a more extensive computer system.
- the left half and the right half of FIG. 1a may both be constructed as a so-called "back panel", the relevant functional stations being accommodated on plug-type boards, for example of the so-called double EURO format. These back panels may be situated at a limited distance from one another, for example 5 meters.
- the gating device acts as a slave station connected to the left bus with respect to the master station transmitting a request, and as a master station with respect to a slave station which is connected to the right bus and which receives the relevant request.
- the gating device always conducts the interrupt signals as previously described and start signals for peripheral apparatus. The latter signals are generated by the first processor station.
- the left bus comprises, for example, 1M address locations with addresses 000000 to 0FFFFF (hexadecimal notation), the right bus also comprising 1M address locations bearing the addresses 800000 to 8FFFFF.
- TMPN becomes low without a given requirement being imposed as regards the address content.
- the gating device, or a processor station connected to the right bus must subsequently provide the allocation on the right bus for the request from the left bus and after the allocation it must wait for the right bus to become free. After the release of the bus, the gating device or the processing station connected to the right bus renders the signal BSYN on this right bus low in order to keep it occupied. The transfer shown in FIG. 3 subsequently takes place. if gating requests can be generated by the left bus only, an operational system is obtained. In that case the gating device performs the following functions:
- the gating device acts as a right bus control unit for control of the allocation procedure.
- a right bus may comprise a further gating device in addition to the previously described gating device.
- the right bus acts as the master bus (left bus) with respect to the further gating device.
- a subordinate right bus (108, 120) is then connected to the other side of the further gating device (106, 118).
- Gating devices may thus also be connected in series. Again at the most three gating devices can be selected in such a configuration by means of two selection bits. Each gating device is then selected when the signal TMRN received becomes low, selection taking place on the basis of the decoding of one or more address bits.
- the gating device is always also selected when the signal TMPN becomes a low, because the processor station need not know whether the addressed station is situated on the left bus or the right bus; in this case the station address is not "mapped" on an address location of the read/write memory (first or second).
- the signal TMRN may serve to address a station whose address is mapped.
- the gating device For the allocation on the right bus the gating device has the highest priority of any connected station. This is also applicable when no processor station is connected to the right bus, so that the gating device must perform the request function as well as the allocation function and thus acts as the bus control unit. In the presence of a processor, the request function is performed by the gating device but not the function of bus control unit.
- the right bus is released for the gating device and the signal BSYN becomes active (for the right bus)
- the left bus and the right bus can be unified by setting the relevant gates to the device is divided among two printed wiring boards with soldered-on electronic components, that is to say a "master" board, as described with reference to FIG.
- Master board and slave board are interconnected by means of a bundle of lines whose length must not exceed a predetermined limit value, for example 5 meters. Thus, it is not necessary to maintain a typical data communication protocol on this bundle of lines.
- the slave board comprises a deactivatable bus controller which serves to process the start/alert signals of the right bus. When a (second) processor station is present, this part is deactivated.
- the gating device comprises two integrated circuits BUSLSI which are accommodated on the slave board to be described with reference to FIG. 6.
- the use of one such integrated circuit is known per se from the "4000" computer series of Philips Data Systems, Oude Apeldoornseweg, Beekbergen, the Netherlands, for the control of a single bus, so without the gating device between respective buses.
- the type number of this customade circuit is SPC 16-12.
- the processor station is then formed, for example, by a processor of the type P 4500.
- the relevant integrated circuit comprises some functional subsystems which will be described with reference to FIG. 4. The circuit performs the following functions:
- the block 50 provides the allocation of the right bus to the connected station having the highest priority
- the time generator logic is initialized by the bus allocation logic in order to generate synchronization signals for the control lines and to ensure the minimum/maximum values for the signals on the address and data lines of the bus (52, 58); to this end, five RC time constant elements which are indicated as RC1 . . . RC5 are required; they are shown in FIG. 6;
- An asterisk (*) accompanying a signal or a block in FIG. 4 indicates that it is relevant only in the bus control mode in which no second processor station is connected to the right bus.
- a triangle indicates that this signal/block is relevant only if a processor station is connected to the right bus.
- REQCL (REQUEST CLOCK) a signal supplied by the master station; its positive-going edge is used for the starting or storage of a specified request.
- EMADN ENABLE MAD. This signal is active during the execution of a requested data exchange, for example as an enable signal for the drivers for the memory address lines and for the signal CHA; it also acts as an indication for a data exchange being executed.
- this continuous signal selects the relevant operating mode (without processr station).
- FIG. 5 is a detailed representation of (the major part of) said master board.
- the address bits MADEO-MADE3 are used to enable at the most 15 gating devices to be selected.
- This four-bit code is applied to the inputs 202 and is compared in the four-bit comparator 200 with the device's own code permanently adjusted by means of switches (not shown). Moreover, a high signal must be present on line 204 and the comparator 200 actually operates across a data width of five bits.
- Input 206 receives the signal TRMN in order to activate the tri-state buffer 208.
- the gating device is also activated by the signal TMPN on input 210 by way of the tri-state buffer 212, (208 and 212 being combined in a wired OR-function).
- the selected state is tored in the data flip-flops 214, type Texas Instruments 74S74.
- L means: low voltage level
- D data
- CK clock
- PR present signal
- C clear signal
- Q output data
- Q dito but inverted.
- the effect of buffer stages on the mnenomics of the signals will be ignored for the sake of simplicity.
- comparison with seveal codes in parallel is possible, for example in that one or more address bits may have a "don't care" value.
- the signals TMPN and TMRN are applied to data flipflop 222 via further tri-state buffers (218, 220) which are not externally controlled.
- This data flipflop controls an address converter which is formed by a three-position switch 224. In the central position, an address bit received from terminal 226 is conducted without modification; in the lower position, this address bit is converted into a high signal; in the upper position, it is converted into a low signal.
- the state of the flipflop 222, controlled by TMPN and TMRN, selects one of the tri-state buffers 228, 230. The address conversion is in any case deactivated when element 230 is activated.
- the signals TMPN, TMRN are also supplied to the slave board.
- the address bits are applied not only to the elements 200, 228, 230, but furthermore in unmodified form, to the slave board via tri-state buffers. These have been omitted for the sake of simplicity.
- the data bits (indicated by a single bit input 232) are transferred to the slave board via a tri-state buffer (235). In the opposite direction, a controlled tri-state buffer 236 is active.
- the data connection between master board and slave board is double (see connections 234/238).
- the deselection of the gating device is performed by the resetting of the flipflop 214 from a NOR-gate 242.
- the latter is driven first of all by the signal TSMN on input 240, subject to the condition that the tri-state buffer 243 conducts under the control of the state of flipflop 211.
- the signal TSMN is then also applied to the left bus.
- the deselection of the gating device further takes place by the reset signal CLEARN on input 246 (via an inverter which is not numbered).
- the latter signal is also applied to AND-gate 248 which also receives the signal BSYN from input 250.
- the output of the AND-gate 248 controls the reset input of flipflop 211.
- the set input is controlled by the signal EMADN on input 252.
- the inverted output of flipflop 211 is connected to the comparator 200 and, via a NAND-gate 254 and an RC-network (producing a delay of, for example, 200 ns), to the slave board as the signal GOV.
- the non-inverted output of the flipflop 211 is (signal GON) connected to the slave board and also to the NAND-gates 256, 258.
- the other inputs of these gates are controlled by the signal WRITE on input 260 (gate 256 via an additional inerter which is denoted by a circle).
- the signal from the gate 256 is applied to the slave board.
- FIG. 6 is a detailed representation of (the major part of) said slave board.
- the circuit essentially consists of a first circuit of the described type BUSLSI (300) which performs the allocation, and a second circuit of this kind (302) which acts as the bus control unit.
- the switch 304 performs the selection between the operating modes of the gating device with and without a second processor station connected to the right bus, respectively.
- the left side of FIG. 6 is connected to the right side of FIG. 5.
- the right side of FIG. 6 is connected to the right bus.
- Buffer stage 306 is connected to element 216 in FIG. 5 in order to apply the signal REQCL to the circuit 300.
- connections which are denoted by a reference including the letter "R” are connected to a high power supply potential via a current limiting resistor.
- the connections which are indicated by the reference “RC” are, moreover, connected to a low power supply potential via a capacitor, thus forming an RC network having a relevant RC time-constant.
- Some other connections shown are floating.
- the entire circuit BUSLSI is accommodated in a conventional, 28-pin casing in which pin 1 is situated at the top left in the figure, followed by the other pins in the appropriate sequence. Eight connections concern power suply, ground and some functions which are irrelevant in this context.
- In put 308 receives the signal from gate 256 in order to render the controlled tri-state buffer 310 selectively conductive for the data.
- element 310 is thus fed from connection 234, while element 312 is connected to line 238.
- Element 314 is driven by the signal GON of FIG. 5.
- the controlled buffer 316 symbolizes a number of such buffers for the relevant signals WRITE, CHA and the address bits.
- the controlled buffer 318 receives the signal BSYN (from line 250 in FIG. 5).
- the conducted signal is applied to the circuits 300, 302.
- Element 320 is fed with the signal GOV of FIG. 5; the controlled buffer 322 symbolizes two elements of this kind for the signals TMRN and TMPN, respectively.
- the line 324 is fed with the signal TSMN which is applied to both circuits 300, 302.
- Input 326 receives the reset (CLEAR) signal which is applied to the circuits 300, 302 via an inverter.
- the circuit 300 produces the signal EMADN on output 328.
- the circuit 302 applies the corresponding signal OKO to switch 304.
- the signal OKO from the circuil 302 is applied to the circuit 300 in order to act as the signal OKI.
- the signal OKI for the circuit 300 is derived from line 332 of the right bus.
- both circuits 300, 302 receive the signal BUSRN on line 334 (and also put the signal BUSRN from the gating device on this line).
- line 336 carries the signal MSN.
- the right bus may be requested; this is performed by way of the signals REQCL, BUSRN, (RC1.OKI)/OKO, MSN.
- the signals BSYN, TSMN, EMADN, CHA, WRITE, BIO, MAD are active, EMADN then coupling the right bus and the left bus to one another for the data transport.
- the gating device is reset by the signal TSMN, so that a new request for the right bus can be treated. Consequently, selectively coupled are;
- the switching through of the signals TMRN, TMPN is delayed slightly in the same manner as indicated in FIG. 3 (third line) for MAD, BION etc.
- the entire gating device is reset by the negative-going edge of the signal BSYN on the left bus.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Bus Control (AREA)
- Multi Processors (AREA)
Abstract
Description
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL8202060 | 1982-05-19 | ||
NL8202060A NL8202060A (en) | 1982-05-19 | 1982-05-19 | CALCULATOR SYSTEM WITH A BUS FOR DATA, ADDRESS AND CONTROL SIGNALS, WHICH INCLUDES A LEFT BUS AND A RIGHT BUS. |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06495379 Continuation | 1983-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4695944A true US4695944A (en) | 1987-09-22 |
Family
ID=19839757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/910,796 Expired - Lifetime US4695944A (en) | 1982-05-19 | 1986-09-22 | Computer system comprising a data, address and control signal bus which comprises a left bus and a right bus |
Country Status (5)
Country | Link |
---|---|
US (1) | US4695944A (en) |
EP (1) | EP0094728A1 (en) |
JP (1) | JPS58211233A (en) |
CA (1) | CA1193742A (en) |
NL (1) | NL8202060A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4118331A1 (en) * | 1990-06-04 | 1992-01-09 | Hitachi Ltd | Bus system for information processing appts. - contains processor, memory and system buses and connection controller generating data path control and address signals |
US5088028A (en) * | 1989-04-07 | 1992-02-11 | Tektronix, Inc. | Lock converting bus-to-bus interface system |
US5109330A (en) * | 1986-04-02 | 1992-04-28 | Siemens Aktiengesellschaft | Multiprocessor system with sequential prioritized common memory access preventing memory update access by all processors except main processor |
US5218682A (en) * | 1991-05-10 | 1993-06-08 | Chrysler Corporation | Two-way handshake circuit and method for communication between processors |
US5280589A (en) * | 1987-07-30 | 1994-01-18 | Kabushiki Kaisha Toshiba | Memory access control system for use with a relatively small size data processing system |
US5432915A (en) * | 1987-05-16 | 1995-07-11 | Nec Corporation | Interprocessor communication system in an information processing system enabling communication between execution processor units during communication between other processor units |
US5438667A (en) * | 1991-01-03 | 1995-08-01 | Meder; Horst | Method for data transmission and apparatus for implementation of this method |
US5463740A (en) * | 1988-09-02 | 1995-10-31 | Fujitsu Limited & Fujitsu Microcomputer Systems Ltd. | Data control device generating different types of bus requests and transmitting requests directly to one of a number of arbiters for obtaining access to a respective bus |
US5579488A (en) * | 1991-09-09 | 1996-11-26 | Canon Kabushiki Kaisha | Programmable control device |
US5627976A (en) * | 1991-08-23 | 1997-05-06 | Advanced Micro Devices, Inc. | Crossing transfers for maximizing the effective bandwidth in a dual-bus architecture |
US6006302A (en) * | 1990-06-04 | 1999-12-21 | Hitachi, Ltd. | Multiple bus system using a data transfer unit |
US6061601A (en) * | 1996-12-13 | 2000-05-09 | Nyquist B.V. | Redundant data processing system having two programmed logic controllers operating in tandem |
WO2001070301A1 (en) * | 2000-03-20 | 2001-09-27 | Fresenius Medical Care Deutschland Gmbh | Medical appliance equipped with a double communications bus |
US20020040425A1 (en) * | 2000-10-04 | 2002-04-04 | David Chaiken | Multi-dimensional integrated circuit connection network using LDT |
US6513070B1 (en) * | 1999-07-21 | 2003-01-28 | Unisys Corporation | Multi-channel master/slave interprocessor protocol |
US20090312694A1 (en) * | 2008-06-11 | 2009-12-17 | Baxter International Inc. | Distributed processing system and method for dialysis machines |
US20100057723A1 (en) * | 2008-08-29 | 2010-03-04 | Lalgudi Natarajan Rajaram | Providing answer to keyword based query from natural owner of information |
US7685523B2 (en) | 2000-06-08 | 2010-03-23 | Agiletv Corporation | System and method of voice recognition near a wireline node of network supporting cable television and/or video delivery |
US8095370B2 (en) | 2001-02-16 | 2012-01-10 | Agiletv Corporation | Dual compression voice recordation non-repudiation system |
US11495334B2 (en) | 2015-06-25 | 2022-11-08 | Gambro Lundia Ab | Medical device system and method having a distributed database |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4932040A (en) * | 1987-12-07 | 1990-06-05 | Bull Hn Information Systems Inc. | Bidirectional control signalling bus interface apparatus for transmitting signals between two bus systems |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4047162A (en) * | 1974-05-02 | 1977-09-06 | The Solartron Electronic Group Limited | Interface circuit for communicating between two data highways |
US4106104A (en) * | 1975-11-11 | 1978-08-08 | Panafacom Limited | Data transferring system with priority control and common bus |
US4231086A (en) * | 1978-10-31 | 1980-10-28 | Honeywell Information Systems, Inc. | Multiple CPU control system |
US4257099A (en) * | 1975-10-14 | 1981-03-17 | Texas Instruments Incorporated | Communication bus coupler |
US4320451A (en) * | 1974-04-19 | 1982-03-16 | Honeywell Information Systems Inc. | Extended semaphore architecture |
US4380798A (en) * | 1980-09-15 | 1983-04-19 | Motorola, Inc. | Semaphore register including ownership bits |
US4390943A (en) * | 1979-12-26 | 1983-06-28 | Honeywell Information Systems Inc. | Interface apparatus for data transfer through an input/output multiplexer from plural CPU subsystems to peripheral subsystems |
US4442504A (en) * | 1981-03-09 | 1984-04-10 | Allen-Bradley Company | Modular programmable controller |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3940743A (en) * | 1973-11-05 | 1976-02-24 | Digital Equipment Corporation | Interconnecting unit for independently operable data processing systems |
JPS5427741A (en) * | 1977-08-03 | 1979-03-02 | Toshiba Corp | Information processing organization |
JPS5437438A (en) * | 1977-08-27 | 1979-03-19 | Nec Corp | Bus control system |
JPS5533214A (en) * | 1978-08-31 | 1980-03-08 | Oki Electric Ind Co Ltd | Information processing system |
DE2943564A1 (en) * | 1978-10-31 | 1980-06-04 | Honeywell Inf Systems | INTERSYSTEM DIALOG CONNECTION |
JPS55105724A (en) * | 1979-02-05 | 1980-08-13 | Mitsubishi Electric Corp | Connection control unit for data processing system |
-
1982
- 1982-05-19 NL NL8202060A patent/NL8202060A/en not_active Application Discontinuation
-
1983
- 1983-05-17 EP EP83200693A patent/EP0094728A1/en not_active Ceased
- 1983-05-19 JP JP58086746A patent/JPS58211233A/en active Pending
- 1983-05-19 CA CA000428548A patent/CA1193742A/en not_active Expired
-
1986
- 1986-09-22 US US06/910,796 patent/US4695944A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320451A (en) * | 1974-04-19 | 1982-03-16 | Honeywell Information Systems Inc. | Extended semaphore architecture |
US4047162A (en) * | 1974-05-02 | 1977-09-06 | The Solartron Electronic Group Limited | Interface circuit for communicating between two data highways |
US4257099A (en) * | 1975-10-14 | 1981-03-17 | Texas Instruments Incorporated | Communication bus coupler |
US4106104A (en) * | 1975-11-11 | 1978-08-08 | Panafacom Limited | Data transferring system with priority control and common bus |
US4231086A (en) * | 1978-10-31 | 1980-10-28 | Honeywell Information Systems, Inc. | Multiple CPU control system |
US4390943A (en) * | 1979-12-26 | 1983-06-28 | Honeywell Information Systems Inc. | Interface apparatus for data transfer through an input/output multiplexer from plural CPU subsystems to peripheral subsystems |
US4380798A (en) * | 1980-09-15 | 1983-04-19 | Motorola, Inc. | Semaphore register including ownership bits |
US4442504A (en) * | 1981-03-09 | 1984-04-10 | Allen-Bradley Company | Modular programmable controller |
Non-Patent Citations (2)
Title |
---|
Madnick, "Operation System", pp. 255-261, 1974, McGraw-Hill. |
Madnick, Operation System , pp. 255 261, 1974, McGraw Hill. * |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5109330A (en) * | 1986-04-02 | 1992-04-28 | Siemens Aktiengesellschaft | Multiprocessor system with sequential prioritized common memory access preventing memory update access by all processors except main processor |
US5432915A (en) * | 1987-05-16 | 1995-07-11 | Nec Corporation | Interprocessor communication system in an information processing system enabling communication between execution processor units during communication between other processor units |
US5280589A (en) * | 1987-07-30 | 1994-01-18 | Kabushiki Kaisha Toshiba | Memory access control system for use with a relatively small size data processing system |
US5463740A (en) * | 1988-09-02 | 1995-10-31 | Fujitsu Limited & Fujitsu Microcomputer Systems Ltd. | Data control device generating different types of bus requests and transmitting requests directly to one of a number of arbiters for obtaining access to a respective bus |
US5088028A (en) * | 1989-04-07 | 1992-02-11 | Tektronix, Inc. | Lock converting bus-to-bus interface system |
US5889971A (en) * | 1990-06-04 | 1999-03-30 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US6006302A (en) * | 1990-06-04 | 1999-12-21 | Hitachi, Ltd. | Multiple bus system using a data transfer unit |
US20050125585A1 (en) * | 1990-06-04 | 2005-06-09 | Hitachi, Ltd. . | Bus system for use with information processing apparatus |
US5483642A (en) * | 1990-06-04 | 1996-01-09 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US5506973A (en) * | 1990-06-04 | 1996-04-09 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US20100306438A1 (en) * | 1990-06-04 | 2010-12-02 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
DE4118331A1 (en) * | 1990-06-04 | 1992-01-09 | Hitachi Ltd | Bus system for information processing appts. - contains processor, memory and system buses and connection controller generating data path control and address signals |
US5668956A (en) * | 1990-06-04 | 1997-09-16 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US5751976A (en) * | 1990-06-04 | 1998-05-12 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US6907489B2 (en) | 1990-06-04 | 2005-06-14 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US5935231A (en) * | 1990-06-04 | 1999-08-10 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US7152130B2 (en) | 1990-06-04 | 2006-12-19 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US7802045B2 (en) | 1990-06-04 | 2010-09-21 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US6098136A (en) * | 1990-06-04 | 2000-08-01 | Hitachi, Ltd. | Multiple bus system using a data transfer unit |
US6195719B1 (en) | 1990-06-04 | 2001-02-27 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US7577781B2 (en) | 1990-06-04 | 2009-08-18 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US6334164B1 (en) | 1990-06-04 | 2001-12-25 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US20080244124A1 (en) * | 1990-06-04 | 2008-10-02 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US7398346B2 (en) | 1990-06-04 | 2008-07-08 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US20070033316A1 (en) * | 1990-06-04 | 2007-02-08 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US20040168007A1 (en) * | 1990-06-04 | 2004-08-26 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US6810461B2 (en) | 1990-06-04 | 2004-10-26 | Hitachi, Ltd. | Bus system for use with information processing apparatus |
US5438667A (en) * | 1991-01-03 | 1995-08-01 | Meder; Horst | Method for data transmission and apparatus for implementation of this method |
US5218682A (en) * | 1991-05-10 | 1993-06-08 | Chrysler Corporation | Two-way handshake circuit and method for communication between processors |
US5627976A (en) * | 1991-08-23 | 1997-05-06 | Advanced Micro Devices, Inc. | Crossing transfers for maximizing the effective bandwidth in a dual-bus architecture |
US5579488A (en) * | 1991-09-09 | 1996-11-26 | Canon Kabushiki Kaisha | Programmable control device |
US6061601A (en) * | 1996-12-13 | 2000-05-09 | Nyquist B.V. | Redundant data processing system having two programmed logic controllers operating in tandem |
US6513070B1 (en) * | 1999-07-21 | 2003-01-28 | Unisys Corporation | Multi-channel master/slave interprocessor protocol |
US20030046439A1 (en) * | 2000-03-20 | 2003-03-06 | Joachim Manke | Medical device with dual communications bus |
US6880034B2 (en) | 2000-03-20 | 2005-04-12 | Fresenius Medical Care Deutschland Gmbh | Medical device with dual communications bus |
WO2001070301A1 (en) * | 2000-03-20 | 2001-09-27 | Fresenius Medical Care Deutschland Gmbh | Medical appliance equipped with a double communications bus |
USRE44326E1 (en) | 2000-06-08 | 2013-06-25 | Promptu Systems Corporation | System and method of voice recognition near a wireline node of a network supporting cable television and/or video delivery |
US7685523B2 (en) | 2000-06-08 | 2010-03-23 | Agiletv Corporation | System and method of voice recognition near a wireline node of network supporting cable television and/or video delivery |
US20020040425A1 (en) * | 2000-10-04 | 2002-04-04 | David Chaiken | Multi-dimensional integrated circuit connection network using LDT |
US8095370B2 (en) | 2001-02-16 | 2012-01-10 | Agiletv Corporation | Dual compression voice recordation non-repudiation system |
US20090312694A1 (en) * | 2008-06-11 | 2009-12-17 | Baxter International Inc. | Distributed processing system and method for dialysis machines |
US9180238B2 (en) | 2008-06-11 | 2015-11-10 | Baxter International Inc. | Distributed processing system and method for dialysis machines |
US20100057723A1 (en) * | 2008-08-29 | 2010-03-04 | Lalgudi Natarajan Rajaram | Providing answer to keyword based query from natural owner of information |
US11495334B2 (en) | 2015-06-25 | 2022-11-08 | Gambro Lundia Ab | Medical device system and method having a distributed database |
Also Published As
Publication number | Publication date |
---|---|
JPS58211233A (en) | 1983-12-08 |
NL8202060A (en) | 1983-12-16 |
EP0094728A1 (en) | 1983-11-23 |
CA1193742A (en) | 1985-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4695944A (en) | Computer system comprising a data, address and control signal bus which comprises a left bus and a right bus | |
US4488217A (en) | Data processing system with lock-unlock instruction facility | |
US3959775A (en) | Multiprocessing system implemented with microprocessors | |
US4967398A (en) | Read/write random access memory with data prefetch | |
EP0194462B1 (en) | System bus means for inter-processor communication | |
EP0172493B1 (en) | Information processing system | |
KR900004006B1 (en) | Micro processor system | |
US4519028A (en) | CPU with multi-stage mode register for defining CPU operating environment including charging its communications protocol | |
US5666515A (en) | Information processing system having multiple modules and a memory on a bus, where any module can lock an addressable portion of the memory by sending retry signals to other modules that try to read at the locked address | |
EP0189638A1 (en) | Bus width adapter | |
JPS6327738B2 (en) | ||
JPS6252345B2 (en) | ||
EP0801352A2 (en) | Data processing system | |
US5845145A (en) | System for generating and sending a critical-world-first data response packet by creating response packet having data ordered in the order best matching the desired order | |
JPH0626336B2 (en) | Control link | |
GB2044499A (en) | Data processing system | |
WO1981002798A1 (en) | Computer system and interface therefor | |
JPS6242306B2 (en) | ||
GB1595471A (en) | Computer system | |
US4494186A (en) | Automatic data steering and data formatting mechanism | |
JP2589821B2 (en) | Central processing unit of information processing system | |
JPH10116224A (en) | Circuit moving data between remote memories, and computer including circuit like the same | |
KR920010977B1 (en) | Memory bus architecture | |
JP2004521412A (en) | A parallel computer architecture including a plurality of processor units connected to a communication bus and addressed by respective functions | |
JPH0227696B2 (en) | JOHOSHORISOCHI |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: U.S. PHILIPS CORPORATION, 100 EAST 42ND ST., NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:ZANDVELD, FREDERIK;VISSER, JEROEN M.;REEL/FRAME:004733/0218 Effective date: 19830519 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: DIGITAL EQUIPMENT CORPORATION, A CORP. OF MA, MASS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:U.S. PHILIPS CORPORATION, A CORP. OF DE;REEL/FRAME:006158/0412 Effective date: 19920410 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIGITAL EQUIPMENT CORPORATION;COMPAQ COMPUTER CORPORATION;REEL/FRAME:012447/0903;SIGNING DATES FROM 19991209 TO 20010620 |
|
AS | Assignment |
Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:COMPAQ INFORMATION TECHNOLOGIES GROUP, LP;REEL/FRAME:015000/0305 Effective date: 20021001 |