US4673512A - Particle separation - Google Patents
Particle separation Download PDFInfo
- Publication number
- US4673512A US4673512A US06/751,951 US75195185A US4673512A US 4673512 A US4673512 A US 4673512A US 75195185 A US75195185 A US 75195185A US 4673512 A US4673512 A US 4673512A
- Authority
- US
- United States
- Prior art keywords
- standing wave
- particles
- propagation
- axis
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000002245 particle Substances 0.000 title claims abstract description 103
- 238000000926 separation method Methods 0.000 title abstract description 31
- 239000007788 liquid Substances 0.000 claims abstract description 49
- 230000001629 suppression Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 27
- 230000000644 propagated effect Effects 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims 2
- 230000004044 response Effects 0.000 abstract description 7
- 239000013618 particulate matter Substances 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 102000034238 globular proteins Human genes 0.000 description 1
- 108091005896 globular proteins Proteins 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
- B01D15/3861—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus
- B01D15/3866—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36 using an external stimulus using ultra-sound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/28—Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
- B01D21/283—Settling tanks provided with vibrators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D43/00—Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/02—Separating microorganisms from the culture medium; Concentration of biomass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25375—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
Definitions
- This invention relates to the separation of different types of particulate matter in a liquid medium using an ultrasonic standing wave propagated through the medium. It relates particularly, although not exclusively, to a method and a means for chromatography.
- the invention is concerned with the separation of biological particles, which term is used here to include a range of particulate matter from macromolecules --e.g. globular proteins --through viruses, bacteria and yeasts, to tissue cells --e.g. plant cells, animal cells and aggregates --but it can also be employed on many finely divided inorganic and organic materials, including siliceous minerals such as clays.
- macromolecules e.g. globular proteins --through viruses, bacteria and yeasts
- tissue cells e.g. plant cells, animal cells and aggregates --but it can also be employed on many finely divided inorganic and organic materials, including siliceous minerals such as clays.
- the method may be performed by varying the intensity of the standing wave to effect said cyclical variation of the acoustic energy propagation.
- the standing wave is alternatively suppressed and reestablished without disturbing the phase continuity of electrical driving signals producing the acoustic energy.
- the standing wave is caused to move at a varying rate. It is also possible to combine such cyclic variations of the standing wave intensity and velocity.
- apparatus for the separation of different types of particles in a liquid medium comprising means for propagating an ultrasonic standing wave in the medium and for generating a relative movement between the medium and the standing wave, the apparatus further comprising means for varying cyclically the acoustic energy propagation in order that different types of particles having different responses to the acoustic energy of the standing wave and/or the Stokes or drag forces generated by relative movement between the particles and the liquid medium are caused to move at different rates with respect to the standing wave and are thereby progressively separated.
- FIGS. 1 and 2 illustrate schematically the separation of different types of particles in a liquid medium through which a periodically suppressed standing wave is propagated
- FIG. 3 is a schematic illustration of an apparatus for performing the separation process described in FIGS. 1 and 2,
- FIG. 4 illustrates schematically the separation of different types of particles in a liquid medium through which a standing wave is propagated with variable rate of movement
- FIG. 5 is a fragmentary illustration of a modification of the apparatus of FIG. 4 to operate the separation process of FIG. 4,
- FIG. 6 is another schematic illustration of the separation of different types of particles employing phase changes in the propagation of the standing wave to produce stepped displacements
- FIG. 7 is a further fragmentary illustration of another modification of the apparatus of FIG. 3 to operate a continuous separation process.
- FIG. 1 illustrates the propagation of an ultrasonic standing wave having a wavelength of 0.7 mm, and thus an internodal distance of 0.35 mm at a constant velocity of one internodal distance per second.
- an internodal distance corresponds, for instance, with a 2MHz wave in water at room temperature.
- This propagation in the liquid medium occurs in such a manner that there is uniform relative movement along the axis of propagation of the standing wave between the standing wave and the liquid.
- Distance in mm along the axis of propagation is plotted against a time base (t) in seconds and the graph represents the moving nodes (full lines) and antinodes (broken lines) having a velocity of 0.35 mm/sec relative to the liquid.
- FIG. 1 illustrates the propagation of an ultrasonic standing wave having a wavelength of 0.7 mm, and thus an internodal distance of 0.35 mm at a constant velocity of one internodal distance per second.
- This propagation in the liquid medium occurs in such
- Particles of two different types A and B are shown in FIG. 1 at the beginning of the separation process both attached to a node of the standing wave and thus moving relative to the liquid with the standing wave, but the response to the acoustic forces and therefore the strength of attachment to the node is greater for type A than for type B.
- the standing wave is suppressed (as first occurs at 0.2 sec as shown in FIG. 1) the particles are left static in the liquid. Very small particles e.g. of the order of microns, have very little inertia and in a liquid medium both types A and B will stop moving virtually immediately the wave is suppressed.
- particles A and B are now positioned between the node on which they were originally held and the following antinode.
- An A type particle being acted on more strongly by the acoustic forces, will move towards the original node at a speed faster than the node is itself moving relative to the liquid and will thus quickly be reattached to the node.
- a B type particle will also move towards the original node but is less strongly attracted, to the extent that its velocity is less than the relative velocity between the standing wave and the liquid.
- the particle B thus soon finds itself at the following antinode, where the attraction forces of the original node and its following node cancel each other out, and the particle then quickly comes under the influence of the approaching following node to move towards it.
- the particle B soon attaches itself to the following node, so that the two particle types are now separated by an internodal distance.
- the standing wave is again suppressed and the cycle repeated, whereupon the particle A attaches again to the original node and the particle B falls back a further internodal distance.
- the particles become separated by as many internodal distances as there are interruptions in the propagation of the standing wave.
- the interruption cycle time will be of the same order as the internodal period, so that particles A and B will be presented with a large number of successive opportunities to increase their separation over a relatively small time period.
- the progress of the nodes can be related to a standing wave moving with uniform velocity.
- the period during which the standing wave is suppressed determines the position relative to the wave pattern that the particles occupy when the wave is re-established.
- the period of suppression it is necessary for the period of suppression to have an interval significantly less than half the internodal period in order that the particle A finds itself between a node and the following antinode (it can also comprise any integral number of internodal periods, but there will not be any advantage generally in so extending the period), so that it may be advanced with the standing wave while the particle B falls back to a following node.
- the simplest method maintains the standing wave long enough to ensure that both types of particle attach themselves to spaced nodes.
- the conditions in each interruption of the standing wave can thus be relatively precisely repeated. It will be noted, however, that since the particle A reattaches itself to the original node before the particle B falls back to the succeeding node, the period of propagation can be shortened to a time sufficient to allow that reattachment of the particle A, leaving the particle B somewhere in the region of the following antinode.
- FIG. 2 illustrates a process in which the conditions are generally the same as in FIG. 1, except that the propagation period has been reduced to 0.35 sec, giving an 0.65 sec cycle.
- a group A 1 of particles enriched with particle A is reattached to the original node, while a group B 1 of particles enriched with particle B lies in the region of the following antinode.
- group A 1 When the wave is re-established in the second cycle, group A 1 is again in the same position relative to the nodal array as in the first cycle and another B-rich fraction B 11 from that group falls back to the following antinode, so that the group A 2 attaching itself to the original node in the third cycle has a further reduced content of group B particles, while the group B 1 is exposed to no selection process in this second cycle and merely joins the following node.
- the group A 2 has more B type particles removed in group B12 leaving a further purified group A 3 of A particles to reattach itself to the original node in the following cycle.
- the group B 1 is also subjected to another separation process since it starts the cycle in a corresponding position to that of the original mixture in the first cycle, and an A-rich fraction A 11 is drawn from it, leaving a purer group B 2 of B particles.
- the suppression period and cycle time in relation to the internodal period there is scope for adjusting the degree of discrimination and the rate of working required. It is possible, for example, to shorten the cycle still further than is described in FIG. 2, since it will be possible to ensure continuing separation when the two groups are separated by less than half an internodal distance in a period of propagation. In particular it will not normally be necessary to ensure that the more strongly influenced group reattaches to the original node before the standing wave is suppressed.
- the cycle time By keeping the cycle time to the minimum practical period possible, the process can be highly selective because of the very large number of separation stages that can be contained over a very short distance in the liquid.
- FIG. 3 illustrates schematically an apparatus in which the processes of FIGS. 1 and 2 may be performed.
- a liquid-filled column 2 has a standing wave propagated in it by opposed ultrasonic transducers 4 at opposite ends of the column. Opposite ends of the column are immersed in liquid baths 6, 8, but are sealed from the contents of the baths by end plugs 10 transparent to the ultrasonic energy, and the transducers 4 are disposed in the liquid of the baths, aligned with each other so that the axis of propagation of ultrasonic energy from each is coaxial with the central axis of the column.
- the transducers are driven from an oscillator, 12, having a power supply 12a, through respective amplifiers 14.
- a phase control unit 16 between the oscillator 12 and one amplifier produces a relative phase shift between the outputs of the two transducers so that the standing wave resulting from the interference of the two coaxially propagated ultrasonic outputs from the transducers is caused to move along the column in a direction and at a rate determined by the phase control.
- a power supply 18 for the two amplifiers 14 is controlled by switching means 20 so that the energisation of both transducers can be switched on and off jointly to produce the cyclic suppression of the standing wave already described.
- the column has inlet and outlet ports 22, 24 for a carrier liquid adjacent opposite ends of the liquid-filled space between the plugs.
- Sample injection ports 26, 28 are disposed between the carrier liquid ports one adjacent each port.
- a continuous slow flow of liquid is established between the liquid ports 22, 24 and a mixed sample of two particle types is injected into the column through the port 26 adjacent to the liquid inlet port 22.
- the standing wave is caused to move in the direction from the inlet port 22 to the outlet port 24 and, as described with reference to FIGS. 1 and 2, the types of particles are progressively separated and spaced apart as they travel towards the opposite end of the column.
- FIG. 4 A further process according to the invention is illustrated in FIG. 4, in which the standing wave is caused to move through the liquid medium at a variable rate.
- a cyclical series of stepped phase changes are introduced between the two opposed transducers, the figure showing a 1 sec. cycle with ten stepped stages, the wave velocity (v) being indicated on the left-hand vertical scale in mm/minute from a maximum wave velocity of 95 mm/min to a minimum of 5 mm/min in 0.1 sec steps.
- the number of steps can be increased and in the extreme case the linear variation indicated by the broken line in FIG. 4 illustrates a continuous linear rate of change from 100 mm/min to 0 over the 1 sec cycle.
- the total distance travelled by a node of the standing wave pattern is plotted in curve DA against the vertical scale of distance (d) in mm indicated on the right-hand side of the figure; thus over one complete cycle the travel distance totals 0.83 mm.
- FIG. 4 illustrates curves DA, DB and DC of the distance travelled by three different particles, A, B and C with different responses to the standing wave such that the critical or transitional velocity for particle A is 110 mm/min, that for particle B is 60 mm/min and for particle C is 30 mm/min.
- particle A having a critical velocity greater than the maximum velocity of the wave remains attached to a node throughout and moves with the node a distance of 0.83 mm in one cycle.
- Particle B is unable to be entrained by the standing wave until the wave velocity falls below 60 mm/min, at 0.4 sec into the cycle, and its movement over the remaining part of the cycle totals 0.3 mm.
- particle C can similarly only be entrained after 0.7 sec and travels only 0.075 mm by the end of the cycle.
- FIG. 5 illustrates in block diagram form the modified driving circuit for the transducers to produce the variable velocity pattern shown in FIG. 4.
- the transducers may be set up with a liquid column in the same way as is shown in FIG. 3.
- the oscillator 12 now drives one of the two amplifiers 14 through a phase lock unit 32, capable of providing a chosen phase difference between its input and output, and a phase shift control 34 that varies that chosen phase difference in accordance with a desired wave velocity profile. Further details of such a method of control of the standing wave appear in co-pending application Ser. No. 751,952 by Michael W. B. Lock filed simultaneously herewith, the contents of which are incorporated herein by reference.
- phase shift system By use of a phase shift system it is also possible to establish a regime in which, in place of the periods of wave suppression shown in FIGS. 1 and 2 there is a more or less instantaneous change of phase giving an equivalent displacement of the nodes in a substantially shorter cycle time. This is illustrated in FIG. 6. It may be required in such a regime to allow for the inertia of the particles, although this is small, if relatively abrupt and large changes of force are imposed on them.
- FIG. 7 shows a modified liquid column 42 that can replace the column 2 of FIG. 3.
- the means for generating an ultrasonic standing wave are not illustrated, but a variable intensity wave of the character described with reference to FIG. 4, can be employed, using the means described with reference to FIG. 5.
- the column 42 has a series of ports 44, 46, 48, 50, 52 spaced along its length between the end plugs 10.
- the ports 44, 46 are connected to a circulatory conduit 54 through which liquid is drawn by a pump 56 so that liquid flows through the column from port 46 to port 44. Liquid is also pumped into the column through port 50 by a further pump 58 to exit through ports 48 and 52.
- the particulate matter to be separated is introduced into the circulatory conduit 54 through a port 60.
- the pumping rates are such that the liquid velocity is greater from port 46 to port 44 than it is from port 50 to port 48, while there is a low velocity flow in the opposite direction from port 46 to port 48.
- the apparatus may include further liquid inlet and/or outlet ports along the length of the column to establish a series of different velocity regimes, thereby to increase the number of fractions into which a mixed group of particles is separated in a continuous process.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Toxicology (AREA)
- Analytical Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Abstract
Description
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8417240 | 1984-07-06 | ||
GB848417240A GB8417240D0 (en) | 1984-07-06 | 1984-07-06 | Particle separation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/240,203 Reissue USRE33524E (en) | 1984-07-06 | 1988-09-02 | Particle separation |
Publications (1)
Publication Number | Publication Date |
---|---|
US4673512A true US4673512A (en) | 1987-06-16 |
Family
ID=10563492
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/751,951 Ceased US4673512A (en) | 1984-07-06 | 1985-07-05 | Particle separation |
US07/240,203 Expired - Lifetime USRE33524E (en) | 1984-07-06 | 1988-09-02 | Particle separation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/240,203 Expired - Lifetime USRE33524E (en) | 1984-07-06 | 1988-09-02 | Particle separation |
Country Status (5)
Country | Link |
---|---|
US (2) | US4673512A (en) |
EP (1) | EP0167406B1 (en) |
JP (1) | JPH07112548B2 (en) |
DE (1) | DE3583359D1 (en) |
GB (1) | GB8417240D0 (en) |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4743361A (en) * | 1983-10-31 | 1988-05-10 | Internationale Octrooi Maatschappij "Octropa" Bv | Manipulation of particles |
US4854170A (en) * | 1988-10-12 | 1989-08-08 | Separation Technology, Inc. | Apparatus and method for using ultrasound to determine hematocrit |
US4950751A (en) * | 1989-06-02 | 1990-08-21 | The Nanci Corporation International | Method of isolating arabinogalactan from larch |
US4963268A (en) * | 1988-04-20 | 1990-10-16 | Aqua Dynamics Group Corp. | Method and system for variable frequency electromagnetic water treatment |
US5033033A (en) * | 1989-05-31 | 1991-07-16 | National Research Development Corporation | Ultrasonic systems |
US5085783A (en) * | 1990-08-16 | 1992-02-04 | Case Western Reserve University | Acoustically driven particle separation method and apparatus |
US5132942A (en) * | 1989-06-16 | 1992-07-21 | Alphonse Cassone | Low frequency electroacoustic transducer |
US5225089A (en) * | 1988-11-03 | 1993-07-06 | Ewald Benes | Method and apparatus for separating particles |
US5395592A (en) * | 1993-10-04 | 1995-03-07 | Bolleman; Brent | Acoustic liquid processing device |
US5527460A (en) * | 1993-05-11 | 1996-06-18 | Sonosep Biotech Inc. | Multilayered piezoelectric resonator for the separation of suspended particles |
US5626767A (en) * | 1993-07-02 | 1997-05-06 | Sonosep Biotech Inc. | Acoustic filter for separating and recycling suspended particles |
US5688406A (en) * | 1996-02-28 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for separating particulate from a flowing fluid |
US5711888A (en) * | 1993-05-11 | 1998-01-27 | Sonosep Biotech, Inc. | Multilayered piezoelectric resonator for the separation of suspended particles |
US20020053085A1 (en) * | 2000-06-13 | 2002-05-02 | Yasuhiro Toguri | Apparatus, method, and system for information processing, and recording meduim |
US20060034733A1 (en) * | 2004-08-16 | 2006-02-16 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Separation of particles from a fluid by wave action |
US20060037915A1 (en) * | 2002-06-04 | 2006-02-23 | Protasis Corporation | Method and device for ultrasonically manipulating particles within a fluid |
US20080053787A1 (en) * | 2006-09-05 | 2008-03-06 | Bagajewicz Miguel J | Acoustic/Pressure Wave-Driven Separation Device |
US20080063806A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Processes for curing a polymeric coating composition using microwave irradiation |
US20080063718A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Delivery Systems For Delivering Functional Compounds to Substrates and Processes of Using the Same |
US20080159063A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080155764A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080156428A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Bonding Substrates With Improved Microwave Absorbing Compositions |
US20080156157A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions |
US20080156737A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080155763A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155766A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080245745A1 (en) * | 2007-04-09 | 2008-10-09 | Ward Michael D | Acoustic concentration of particles in fluid flow |
US20080245709A1 (en) * | 2007-04-09 | 2008-10-09 | Gregory Kaduchak | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US20080272034A1 (en) * | 2004-08-16 | 2008-11-06 | Searete Llc, | Separation of particles from a fluid by wave action |
US20090017225A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US20090014393A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US20090029870A1 (en) * | 2007-04-02 | 2009-01-29 | Ward Michael D | Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure |
US20090107241A1 (en) * | 2007-10-24 | 2009-04-30 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US20090147905A1 (en) * | 2007-12-05 | 2009-06-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for initiating thermonuclear fusion |
US20090162887A1 (en) * | 2007-12-19 | 2009-06-25 | Gregory Kaduchak | Particle analysis in an acoustic cytometer |
US20090162258A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US20090158936A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US20090165654A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US20090178716A1 (en) * | 2008-01-16 | 2009-07-16 | Acoustic Cytometry Systems, Inc. | System and Method for Acoustic Focusing Hardware and Implementations |
US20090262597A1 (en) * | 2007-12-28 | 2009-10-22 | Philip Eugene Kieffer | Ultrasonic Treatment Chamber for Preparing Emulsions |
US20100000325A1 (en) * | 2004-07-29 | 2010-01-07 | Gregory Kaduchak | Ultrasonic analyte concentration and application in flow cytometry |
US7674300B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20100067321A1 (en) * | 2006-09-08 | 2010-03-18 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system and method of using the system |
US20100078384A1 (en) * | 2008-09-26 | 2010-04-01 | Abbott Laboratories | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended |
US20100152042A1 (en) * | 2008-12-15 | 2010-06-17 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
US20100206818A1 (en) * | 2009-02-19 | 2010-08-19 | Chartered Semiconductor Manufacturing, Ltd. | Ultrasonic filtration for cmp slurry |
US7835000B2 (en) | 2006-11-03 | 2010-11-16 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer or the like |
US7998322B2 (en) | 2007-07-12 | 2011-08-16 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber having electrode properties |
US8034286B2 (en) | 2006-09-08 | 2011-10-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system for separating compounds from aqueous effluent |
NL2004530C2 (en) * | 2010-04-09 | 2011-10-11 | Stichting Wetsus Ct Excellence Sustainable Water Technology | Purification device and method for purifying a fluid. |
WO2011126371A3 (en) * | 2010-04-09 | 2012-02-16 | Stichting Wetsus Centre Of Excellence For Sustainable Water Technology | Purification device and method for purifying a fluid |
US8143318B2 (en) | 2007-12-28 | 2012-03-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US8206024B2 (en) | 2007-12-28 | 2012-06-26 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for particle dispersion into formulations |
US8215822B2 (en) | 2007-12-28 | 2012-07-10 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing antimicrobial formulations |
US8263407B2 (en) | 2007-10-24 | 2012-09-11 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US8632613B2 (en) | 2007-12-27 | 2014-01-21 | Kimberly-Clark Worldwide, Inc. | Process for applying one or more treatment agents to a textile web |
US8685178B2 (en) | 2008-12-15 | 2014-04-01 | Kimberly-Clark Worldwide, Inc. | Methods of preparing metal-modified silica nanoparticles |
US9239036B2 (en) | 2006-09-08 | 2016-01-19 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment and delivery system and process |
WO2016201385A3 (en) * | 2015-06-11 | 2017-01-26 | Flodesign Sonics, Inc. | Acoustic methods for separation cells and pathogens |
US9738867B2 (en) | 2012-03-15 | 2017-08-22 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
US10350514B2 (en) | 2012-03-15 | 2019-07-16 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US10370635B2 (en) | 2012-03-15 | 2019-08-06 | Flodesign Sonics, Inc. | Acoustic separation of T cells |
US10427956B2 (en) | 2009-11-16 | 2019-10-01 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
US10610804B2 (en) | 2014-10-24 | 2020-04-07 | Life Technologies Corporation | Acoustically settled liquid-liquid sample purification system |
US10640760B2 (en) | 2016-05-03 | 2020-05-05 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US10662402B2 (en) | 2012-03-15 | 2020-05-26 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10710006B2 (en) | 2016-04-25 | 2020-07-14 | Flodesign Sonics, Inc. | Piezoelectric transducer for generation of an acoustic standing wave |
US10724029B2 (en) | 2012-03-15 | 2020-07-28 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
US10785574B2 (en) | 2017-12-14 | 2020-09-22 | Flodesign Sonics, Inc. | Acoustic transducer driver and controller |
US10814253B2 (en) | 2014-07-02 | 2020-10-27 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
US10871437B2 (en) | 2015-02-12 | 2020-12-22 | Cytena Gmbh | Apparatus and method for dispensing particles in free-flying drops aligned using an acoustic field |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
US10975368B2 (en) | 2014-01-08 | 2021-04-13 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
US11007457B2 (en) | 2012-03-15 | 2021-05-18 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
US11420136B2 (en) | 2016-10-19 | 2022-08-23 | Flodesign Sonics, Inc. | Affinity cell extraction by acoustics |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8612759D0 (en) * | 1986-05-27 | 1986-07-02 | Unilever Plc | Manipulating particulate matter |
GB8612760D0 (en) * | 1986-05-27 | 1986-07-02 | Unilever Plc | Ultrasonic field generation |
JPS63281046A (en) * | 1987-05-13 | 1988-11-17 | Sekisui Chem Co Ltd | Treatment device for sample |
AT389235B (en) * | 1987-05-19 | 1989-11-10 | Stuckart Wolfgang | METHOD FOR CLEANING LIQUIDS BY MEANS OF ULTRASOUND AND DEVICES FOR CARRYING OUT THIS METHOD |
US5334136A (en) * | 1990-01-19 | 1994-08-02 | Karl Schwarz | System for treating blood processed in a cardiopulmonary bypass machine and ultrasound filtration apparatus useful therein |
MX9100106A (en) * | 1991-07-08 | 1993-01-01 | Oscar Mario Guagnelli Hidalgo | IMPROVEMENTS IN THE SYSTEM FOR CONTINUOUS MIXING IN SOLID, LIQUID AND / OR GASEOUS PARTICLES IN ALL ALTERNATIVES. |
US5868495A (en) * | 1991-07-08 | 1999-02-09 | Hidalgo; Oscar Mario Guagnelli | Method for treating fluent materials |
US5338686A (en) * | 1992-04-29 | 1994-08-16 | Hellerstein Marc K | Method for measuring in vivo synthesis of biopolymers |
US6216538B1 (en) * | 1992-12-02 | 2001-04-17 | Hitachi, Ltd. | Particle handling apparatus for handling particles in fluid by acoustic radiation pressure |
US5472620A (en) * | 1993-09-23 | 1995-12-05 | Exxon Production Research Company | Solid-liquid separation process using at least one polymer and cavitation energy |
JP3834737B2 (en) * | 1995-05-18 | 2006-10-18 | ノードソン株式会社 | Method for spraying liquid or heated melt |
US5784682A (en) * | 1996-02-16 | 1998-07-21 | Birken; Stephen M. | System for separating constituents from a base material |
WO1997043026A1 (en) * | 1996-05-10 | 1997-11-20 | British Technology Group Limited | Apparatus and method for manipulating particles in a liquid medium by ultrasonic waves |
JP2000024431A (en) * | 1998-07-14 | 2000-01-25 | Hitachi Ltd | Fine particle treating device |
GB9916851D0 (en) * | 1999-07-20 | 1999-09-22 | Univ Wales Bangor | Manipulation of particles in liquid media |
US6776118B2 (en) * | 2002-04-16 | 2004-08-17 | The Mitre Corporation | Robotic manipulation system utilizing fluidic patterning |
US7108137B2 (en) * | 2002-10-02 | 2006-09-19 | Wisconsin Alumni Research Foundation | Method and apparatus for separating particles by size |
US6878288B2 (en) | 2002-12-17 | 2005-04-12 | Harold W. Scott | System and apparatus for removing dissolved and suspended solids from a fluid stream |
SE528313C2 (en) * | 2004-09-24 | 2006-10-17 | Spectronic Ab | Method and apparatus for separating particles using ultrasonic waves |
DE102010017137A1 (en) * | 2010-05-28 | 2011-12-01 | Rwth Aachen | Method for separating particles, particularly solid particles, involves arranging particles in liquid and pressurizing liquid with sound waves, where frequency of sound waves is selected |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2215484A (en) * | 1938-10-10 | 1940-09-24 | Us Government | Sonic flocculator and method of flocculating smoke or the like |
DE1442610A1 (en) * | 1962-05-09 | 1969-04-30 | Commissariat Energie Atomique | Process for dispersing uniform droplets of liquid in a second liquid |
US3837147A (en) * | 1971-10-01 | 1974-09-24 | C Brunnee | Device for separating mixtures of gaseous and/or vaporous substances especially for separation of carrier gas in devices for gaschromatography |
US4055491A (en) * | 1976-06-02 | 1977-10-25 | Porath Furedi Asher | Apparatus and method for removing fine particles from a liquid medium by ultrasonic waves |
US4280823A (en) * | 1979-11-13 | 1981-07-28 | Honeywell Inc. | Method and apparatus for sonic separation and analysis of components of a fluid mixture |
US4475921A (en) * | 1982-03-24 | 1984-10-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Acoustic agglomeration methods and apparatus |
US4523682A (en) * | 1982-05-19 | 1985-06-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Acoustic particle separation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB500271A (en) * | 1936-05-04 | 1939-02-06 | Metallgesellschaft Ag | Process of and apparatus for clarifying liquids |
FR828204A (en) * | 1936-10-24 | 1938-05-12 | Process for the treatment of molten bodies and liquids of all kinds by sound and ultrasound | |
DE836640C (en) * | 1950-04-27 | 1952-04-15 | Dr Gerhard Dickel | Process for the separation of substances in the liquid phase |
GB2098498B (en) * | 1980-10-27 | 1984-08-22 | Secr Defence | Separating particles from fluid |
DE3218488A1 (en) * | 1982-05-15 | 1983-11-17 | Battelle-Institut E.V., 6000 Frankfurt | Process and apparatus for sorting particles according to different density ranges |
EP0147032B1 (en) * | 1983-10-31 | 1990-02-07 | National Research Development Corporation | manipulation of particles |
-
1984
- 1984-07-06 GB GB848417240A patent/GB8417240D0/en active Pending
-
1985
- 1985-07-05 EP EP85304806A patent/EP0167406B1/en not_active Expired - Lifetime
- 1985-07-05 US US06/751,951 patent/US4673512A/en not_active Ceased
- 1985-07-05 DE DE8585304806T patent/DE3583359D1/en not_active Expired - Lifetime
- 1985-07-06 JP JP60149074A patent/JPH07112548B2/en not_active Expired - Lifetime
-
1988
- 1988-09-02 US US07/240,203 patent/USRE33524E/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2215484A (en) * | 1938-10-10 | 1940-09-24 | Us Government | Sonic flocculator and method of flocculating smoke or the like |
DE1442610A1 (en) * | 1962-05-09 | 1969-04-30 | Commissariat Energie Atomique | Process for dispersing uniform droplets of liquid in a second liquid |
US3837147A (en) * | 1971-10-01 | 1974-09-24 | C Brunnee | Device for separating mixtures of gaseous and/or vaporous substances especially for separation of carrier gas in devices for gaschromatography |
US4055491A (en) * | 1976-06-02 | 1977-10-25 | Porath Furedi Asher | Apparatus and method for removing fine particles from a liquid medium by ultrasonic waves |
US4280823A (en) * | 1979-11-13 | 1981-07-28 | Honeywell Inc. | Method and apparatus for sonic separation and analysis of components of a fluid mixture |
US4475921A (en) * | 1982-03-24 | 1984-10-09 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Acoustic agglomeration methods and apparatus |
US4523682A (en) * | 1982-05-19 | 1985-06-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Acoustic particle separation |
Cited By (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4743361A (en) * | 1983-10-31 | 1988-05-10 | Internationale Octrooi Maatschappij "Octropa" Bv | Manipulation of particles |
US4963268A (en) * | 1988-04-20 | 1990-10-16 | Aqua Dynamics Group Corp. | Method and system for variable frequency electromagnetic water treatment |
US4854170A (en) * | 1988-10-12 | 1989-08-08 | Separation Technology, Inc. | Apparatus and method for using ultrasound to determine hematocrit |
US5225089A (en) * | 1988-11-03 | 1993-07-06 | Ewald Benes | Method and apparatus for separating particles |
US5033033A (en) * | 1989-05-31 | 1991-07-16 | National Research Development Corporation | Ultrasonic systems |
US4950751A (en) * | 1989-06-02 | 1990-08-21 | The Nanci Corporation International | Method of isolating arabinogalactan from larch |
US5132942A (en) * | 1989-06-16 | 1992-07-21 | Alphonse Cassone | Low frequency electroacoustic transducer |
US5085783A (en) * | 1990-08-16 | 1992-02-04 | Case Western Reserve University | Acoustically driven particle separation method and apparatus |
US5711888A (en) * | 1993-05-11 | 1998-01-27 | Sonosep Biotech, Inc. | Multilayered piezoelectric resonator for the separation of suspended particles |
US5527460A (en) * | 1993-05-11 | 1996-06-18 | Sonosep Biotech Inc. | Multilayered piezoelectric resonator for the separation of suspended particles |
US5626767A (en) * | 1993-07-02 | 1997-05-06 | Sonosep Biotech Inc. | Acoustic filter for separating and recycling suspended particles |
US5395592A (en) * | 1993-10-04 | 1995-03-07 | Bolleman; Brent | Acoustic liquid processing device |
US5688406A (en) * | 1996-02-28 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for separating particulate from a flowing fluid |
US20020053085A1 (en) * | 2000-06-13 | 2002-05-02 | Yasuhiro Toguri | Apparatus, method, and system for information processing, and recording meduim |
US7846382B2 (en) | 2002-06-04 | 2010-12-07 | Protasis Corporation | Method and device for ultrasonically manipulating particles within a fluid |
US20060037915A1 (en) * | 2002-06-04 | 2006-02-23 | Protasis Corporation | Method and device for ultrasonically manipulating particles within a fluid |
US9074979B2 (en) | 2004-07-29 | 2015-07-07 | Los Alamos National Security, Llc | Ultrasonic analyte concentration and application in flow cytometry |
US20100000325A1 (en) * | 2004-07-29 | 2010-01-07 | Gregory Kaduchak | Ultrasonic analyte concentration and application in flow cytometry |
US10537831B2 (en) | 2004-07-29 | 2020-01-21 | Triad National Security, Llc | Ultrasonic analyte concentration and application in flow cytometry |
US8783109B2 (en) | 2004-07-29 | 2014-07-22 | Los Alamos National Sercurity, LLC | Ultrasonic analyte concentration and application in flow cytometry |
US20080272034A1 (en) * | 2004-08-16 | 2008-11-06 | Searete Llc, | Separation of particles from a fluid by wave action |
US20060034733A1 (en) * | 2004-08-16 | 2006-02-16 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Separation of particles from a fluid by wave action |
US20080053787A1 (en) * | 2006-09-05 | 2008-03-06 | Bagajewicz Miguel J | Acoustic/Pressure Wave-Driven Separation Device |
US8075786B2 (en) * | 2006-09-05 | 2011-12-13 | The Board Of Regents Of The University Of Oklahoma | Acoustic/pressure wave-driven separation device |
US20080063718A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Delivery Systems For Delivering Functional Compounds to Substrates and Processes of Using the Same |
US9239036B2 (en) | 2006-09-08 | 2016-01-19 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment and delivery system and process |
US8034286B2 (en) | 2006-09-08 | 2011-10-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system for separating compounds from aqueous effluent |
US8616759B2 (en) | 2006-09-08 | 2013-12-31 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system |
US9283188B2 (en) | 2006-09-08 | 2016-03-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US7703698B2 (en) | 2006-09-08 | 2010-04-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment chamber and continuous flow mixing system |
US20100067321A1 (en) * | 2006-09-08 | 2010-03-18 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system and method of using the system |
US20080063806A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Processes for curing a polymeric coating composition using microwave irradiation |
US8767208B2 (en) | 2006-11-03 | 2014-07-01 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source |
US8564776B2 (en) | 2006-11-03 | 2013-10-22 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source |
US20110032522A1 (en) * | 2006-11-03 | 2011-02-10 | Los Alamos National Security, Llc | System and Method for Measuring Particles in a Sample Stream of a Flow Cytometer or the Like |
US7835000B2 (en) | 2006-11-03 | 2010-11-16 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer or the like |
US9494509B2 (en) | 2006-11-03 | 2016-11-15 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source |
US20080156157A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions |
US7674300B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080159063A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080155764A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080156428A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Bonding Substrates With Improved Microwave Absorbing Compositions |
US20080156737A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US8182552B2 (en) | 2006-12-28 | 2012-05-22 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155763A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155766A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7568251B2 (en) | 2006-12-28 | 2009-08-04 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7740666B2 (en) | 2006-12-28 | 2010-06-22 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7712353B2 (en) | 2006-12-28 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US7673516B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US8865476B2 (en) | 2007-04-02 | 2014-10-21 | Life Technologies Corporation | Particle switching systems and methods using acoustic radiation pressure |
US20090050573A1 (en) * | 2007-04-02 | 2009-02-26 | Ward Michael D | Medium Switching Systems and Methods Using Acoustic Radiation Pressure |
US9457139B2 (en) | 2007-04-02 | 2016-10-04 | Life Technologies Corporation | Kits for systems and methods using acoustic radiation pressure |
US20090042239A1 (en) * | 2007-04-02 | 2009-02-12 | Ward Michael D | Particle Fusing Systems and Methods Using Acoustic Radiation Pressure |
US20090045107A1 (en) * | 2007-04-02 | 2009-02-19 | Ward Michael D | Kits for Systems and Methods Using Acoustic Radiation Pressure |
US10969325B2 (en) | 2007-04-02 | 2021-04-06 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US9476855B2 (en) | 2007-04-02 | 2016-10-25 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US20090042310A1 (en) * | 2007-04-02 | 2009-02-12 | Ward Michael D | Particle Quantifying Systems and Methods Using Acoustic Radiation Pressure |
US20090053686A1 (en) * | 2007-04-02 | 2009-02-26 | Ward Michael D | Particle Switching Systems and Methods Using Acoustic Radiation Pressure |
US8507293B2 (en) | 2007-04-02 | 2013-08-13 | Life Technologies Corporation | Medium switching systems and methods using acoustic radiation pressure |
US20090029870A1 (en) * | 2007-04-02 | 2009-01-29 | Ward Michael D | Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure |
US8846408B2 (en) | 2007-04-02 | 2014-09-30 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US8436993B2 (en) | 2007-04-02 | 2013-05-07 | Life Technologies Corporation | Methods and systems for controlling the flow of particles for detection |
US8309408B2 (en) | 2007-04-02 | 2012-11-13 | Life Technologies Corporation | Particle quantifying systems and methods using acoustic radiation pressure |
US10254212B2 (en) | 2007-04-02 | 2019-04-09 | Life Technologies Corporation | Particle analyzing systems and methods using acoustic radiation pressure |
US8227257B2 (en) | 2007-04-02 | 2012-07-24 | Life Technologies Corporation | Medium switching systems and methods using acoustic radiation pressure |
US8873051B2 (en) | 2007-04-02 | 2014-10-28 | Life Technologies Corporation | Methods and systems for controlling the flow of particles for detection |
US8900870B2 (en) | 2007-04-02 | 2014-12-02 | Life Technologies Corporation | Methods for fusing cells using acoustic radiation pressure |
US9134271B2 (en) | 2007-04-02 | 2015-09-15 | Life Technologies Corporation | Particle quantifying systems and methods using acoustic radiation pressure |
US20090048805A1 (en) * | 2007-04-02 | 2009-02-19 | Gregory Kaduchak | Particle Imaging Systems and Methods Using Acoustic Radiation Pressure |
US8134705B2 (en) | 2007-04-02 | 2012-03-13 | Life Technologies Corporation | Particle imaging systems and methods using acoustic radiation pressure |
US8863958B2 (en) | 2007-04-09 | 2014-10-21 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US8083068B2 (en) | 2007-04-09 | 2011-12-27 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US9339744B2 (en) | 2007-04-09 | 2016-05-17 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US20080245745A1 (en) * | 2007-04-09 | 2008-10-09 | Ward Michael D | Acoustic concentration of particles in fluid flow |
US9909117B2 (en) | 2007-04-09 | 2018-03-06 | Los Alamos National Security, Llc | Systems and methods for separating particles utilizing engineered acoustic contrast capture particles |
US20080245709A1 (en) * | 2007-04-09 | 2008-10-09 | Gregory Kaduchak | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US7837040B2 (en) | 2007-04-09 | 2010-11-23 | Los Alamos National Security, Llc | Acoustic concentration of particles in fluid flow |
US9733171B2 (en) | 2007-04-09 | 2017-08-15 | Los Alamos National Security, Llc | Acoustic concentration of particles in fluid flow |
US20090014393A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US7947184B2 (en) | 2007-07-12 | 2011-05-24 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US20090017225A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US7998322B2 (en) | 2007-07-12 | 2011-08-16 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber having electrode properties |
US7785674B2 (en) | 2007-07-12 | 2010-08-31 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US8263407B2 (en) | 2007-10-24 | 2012-09-11 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US20090107241A1 (en) * | 2007-10-24 | 2009-04-30 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US8528406B2 (en) | 2007-10-24 | 2013-09-10 | Los Alamos National Security, LLP | Method for non-contact particle manipulation and control of particle spacing along an axis |
US8932520B2 (en) | 2007-10-24 | 2015-01-13 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US20100206742A1 (en) * | 2007-12-05 | 2010-08-19 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for treating hydrogen isotopes |
US20090147905A1 (en) * | 2007-12-05 | 2009-06-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for initiating thermonuclear fusion |
US8266951B2 (en) | 2007-12-19 | 2012-09-18 | Los Alamos National Security, Llc | Particle analysis in an acoustic cytometer |
US20090162887A1 (en) * | 2007-12-19 | 2009-06-25 | Gregory Kaduchak | Particle analysis in an acoustic cytometer |
US20090158823A1 (en) * | 2007-12-19 | 2009-06-25 | Gregory Kaduchak | Particle analysis in an acoustic cytometer |
US9488621B2 (en) | 2007-12-19 | 2016-11-08 | Los Alamos National Security, Llc | Particle analysis in an acoustic cytometer |
US11287363B2 (en) | 2007-12-19 | 2022-03-29 | Triad National Security, Llc | Particle analysis in an acoustic cytometer |
US11287362B2 (en) | 2007-12-19 | 2022-03-29 | Triad National Security, Llc | Particle analysis in an acoustic cytometer |
US8266950B2 (en) | 2007-12-19 | 2012-09-18 | Los Alamos National Security, LLP | Particle analysis in an acoustic cytometer |
US9038467B2 (en) | 2007-12-19 | 2015-05-26 | Los Alamos National Security, Llc | Particle analysis in an acoustic cytometer |
US8858892B2 (en) | 2007-12-21 | 2014-10-14 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US20090162258A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US8454889B2 (en) | 2007-12-21 | 2013-06-04 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US20090158936A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US8632613B2 (en) | 2007-12-27 | 2014-01-21 | Kimberly-Clark Worldwide, Inc. | Process for applying one or more treatment agents to a textile web |
US8206024B2 (en) | 2007-12-28 | 2012-06-26 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for particle dispersion into formulations |
US8215822B2 (en) | 2007-12-28 | 2012-07-10 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing antimicrobial formulations |
US8143318B2 (en) | 2007-12-28 | 2012-03-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US20090262597A1 (en) * | 2007-12-28 | 2009-10-22 | Philip Eugene Kieffer | Ultrasonic Treatment Chamber for Preparing Emulsions |
US8057573B2 (en) | 2007-12-28 | 2011-11-15 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US20090165654A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US9421504B2 (en) | 2007-12-28 | 2016-08-23 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US20090178716A1 (en) * | 2008-01-16 | 2009-07-16 | Acoustic Cytometry Systems, Inc. | System and Method for Acoustic Focusing Hardware and Implementations |
US10976234B2 (en) | 2008-01-16 | 2021-04-13 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
US8714014B2 (en) | 2008-01-16 | 2014-05-06 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
US20100078384A1 (en) * | 2008-09-26 | 2010-04-01 | Abbott Laboratories | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended |
US8865003B2 (en) | 2008-09-26 | 2014-10-21 | Abbott Laboratories | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended |
US20100152042A1 (en) * | 2008-12-15 | 2010-06-17 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
US8163388B2 (en) | 2008-12-15 | 2012-04-24 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
US8685178B2 (en) | 2008-12-15 | 2014-04-01 | Kimberly-Clark Worldwide, Inc. | Methods of preparing metal-modified silica nanoparticles |
US20100206818A1 (en) * | 2009-02-19 | 2010-08-19 | Chartered Semiconductor Manufacturing, Ltd. | Ultrasonic filtration for cmp slurry |
US10427956B2 (en) | 2009-11-16 | 2019-10-01 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
NL2004530C2 (en) * | 2010-04-09 | 2011-10-11 | Stichting Wetsus Ct Excellence Sustainable Water Technology | Purification device and method for purifying a fluid. |
WO2011126371A3 (en) * | 2010-04-09 | 2012-02-16 | Stichting Wetsus Centre Of Excellence For Sustainable Water Technology | Purification device and method for purifying a fluid |
US10350514B2 (en) | 2012-03-15 | 2019-07-16 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US10947493B2 (en) | 2012-03-15 | 2021-03-16 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9738867B2 (en) | 2012-03-15 | 2017-08-22 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US11007457B2 (en) | 2012-03-15 | 2021-05-18 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10370635B2 (en) | 2012-03-15 | 2019-08-06 | Flodesign Sonics, Inc. | Acoustic separation of T cells |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
US10662402B2 (en) | 2012-03-15 | 2020-05-26 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10662404B2 (en) | 2012-03-15 | 2020-05-26 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10724029B2 (en) | 2012-03-15 | 2020-07-28 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
US10308928B2 (en) | 2013-09-13 | 2019-06-04 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US10975368B2 (en) | 2014-01-08 | 2021-04-13 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
US10814253B2 (en) | 2014-07-02 | 2020-10-27 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
US11865475B2 (en) | 2014-10-24 | 2024-01-09 | Life Technologies Corporation | Acoustically settled liquid-liquid sample purification system and method of use |
US11173417B2 (en) | 2014-10-24 | 2021-11-16 | Life Technologies Corporation | Acoustically settled liquid-liquid sample purification system |
US10610804B2 (en) | 2014-10-24 | 2020-04-07 | Life Technologies Corporation | Acoustically settled liquid-liquid sample purification system |
US10871437B2 (en) | 2015-02-12 | 2020-12-22 | Cytena Gmbh | Apparatus and method for dispensing particles in free-flying drops aligned using an acoustic field |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US10161926B2 (en) | 2015-06-11 | 2018-12-25 | Flodesign Sonics, Inc. | Acoustic methods for separation of cells and pathogens |
WO2016201385A3 (en) * | 2015-06-11 | 2017-01-26 | Flodesign Sonics, Inc. | Acoustic methods for separation cells and pathogens |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US10710006B2 (en) | 2016-04-25 | 2020-07-14 | Flodesign Sonics, Inc. | Piezoelectric transducer for generation of an acoustic standing wave |
US10640760B2 (en) | 2016-05-03 | 2020-05-05 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
US11420136B2 (en) | 2016-10-19 | 2022-08-23 | Flodesign Sonics, Inc. | Affinity cell extraction by acoustics |
US11381922B2 (en) | 2017-12-14 | 2022-07-05 | Flodesign Sonics, Inc. | Acoustic transducer driver and controller |
US10785574B2 (en) | 2017-12-14 | 2020-09-22 | Flodesign Sonics, Inc. | Acoustic transducer driver and controller |
Also Published As
Publication number | Publication date |
---|---|
USRE33524E (en) | 1991-01-22 |
JPS6150655A (en) | 1986-03-12 |
JPH07112548B2 (en) | 1995-12-06 |
EP0167406A3 (en) | 1987-11-19 |
EP0167406B1 (en) | 1991-07-03 |
GB8417240D0 (en) | 1984-08-08 |
DE3583359D1 (en) | 1991-08-08 |
EP0167406A2 (en) | 1986-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4673512A (en) | Particle separation | |
US4743361A (en) | Manipulation of particles | |
US4759775A (en) | Methods and apparatus for moving and separating materials exhibiting different physical properties | |
Whitworth et al. | Transport and harvesting of suspended particles using modulated ultrasound | |
US4877516A (en) | Manipulating particulate matter | |
CN108432132B (en) | Microfluidic particle manipulation | |
AU2013286593B2 (en) | Methods and compositions for separating or enriching cells | |
Franke et al. | Surface acoustic wave actuated cell sorting (SAWACS) | |
Johnson et al. | Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields | |
CA2544564C (en) | Methods, compositions, and automated systems for separating rare cells from fluid samples | |
US6576459B2 (en) | Sample preparation and detection device for infectious agents | |
US6881314B1 (en) | Apparatuses and methods for field flow fractionation of particles using acoustic and other forces | |
US20140377834A1 (en) | Fluid dynamic sonic separator | |
Spengler et al. | Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field | |
US20160237397A1 (en) | Methods and devices for breaking cell aggregation and separating or enriching cells | |
WO2018191534A1 (en) | Methods, compositions, and devices for separating and/or enriching cells | |
Mandralis et al. | Continuous suspension fractionation using acoustic and divided-flow fields | |
AU772708B2 (en) | Method for analysing a sample from a process with on-line capillary electrophoresis apparatus and capillary electrophoresis apparatus | |
Kozuka et al. | Non-contact micromanipulation using an ultrasonic standing wave field | |
JP2002286594A (en) | Mechanism for conveying fine particulate | |
Titchener-Hooker et al. | The effect of fluid-jet mixing on protein precipitate growth during low-frequency conditioning | |
Shmidt et al. | Continuous free flow electrophoresis in an alternating electric field with a variable buffer flow | |
Wakeman et al. | Sonothickening: Continuous in-line concentration/clarification of fine particle suspensions by power ultrasound | |
SU1276990A1 (en) | Device for measuring intensity of antibody formation | |
CN111359685A (en) | Microfluidic chip, blood cell detection device and detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONALE OCTROOI MAATSCHAPPIJ "OCTROPFA" BV, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCHRAM, CORNELIUS;REEL/FRAME:004568/0991 Effective date: 19850730 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
RF | Reissue application filed |
Effective date: 19880902 |
|
AS | Assignment |
Owner name: NATIONAL RESEARCH DEVELOPMENT CORPORATION, 101 NEW Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNILEVER PATENT HOLDINGS BV;REEL/FRAME:005145/0942 Effective date: 19890817 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |