US20110032522A1 - System and Method for Measuring Particles in a Sample Stream of a Flow Cytometer or the Like - Google Patents

System and Method for Measuring Particles in a Sample Stream of a Flow Cytometer or the Like Download PDF

Info

Publication number
US20110032522A1
US20110032522A1 US12903003 US90300310A US2011032522A1 US 20110032522 A1 US20110032522 A1 US 20110032522A1 US 12903003 US12903003 US 12903003 US 90300310 A US90300310 A US 90300310A US 2011032522 A1 US2011032522 A1 US 2011032522A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
system
particle
light beam
detector
sample stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12903003
Other versions
US8564776B2 (en )
Inventor
Steven W. Graves
Robert C. Habbersett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Triad National Security LLC
Original Assignee
Los Alamos National Security LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1429Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1404Fluid conditioning in flow cytometers, e.g. flow cells; Supply; Control of flow
    • G01N2015/1413Hydrodynamic focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Abstract

A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/593,312, filed on Nov. 3, 2006, the contents of which is incorporated by reference herein in its entirety.
  • STATEMENT OF GOVERNMENT RIGHTS
  • This invention was made with government support under Contract No. DE-AC52-06NA25396 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
  • TECHNICAL FIELD
  • Embodiments are generally related to sensor methods and systems. Embodiments are also related to flow sensor analyzers, such as flow cytometers that move particles in a flowing fluid through a sensing region where multiple independent optical measurements are made on the particle. Embodiments are also related to portable systems for interrogating particles in sample streams of flow cytometers or the like.
  • BACKGROUND
  • Flow cytometry is a technology in which multiple physical and optical characteristics of single small or microscopic particles, such as cells or microspheres, are analyzed as they flow in a fluid stream through one or more beams of light. Flow cytometry is an integral technology in nearly every bio-medical discipline including diverse biological assays in clinical settings. Additionally, flow cytometry is an important analytical platform to perform biological point detection, bio-surveillance, and forensic analysis in support of homeland defense.
  • In the flow cytometer, particles are carried to the light beam intercept in a fluid stream. When particles pass through the light beam, they scatter the light and any fluorescent molecules present on or in the particle fluoresce. These resulting optical signals are directed by means of optics to appropriate detectors which generate electronic signals proportional to the optical impulses striking them. These electronic signals are processed to gather data on each particle or event and subsequently analyzed to provide information about the sample. Various particle properties, such as particle size, granularity and fluorescence intensity, can be determined by a flow cytometer recording how the particle under interrogation scatters the incident light beam and emits fluorescence.
  • Flow cytometers typically incorporate expensive lasers with highly stable outputs in order to obtain the high detection sensitivity and resolution necessary in many applications. Unfortunately, the size and expense of typical flow cytometers currently restricts their use to clinical and laboratory environments. Such flow cytometers cost more than 30,000 US dollars to purchase. For many potential users of flow cytometers, instrumentation size and cost are important considerations that may limit the acceptance of these systems in broader applications.
  • There is a continuing need to provide improved systems and methods for measuring particles in a sample stream of a flow cytometer or other flow based analyzers which can be implemented at low cost and with reduced infrastructure requirements, such as electrical power or other laboratory-based requirements. Reducing size and cost nearly always speeds acceptance and adoption of new technology.
  • SUMMARY
  • The following summary of the invention is provided to facilitate an understanding of some of the innovative features unique to the present invention and is not intended to be a full description. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
  • It is, therefore, one aspect of the present invention to provide for improved sensor methods and systems.
  • It is another aspect of the present invention to provide for improved methods and systems for measuring particles in a flow stream of a flow cytometer or like analyzer.
  • It is a further aspect of the invention to provide low cost methods and systems for measuring particles in a flow stream of a flow cytometer or other flow based analyzer.
  • The aforementioned aspects of the invention and other objectives and advantages can now be achieved as described herein.
  • According to one aspect, a system for interrogating a particle in a sample stream of a flow cytometer or the like has a laser light source for generating a low power light beam and a fluidics apparatus for transporting the particle in the sample stream at substantially low velocity resulting in extended transit times through the light beam for interrogation thereof. Also included in the system are one or more detectors for detecting optical signals resulting from the light beam impinging on the particle and signal conditioning circuitry, operably coupled to the detector(s), for conditioning output signals from the detector(s) into electronic signals for processing thereof. The signal conditioning circuitry can be a low pass filter circuitry for filtering high frequency noise from the detected optical signals.
  • Advantageously, the fluidics apparatus transports the particle in the sample stream at substantially low velocity through the focused laser beam resulting in extended transit times to increase sensitivity and the signal conditioning circuitry is configured to low pass filter the resulting detected optical signals, which permits high-sensitivity measurements to be made with simplified circuitry and low-cost components, such as a laser pointer and miniature detectors.
  • The light source can be for example a low power laser pointer module such as a diode pumped solid state (DPSS) green laser. The transit time of the particle through the light beam can be of the order of 100 microseconds or more. The low pass filter circuitry can have a maximum cut off frequency of about 10 KHz.
  • The detector can be for example a Photomultiplier tube (PMT), photodiode, APD or hybrid detector. The signal conditioning circuitry can comprise a pre-amplifier stage coupled to the output of a PMT detector with the low pass filter circuitry integrated in the pre-amplifier stage. The pre-amplifier can be for example a high input impedance voltage follower circuit coupled to a limited band width inverting amplifier.
  • The fluidics apparatus can include a hydrodynamically focused flow chamber, an acoustically focused flow chamber or an unfocused flow chamber. The flow chamber can be coupled to a slow flow delivery system for transporting the particle through the light beam with the substantially low velocity resulting in extended transit times (>100 microseconds).
  • According to another aspect, a system for interrogating a particle in a sample stream of a flow cytometer or the like has a low powered laser pointer for generating a light beam and a fluidics apparatus for transporting the particle in the sample stream at substantially low velocity through the light beam for interrogation thereof. Also, the system includes one or more detectors for detecting optical signals resulting from the light beam impinging on the particle and signal conditioning circuitry, operably coupled to the detector(s), for conditioning output signals from the detector(s) into electronic signals for processing thereof. The signal conditioning circuitry can include low pass filter circuitry for filtering high frequency noise from the detected signals.
  • According to another aspect, a method for analyzing a particle in a sample stream of a flow cytometer or the like comprises generating a low power light beam; transporting the particle at substantially low velocity in the sample stream through the light beam for interrogation thereof, detecting light signals generated in response to the light beam impinging on the particle, and signal conditioning the detected light signals into electronic signals for processing thereof, the step of signal conditioning comprising filtering high frequency noise from the detected light signals.
  • By transporting the particle at substantially low velocity through the light beam to increase sensitivity and low passing filtering the resulting detected optical signals, high detection sensitivity and resolution can be achieved using lower power and less stable light beams than those typically used in the flow cytometers of the prior art. The system permits the use of low cost and compact lasers whilst providing the detection sensitivity and resolution demanded by many applications.
  • The transit time of transporting the particle through the low power light beam can be about 100 microseconds or more. The high frequency filtering has a maximum cut off frequency of about 10 KHz. The low power light beam can be generated by a laser pointer module. The low power light beam can be detected by a PMT. The step of transporting the particle can include hydro-dynamically or acoustically focusing the sample stream through a flow chamber.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the present invention and, together with the detailed description of the invention, serve to explain the principles of the present invention.
  • FIG. 1 illustrates a block diagram of a system for interrogating a microscopic particle in a sample stream of a flow cytometer according to a preferred embodiment;
  • FIG. 2 illustrates the fluidic apparatus of FIG. 1 in more detail;
  • FIG. 3 illustrates a cross-sectional view of the flow cell taken along line A-A′ of FIG. 2;
  • FIG. 4 illustrates a schematic circuit diagram of a high input impedance limited bandwidth pre-amplifier of the system depicted in FIG. 1;
  • FIG. 5 illustrates a flow diagram outlining a method for interrogating a particle in a sample stream of a flow cytometer according to a preferred embodiment;
  • FIG. 6 illustrates a histogram of the Side Scatter (SSC) amplitude parameter on 10000 simulated events that demonstrates the stability of the laser pointer by virtue of the 1.24% coefficient of variation (CV) of the distribution;
  • FIG. 7 demonstrates the stability of the laser pointer by displaying SSC peak (amplitude) versus time during the entire 4 minutes required to collect 10000 simulated events;
  • FIG. 8 illustrates high-resolution and high-sensitivity performance on 6 populations of microspheres in the fluorescence area histogram, obtained by analyzing a mix of 1.87 and 2.8 μm blank (i.e. non-fluorescent) microspheres added to the RCP-20-5 2.1 μm diameter microsphere set using the system of FIG. 1;
  • FIG. 9 illustrates high-resolution SSC performance in a contour plot of SSC peak Vs fluorescence area, obtained by analyzing a mix of 1.87 and 2.8 μm blank microspheres added to the RCP-20-5 2.1 μm diameter microsphere set using the system of FIG. 1;
  • FIG. 10 displays a contour plot of SSC Peak Vs SSC Width obtained by analyzing the RCP-30-5A microsphere mixture with the system of FIG. 1, which illustrates the region of interest around the main peak used to gate the fluorescence data in FIGS. 11 and 12.
  • FIG. 11 illustrates excellent resolution of all 8 microsphere populations (in the 16-bit fluorescence peak data) obtained by analyzing the RCP-30-5A microspheres sample using the system of FIG. 1;
  • FIG. 12 illustrates excellent resolution of all 8 microsphere populations (in the 32-bit area data) obtained by analyzing the RCP-30-5A microspheres sample using the system of FIG. 1; and
  • FIG. 13 demonstrates the linearity of the system in a graph of fluorescence area Vs the calibrated intensity of the RCP-30-5A microspheres (in units of Mean Equivalent Soluble Fluorophore for phycoerythrin MESF-PE) obtained by measuring the RCP-30-5A microspheres using the system of FIG. 1.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • The illustrative embodiment provides an approach to interrogating microscopic particles in a sample stream of a flow cytometer, or other systems that use the flow cytometry paradigm, using a method and a system which enables a compact and inexpensive flow cytometer to be implemented, while having high detection sensitivity and resolution comparable to that of prior art flow cytometers.
  • Referring to FIGS. 1 and 2 of the accompanying drawings, which, respectively, illustrate block diagrams of the optical-electrical circuitry and fluidic circuitry of the system for measuring particles in a sample stream of a flow cytometer according to one embodiment. The system 1 has a light source 2 for generating a low powered light beam 3 and a fluidics apparatus 26, which is configured to transport particles in the sample stream 30 at a substantially low velocity through the light beam for interrogation. Detectors 4, 5 are configured to detect optical signals generated in response to the light beam 3 impinging the particles. Signal conditioning circuitry 6, 7 can be connected to each of the detectors 4, 5 to condition each detector output 81A, 81B into electronic signals 82A, 82B for processing and can be designed to generate a limited frequency response in order to filter high frequency noise from the detector output signals.
  • As will be explained in more detail below, configuring the system to transport particles in the sample stream at substantially low velocity through the light beam and filtering high frequency noise from the detector output using limited bandwidth signal conditioning circuitry, permits a compact and inexpensive diode pumped solid state laser to be used in a flow cytometer while maintaining high detection sensitivity and resolution using miniature detectors that require minimal support circuitry.
  • In the illustrative embodiment of the system of FIG. 1, the light source 2 for generating the low powered light beam is a low powered laser, typically having a 10 mW or less output. For example, the light source can be an inexpensive diode pumped solid state (DPSS) laser, such as a laser-pointer module. One example of a suitable laser pointer is an OEM version of a commercially available laser pointer (532 nm, 3.0 mW, model GMP-532-5F3-CP) from LaserMate Group, Inc. which emits a green laser beam. The laser pointer operates on 2.1-3.0 VDC and has a rated output of 3-5 mW. A power source 40, such as Tektronix power supply (model PS281), provides the DC voltage (typically 2.3 VDC @270 ma). Alternatively, a battery or very simple line-voltage operated power supply can be utilized to power the laser pointer with no observable degradation of the system performance. The laser head itself is a very compact device with reasonable manufacturer's specifications (TEM00, <1.4 mrad beam divergence, M2<2, and 5% output power stability). Advantageously, the laser pointer module is inexpensive, compact and results in the entire excitation source using less than 1 W of power, which greatly increases instrument portability.
  • Optics 9-11 are configured to direct the laser beam 3 to the analysis region 35 of the system, that is, the point where the stream 30, which is flowing from out of the page of FIG. 1, intercepts the light beam 3. A half-wave plate 9 and polarizing beam splitter 10 positioned between the light source 2 and a mirror 11, serve to attenuate the laser beam (to the desired power level). Mirror 11 is configured to reflect the beam 3 onto a focusing lens 12, which focuses the beam to a high light flux (10 μm diameter spot) at the analytical region 35 of the system.
  • Detectors 4, 5, which are configured as side-scatter light (SSC) and fluorescence (FL) detectors, respectively, are aimed at the analytical region 35 of the system. Collection lenses 13, 14 are arranged on either side of the flow cell 25 to collect and concentrate light onto the detectors 4, 5 through respective filters 15 (SSC), 16 (FL).
  • In the illustrative embodiment of the system of FIG. 1, the detectors 4, 5 are photomultiplier tubes which detect the optical impulse generated when the particle passes through the light beam 3 and produces a current signal proportional to the intensity and duration of the impulse. The photomultiplier tubes utilized in this example are miniature Hamamatsu 5783 or 6780 Photomultiplier tubes. These multi-alkali metal-package detectors typically have a gain of about 106 and radiant sensitivity of 60-80 mA/W in the 400-700 nm range, depending on the specific model used, and are operable with a high voltage of 250 to 1000V The exact voltage utilized depends on the individual PMT, the laser output power, and the intensity of the signals being measured (fluorescence or light scatter), which in turn is related to the particles being analyzed. Other low cost and compact light detectors can alternatively be employed. The detectors could be photodiodes, avalanche photodiodes or any small detector capable of detecting light emission. Utilizing low cost, compact PMTs further reduces the cost and size of the system.
  • Signal conditioning circuitry 6, 7 consists of pre-amplifiers connected to the anode of PMT detectors 4, 5 to provide high input impedance and limited bandwidth. The primary function of a pre-amplifier is to convert a current signal to a voltage signal for further use by data acquisition electronics. A power supply module 19 is assembled and electrically coupled to the detectors 4, 5 and signal conditioning circuitry 6, 7 to provide typically + and −5 VDC (200 ma) for the pre-amplifiers 6, 7, and +15 VDC (200 ma) to power and control the high-voltage 17, 18 for each PMT 4, 5. Further signal amplification, if needed, can be provided in a data acquisition system 80 which is coupled to the signal conditioning circuitry outputs for collection of the conditioned PMT output signals 82A, 82B.
  • Signal conditioning circuitry 6, 7 is designed to have limited bandwidth to filter any high-frequency noise in the PMT detector outputs. As shown in FIG. 4, which is a schematic circuit diagram of an example of the pre-amplifier circuitry, the pre-amplifier circuitry has a high input impedance voltage follower 60 coupled to a limited bandwidth inverting amplifier 61 in each of the pre-amplifiers 6, 7. The inverting amplifier 61 has an effective bandwidth of approximately 10 kHz and amplification factor of 3.3. Voltage follower 60 has a pair of resistors 62, 63 serially connected between the non-inverting input 65 of an operational amplifier 50 and ground 70 and provides high impedance to the output 71 of a respective detector 4, 5 which output is connected across resistor 63. The voltage follower output 72 is connected via input resistor 66 to the inverting input 69 of an operational amplifier 51 of the amplifier 61. A resistor 68 and capacitor 67 (RC) circuit is arranged in the feedback path of the operational amplifier between the operational amplifier output and the inverting input 69 and is selected to have an RC constant to provide a maximum cut off frequency of about 10 kHz.
  • Low pass filters other than the limited-bandwidth amplifier 61 can be utilized in system 1 to achieve the desired high-frequency filtering and need not necessarily be integrated in the pre-amplifier circuit. For example, the low pass filter could alternatively be implemented in signal conditioning circuitry after the pre-amplifier.
  • Incorporating a limited bandwidth pre-amplifier (effectively a low-pass filter) 61 in the signal conditioning circuitry is advantageous in that the high-frequency noise produced by low cost, relatively unstable light sources, such as laser pointer module, can be filtered out from the detected optical signals. By extending the transit times of the particles through the light beam to increase sensitivity and low passing filtering the resulting detected optical signals, high detection sensitivity and resolution can be achieved using lower power and less stable light beams than those typical utilized in the flow cytometers of the prior art. The system permits the use of low cost and compact lasers whilst providing the detection sensitivity and resolution demanded by many applications. Slow flow, that generates extended transit times of the particles through the focused light beam, permits high-sensitivity measurements to be made with simplified circuitry and low-cost components, such as the laser pointer and miniature detectors, to create a portable battery powered system with high performance. Both of these components have minimal power requirements which makes it possible to operate the system off of a battery or simple power supply such as a “wall wart” and 3-terminal voltage regulators with resulting performance is at least as good as the state-of-the-art systems currently available.
  • In typical flow cytometry data processing the pulse (or impulse) caused by a particle passing through the laser beam is characterized by 3 measurements: amplitude (or peak), duration, and area, and it is this correlated data collected by the data acquisition system that can be plotted as 1D histograms (as in FIG. 6). The correlated data can also be displayed in 2D as dot plots or contour plots (as in FIG. 9), or other displays depending on the software utilized. Specific regions on these plots can be sequentially separated by a series of subset extractions which are termed gates. Specific gating protocols exist for diagnostic and clinical purposes. The plots are often made on logarithmic scales.
  • A data acquisition system 80 is configured to collect conventional flow cytometric data files in which the event-based parameters of height, width, and area were collected from the electronic pulses derived from detectors 4, 5 and pre-amps 6, 7. Custom hardware boards are configured to convert the pre-amp output (2 V peak-to-peak) into a 14-bit digital data stream using a free running 14-bit 40 MS/sec ADC (Analog Devices—ADS5421Y). The output from each pre-amp 6, 7 is connected directly to separate ADC inputs. A field programmable gate array on the custom board captures the correlated digitized waveforms and sends them to a commercial digital signal processor board (OrSys—microline C6211CPU). The digital signal processor (Texas Instruments—TMS320C6211) extracts the pulse height, pulse area and pulse width parameters, sending the list-mode results to the host computer over FireWire (IEEE1394). The pulse parameters are recorded in FCS 3.0 data files with 24 bits for area, 16 bits for peak, 12 bits for width, and 28 bits for time (1 msec resolution). The pulse height, area and width were recorded in Flow Cytometry Standard (FCS) v.3.0 data files, which is an industry standard data file format for flow cytometry. Data acquisition techniques for flow cytometry are known in the art and will not be described in any more detail here.
  • Referring now in more detail to the fluidic apparatus 26 of FIG. 2, the fluidic apparatus includes a flow chamber 25, which in this particular embodiment is an optical flow cell 25, and a slow-flow sample delivery system 37 configured to pass the sample through the flow cell 25 at substantially low velocity (˜5 cm/sec) such that the particles have extended transit times across the beam 3. Typically, these extended transit times are about 100 microseconds or more. Advantageously, by the fluidic apparatus extending the particles' transit times across the beam 3, the particle under interrogation has a longer residence time in the analytical region 35 thereby increasing the system detection sensitivity and resolution for a given light beam power so that relatively inexpensive miniature PMTs provide adequate performance.
  • The slow-flow sample delivery system 37 has gravity driven sheath flow from a sheath bottle 27, which is suspended above the flow cell 25 such that sheath fluid is fed to the flow cell via a sheath delivery line 28 connected between the lower end of the bottle and a side port of the flow cell assembly. A sample delivery tube or capillary 31 is connected to the bottom end of the flow cell 25 such that the sample to be interrogated can be delivered under pressure to the flow cell. In the center of the flow cell is a 250×250 μm square flow channel 30 and the sample delivery tube 31 occludes about 75% of the square flow channel, as best shown in FIG. 3, which illustrates a cross-sectional view of the flow cell taken along line A-A′ of FIG. 2. The capillary 31 has a 40 μm inner diameter ID 31A as indicated by the white circle in FIG. 3. The capillary, with an outer diameter of 245 μm, is inserted about 5 mm into the square flow channel 30, and this occlusion results in relatively low volumetric flow rates of sheath for focusing of particles. The low sheath rate results in extended transit times through the laser beam. A waste line 32 couples the upper end of the flow channel (of the flow cell) to a waste reservoir 33 that has a fluidic head to prevent oscillation in fluid flow rates. The waste line is connected to the flow cell upper end (cuvette) 39 by a short length of soft silastic rubber tubing 41 that is gently pressed up to the top of the cuvette and held in place by a metal arm. By adjusting the relative heights of the sheath supply bottle 27 and the waste reservoir 33, the transit time of single particles across the laser beam 3 can be varied from about 100 microseconds to milliseconds. The direction of flow in the flow cell is from bottom to top to help clear bubbles, as show in FIG. 2, and flowing out of the page in FIG. 1. The sample is introduced through the sample tube 31 and into flow cell 25 for focusing via the sheath stream. The sample is pushed in via pressure, while the sheath is gravity fed in the corners of the flow channel around the capillary. The sheath bottle can be raised above the flow cell (for gravity delivery) and pressurized to set the transit time.
  • In the illustrative embodiment of the system of FIG. 1, the flow cell 25 is a hydrodynamically focused flow cell. However, any particle focusing technique (e.g. acoustic, dielectrophoretic, etc. . . . ) that results in extended transit times (100 microseconds to milliseconds) can be employed. Furthermore, any flow chamber suitable for passing the sample stream through the light beam could be employed. All that is required is that the particle passes (centered in the flow channel) through the light beam 3 with sufficiently slow velocity so that the low powered light beam striking the particle results in optical signals which are detectable with sufficiently high sensitivity to enable the use of low powered laser beams.
  • A method 100 for interrogating a particle in a sample stream of a flow cytometer according to one embodiment will now be described with reference to FIG. 5 which is a flow diagram outlining the steps of the method 100. The method 100 can, for example, be implemented in the system of FIG. 1. As a general overview, initially a light beam is generated as indicated in step 101 of FIG. 5. In the system of FIG. 1, the light beam 3 is a low power light beam generated from a laser power module. The particle is transported in a sample stream through the generated light beam at substantially low velocity (step 102). For example, this step can be implemented in the system of FIG. 1 by hydro-dynamically or acoustically focusing the sample stream through the flow cell 25 and delivering the sample using the slow flow delivery system 37 to transport the particle through the laser beam 3 with a velocity which is sufficiently low to extend the transit time of particle through the light beam to about 100 microseconds or more.
  • Thereafter, optical signals, generated in response to the light beam impinging on the particle, are detected (step 103 of FIG. 5). This latter step can be performed by the PMT detectors 4, 5 of the system of FIG. 1. High frequency noise is then filtered from the detected light signals (step 104) for processing (step 105). In the system of FIG. 1, step 104 is implemented by means of the limited bandwidth inverting amplifier 61 of the signal conditioning pre-amp and step 105 is performed by the data acquisition system of the system of FIG. 1.
  • EXPERIMENTAL EXAMPLES AND RESULTS
  • Specific results that have been obtained using the system and method of interrogating a particle in a sample stream of a flow cytometer according to the illustrative embodiments will now be described in which the interrogated samples were fluorescent calibration microsphere sets. The microsphere samples were concentrated 5-10× via centrifugation prior to use to compensate for the volumetric flow rate in this example (˜0.3-0.6 μl/minute) due to the narrow bore (40 μm ID) quartz capillary tubing utilized to deliver the sample to the flow cell. All microsphere samples were purchased from Spherotech Inc. (Libertyville, Ill.), and included: Rainbow Calibration Particles RCP-30-5A (8 peaks), RCP-20-5 (4 peaks), CP-15-10 (blank 1.87 μm dia.), and CP-25-10 (blank 2.8 μm dia.). The specific type used is given in the text for each example.
  • In these examples, the laser 2 was the aforementioned green laser pointer module (532 nm, 3.0 mW, model GMP-532-5F3-CP) from LaserMate Group. The miniature Hamamatsu PMTs described above were employed as detectors 4, 5, which were mounted in optical tubes that held bandpass filters 14, 15 and the light collection lenses 12, 13 in a light-tight assembly surrounding the flow cell 25. The high NA aspheric lenses 12, 13 collected light from the flow cell, which was passed through band pass filters to the detectors 4, 5. A 515-545 nm band pass filter was used in the side-scatter (SSC) light channel while a 565-605 nm band pass filter was used in the fluorescence channel.
  • In these examples, high purity water served as the sheath fluid which was gravity fed from a 2-L sheath bottle 27 suspended about 20 cm above the flow cell 25, which was a 2 cm long fused-silica cuvette 2.5×2.5 mm cross-section with a 250×250 μm flow channel. Polyethylene tubing (0.75 mm ID, about 1.5-m long) was utilized as the waste line 32. A 3-m long continuous column of water, from the sheath bottle 27 to the waste reservoir 33, stabilized the slow flow through the gravity-driven system. Sample solutions were driven from a 0.5-ml Eppendorf tube by nitrogen gas pressure through the sample delivery tube 31 which was a Polymicro Technologies (Phoenix, Ariz.;) fused silica capillary tube (40 μm ID, 245 μm outer diameter (OD), ˜30-cm long) inserted 4-5 mm into the 250 μm square channel of the flow cell. Sheath fluid flowed around the capillary, in the corners of the channel, vertically (from bottom to top in FIG. 2; out of the page, in FIG. 1), which facilitated dislodging bubbles from the flow cell. The inserted tip of the capillary, ground to a 14° taper by New Objective, Inc. (Cambridge, Mass.), is positioned 300 μm below the interrogation region 35. The small-bore capillary served two purposes. First, it predisposed the fluidic system to slow-flow because it occluded about 75% of the flow channel. Second, its flow resistance permitted control of the sample delivery rate with a sensitive electronic pressure regulator (MiniPR-NC-1500-5-NR; Redwood Microsystems, Menlo Park, Calif.). The elevated sheath bottle 27 was pressurized to provide ˜2 psig in order to reach a transit time of about 250 microseconds.
  • The combination of scattered and fluorescent light was collected by the collection lenses 12, 13, filtered by filters 14, 15 and picked up by the detectors 4 (SSC) 5 (Fluorescence), and fluctuations in brightness at each detector were converted to electrical signals which were conditioned by the signal conditioning circuitry, analogue to digital converted and then processed into data. FCS files were analyzed using FCS Express from DeNovo Software.
  • Laser stability was first measured by slightly misaligning the flow cell so that some of the laser light was refracted into the SSC detector pathway (without any particles in the flow channel). The data acquisition system 80 was electronically triggered to collect 10000 simulated events, recording the pulse height, width and area measurements from the SSC channel. These results, depicted in FIG. 6, indicate that the laser output was stable during the data collection interval and the precision of the measurements is indicated by the coefficient of variation (CV) of the histogram peak, which was 1.24% for both SSC Peak and SSC Area. The laser stability over time is clearly shown by the stability of the scattered light over 4 minutes of collection (FIG. 7).
  • The pulse data for a series of microspheres were collected using the data acquisition system 80. FIG. 8 demonstrates excellent resolution and sensitivity obtained from analyzing a mixture of the 4 population set of RCP-20-5 microspheres with non-fluorescent 1.9 μm (CP-15-10) and 2.8 μm (CP-25-10) polystyrene microspheres added. The three dimmest microspheres that are not well resolved in the Fluorescence Area histogram (below 104) of FIG. 8, are completely resolved in the contour plot of FIG. 9, a 2D display of SSC versus Fluorescence Area.
  • The data depicted in FIGS. 10-13 resulted from analyzing the RCP-30-5A microsphere mix with the system depicted in FIG. 1. SSC width versus SSC area are displayed in a contour plot to indicate the gating region used to identify the individual microspheres (see FIG. 10), which are then presented in 1D histograms in FIGS. 11 and 12. FIG. 11 shows baseline resolution of all 8 microsphere populations using the amplitude parameter. FIG. 12 displays exemplary data on the area parameter with all 8 populations baseline resolved over a span of 5 orders of magnitude. As shown in FIG. 13, plotting the means of the fluorescence area peaks (the means for the 8 populations) against the estimated mean equivalent soluble fluorophore (MESF) values measured in units Phycoerythrin (MESF-PE) molecules, provided by the manufacturer, demonstrates the excellent linearity and sensitivity of the system. Extrapolating from this linear fit of fluorescence vs. MESF PE suggests that the system can detect as few as 50 fluorphores of PE per particle.
  • The components of the system in this example (laser pointer, PMTs and aspheric lenses for focusing and collection optics) cost approximately $1000. Using 1 mW of laser power through the system to analyze RCP-30-5A microspheres resulted in baseline resolution of all 8 peaks and demonstrated detection of ˜50 fluorophores per particle. With the exception of particle analysis rate and number of parameters, this experimental example of the system has demonstrated comparable performance to that of flow cytometers that use expensive lasers and detectors that cost >$10,000 using components that cost less than $1000.
  • The aforementioned experimentation and results are for illustration purposes only and are not intended in any way to limit embodiments of the system or method to such an example. The system and method of the illustrative embodiments could be implemented in a range of different applications, such as biomedical diagnostics, homeland defense and point of care devices, to measure other particles and particle parameters. Examples of such particles and measuring parameters are volume and morphological complexity of cells cell pigments, DNA (cell cycle analysis, cell kinetics, proliferation etc.), RNA, chromosome analysis and sorting (library construction, chromosome paint), proteins, cell surface antigens (CD markers), intracellular antigens (various cytokines, secondary mediators etc.), nuclear antigens, enzymatic activity, pH, intracellular ionized calcium, magnesium, membrane potential, membrane fluidity, apoptosis (quantification, measurement of DNA degradation, mitochondrial membrane potential, permeability changes), cell viability, monitoring electropermeabilization of cells, oxidative burst, characterizing multi-drug resistance (MDR) in cancer cells, glutathione, various combinations (DNA/surface antigens etc.). Other examples of such particles and measuring parameters are pollen, spores, paint pigment particles, plankton, and other small or microscopic organisms.
  • The embodiments and examples set forth herein are presented to best explain the present invention and its practical application and to thereby enable those skilled in the art to make and utilize the invention. Those skilled in the art, however, will recognize that the foregoing description and examples have been presented for the purpose of illustration and example only.
  • Other variations and modifications of the present invention will be apparent to those of skill in the art, and it is the intent of the appended claims that such variations and modifications be covered. For example, in the illustrative embodiment of the system 1 depicted in FIG. 1, a single laser is employed to provide a light beam 3 and a pair of detectors 4, 5 are arranged to detect side scatter and fluorescence. However, the system can have a single detector or more than two detectors and/or more than one laser as required. Furthermore, whilst the system of the illustrative embodiment is arranged to measure a plurality of particles passing through the light beam in succession, as is known in flow cytometer technology, the system could alternatively be configured to simply measure a single particle. Those skilled in the art would also understand that the system and method for analyzing a particle in a sample stream can be implemented in flow based analyzers other than flow cytometers.
  • The description as set forth is not intended to be exhaustive or to limit the scope of the invention. Many modifications and variations are possible in light of the above teaching without departing from the scope of the following claims. It is contemplated that the use of the present invention can involve components having different characteristics. It is intended that the scope of the present invention be defined by the claims appended hereto, giving full cognizance to equivalents in all respects.

Claims (20)

  1. 1. A system for interrogating a particle in a sample stream of a flow cytometer or the like, said system comprising
    a laser source for generating a low power light beam
    a fluidics apparatus for transporting said particle in said sample stream at substantially low velocity through said light beam for interrogation thereof;
    at least one detector for detecting optical signals resulting from said light beam impinging on said particle; and
    signal conditioning circuitry, operably coupled to said detector(s), for conditioning output signals from said detector(s) into electronic signals for processing thereof, said signal conditioning circuitry comprising low pass filter circuitry for filtering high frequency noise from said detected optical signals.
  2. 2. The system of claim 1, wherein said laser source comprises a non-stabilized compact laser.
  3. 3. The system of claim 2, wherein said laser source comprises a diode pumped solid state (DPSS) green laser pointer module.
  4. 4. The system of claim 1, wherein the transit time of said particle through said light beam is of the order of 100 microseconds or more.
  5. 5. The system of claim 4, wherein said low pass filter circuitry has a maximum cut off frequency of about 10 Khz.
  6. 6. The system of claim 4, wherein the output power of said laser is about 10 mW or less.
  7. 7. The system of claim 6, wherein said signal conditioning circuitry comprises a pre-amplifier stage coupled to the output of said detector, said low pass filter circuitry being integrated in said pre-amplifier stage.
  8. 8. The system of claim 7, wherein said pre-amplifier comprises a high input impedance voltage follower circuit coupled to a limited band width inverting amplifier.
  9. 9. The system of claim 1, wherein said fluidics apparatus includes a hydrodynamically focused flow chamber, an acoustically focused flow chamber or an unfocused flow chamber, said flow chamber being coupled to a slow flow delivery system for transporting the particle through said light beam with said substantially low velocity.
  10. 10. A system for interrogating a particle in a sample stream of a flow cytometer or the like, said system comprising
    a low powered laser pointer for generating a light beam;
    a fluidics apparatus for transporting said particle in said sample stream at substantially low velocity through said light beam for interrogation thereof;
    at least one detector for detecting optical signals resulting from said light beam impinging on said particle; and
    and signal conditioning circuitry, operably coupled to said detector(s), for conditioning output signals from said detector(s) into electronic signals for processing thereof, said signal conditioning circuitry including low pass filter circuitry for filtering high frequency noise from said detected signals.
  11. 11. The system of claim 10, wherein said laser pointer comprises a green laser pointer module.
  12. 12. The system of claim 11, wherein the transit time of said particle in said sample stream is of the order of 100 microseconds or more.
  13. 13. The system of claim, 12 wherein said low pass filter circuitry has a maximum cut off frequency of about 10 kHz.
  14. 14. The system of claim 11, wherein said detector is at least one detector selected from the group consisting of a PMT, a photodiode, avalanche photodiode (APD) and a hybrid detector.
  15. 15. A method for analyzing a particle in a sample stream of a flow cytometer or the like, said method comprising
    generating a low power laser beam;
    transporting said particle at substantially low velocity in said sample stream through said laser beam for interrogation thereof,
    detecting light signals generated in response to said laser beam impinging on said particle, and
    and signal conditioning said detected light signals into electronic signals for processing thereof, said step of signal conditioning comprising filtering high frequency noise from said detected light signals.
  16. 16. The method of claim 15, wherein the transit time of transporting said particle through said low power laser beam is about 100 microseconds or more.
  17. 17. The method of claim 16, wherein the high frequency filtering has a maximum cut off frequency of about 10 KHz.
  18. 18. The method of claim 15, wherein said low power laser beam is generated by a laser pointer module.
  19. 19. The method of claim 18, wherein said low power laser beam is detected by a PMT photodiode, avalanche photodiode (APD) or a hybrid detector.
  20. 20. The method of claim 15, wherein the step of transporting said particle includes hydrodynamically or acoustically focusing said sample stream through a flow chamber.
US12903003 2006-11-03 2010-10-12 System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source Active US8564776B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11593312 US7835000B2 (en) 2006-11-03 2006-11-03 System and method for measuring particles in a sample stream of a flow cytometer or the like
US12903003 US8564776B2 (en) 2006-11-03 2010-10-12 System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12903003 US8564776B2 (en) 2006-11-03 2010-10-12 System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source
US13966624 US8767208B2 (en) 2006-11-03 2013-08-14 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US14280053 US9494509B2 (en) 2006-11-03 2014-05-16 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11593312 Continuation US7835000B2 (en) 2006-11-03 2006-11-03 System and method for measuring particles in a sample stream of a flow cytometer or the like

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13966624 Continuation US8767208B2 (en) 2006-11-03 2013-08-14 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

Publications (2)

Publication Number Publication Date
US20110032522A1 true true US20110032522A1 (en) 2011-02-10
US8564776B2 US8564776B2 (en) 2013-10-22

Family

ID=39359451

Family Applications (4)

Application Number Title Priority Date Filing Date
US11593312 Active 2027-06-15 US7835000B2 (en) 2006-11-03 2006-11-03 System and method for measuring particles in a sample stream of a flow cytometer or the like
US12903003 Active US8564776B2 (en) 2006-11-03 2010-10-12 System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source
US13966624 Active US8767208B2 (en) 2006-11-03 2013-08-14 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US14280053 Active US9494509B2 (en) 2006-11-03 2014-05-16 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11593312 Active 2027-06-15 US7835000B2 (en) 2006-11-03 2006-11-03 System and method for measuring particles in a sample stream of a flow cytometer or the like

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13966624 Active US8767208B2 (en) 2006-11-03 2013-08-14 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US14280053 Active US9494509B2 (en) 2006-11-03 2014-05-16 System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

Country Status (1)

Country Link
US (4) US7835000B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245709A1 (en) * 2007-04-09 2008-10-09 Gregory Kaduchak Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US20090029870A1 (en) * 2007-04-02 2009-01-29 Ward Michael D Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure
US20090107241A1 (en) * 2007-10-24 2009-04-30 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US20090139332A1 (en) * 2007-10-24 2009-06-04 Goddard Gregory Russ Method for non-contact particle manipulation and control of particle spacing along an axis
US20090162887A1 (en) * 2007-12-19 2009-06-25 Gregory Kaduchak Particle analysis in an acoustic cytometer
US20090178716A1 (en) * 2008-01-16 2009-07-16 Acoustic Cytometry Systems, Inc. System and Method for Acoustic Focusing Hardware and Implementations
US20100000325A1 (en) * 2004-07-29 2010-01-07 Gregory Kaduchak Ultrasonic analyte concentration and application in flow cytometry
US20110024335A1 (en) * 2007-04-09 2011-02-03 Los Alamos National Security, Llc Acoustic Concentration of Particles in Fluid Flow
US9746412B2 (en) 2012-05-30 2017-08-29 Iris International, Inc. Flow cytometer

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452429B2 (en) 2006-02-02 2016-09-27 E. I. Spectra, Llc Method for mutiplexed microfluidic bead-based immunoassay
US9293311B1 (en) 2006-02-02 2016-03-22 E. I. Spectra, Llc Microfluidic interrogation device
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
US20100220315A1 (en) * 2009-02-27 2010-09-02 Beckman Coulter, Inc. Stabilized Optical System for Flow Cytometry
WO2010126459A1 (en) 2009-04-27 2010-11-04 Ei Spectra, Llc Pipette instrument
EP2721442A1 (en) * 2011-06-15 2014-04-23 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method and apparatus for imaging a structure marked with a fluorescent dye
US20140147860A1 (en) 2011-06-27 2014-05-29 Life Technologies Corporation Acoustic Cytometry Methods and Protocols
US9103760B2 (en) 2012-06-09 2015-08-11 E. I. Spectra, Llc Fluorescence flow cytometry device and method
WO2013188770A1 (en) 2012-06-14 2013-12-19 Bio-Rad Laboratories, Inc. Flow rate balanced, dynamically adjustable sheath delivery system for flow cytometry
WO2013192401A1 (en) 2012-06-22 2013-12-27 Bio-Rad Laboratories, Inc. Fluid mixing and rinsing system for a flow cytometer
CN103575632B (en) * 2012-08-09 2015-09-23 深圳开立生物医疗科技股份有限公司 One kind of sheath flow device and the blood analyzer
CN103575633B (en) * 2012-08-10 2017-11-17 深圳迈瑞生物医疗电子股份有限公司 And a streaming instrument Fluid Systems
US9333502B1 (en) 2012-09-13 2016-05-10 E. I. Spectra, Llc Sample-acquiring microfluidic tester
KR101802626B1 (en) * 2013-03-15 2017-11-28 아이리스 인터내셔널 인크. Method and composition for staining and sample processing
JP5877810B2 (en) * 2013-03-26 2016-03-08 シスメックス株式会社 Particle analyzer, optics and particle analyzer lenses particle analyzer
CN105408984A (en) * 2014-02-06 2016-03-16 应用材料公司 Online DPS chamber hardware design to enable axis symmetry for improved flow conductance and uniformity
CN105021578A (en) * 2014-04-15 2015-11-04 章健 Fluid fluorescence quantitative detection apparatus and fluid fluorescence quantitative detection method
WO2015175906A1 (en) * 2014-05-15 2015-11-19 Brigham Young University Low-power miniature led-based uv absorption detector with low detection limits for capillary liquid chromatography
US10006858B2 (en) 2015-04-22 2018-06-26 TZOA/Clad Innovations Ltd. Portable device for monitoring environmental conditions
US9995667B2 (en) 2015-04-22 2018-06-12 TZOA/Clad Innovations Ltd. Portable device for detecting and measuring particles entrained in the air
RU2650753C1 (en) * 2017-03-07 2018-04-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Method for determining parameters of suspended particles

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882732A (en) * 1973-08-31 1975-05-13 Nasa Material suspension within an acoustically excited resonant chamber
US4265124A (en) * 1979-06-04 1981-05-05 Rockwell International Corporation Remote acoustic wave sensors
US4434230A (en) * 1981-08-12 1984-02-28 Research Corporation Human nonsecretory plasmacytoid cell line
US4492752A (en) * 1982-09-03 1985-01-08 Ortho Diagnostics Systems Inc. Method for discriminating between unstained and absorbing dye stained cells
US4523682A (en) * 1982-05-19 1985-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acoustic particle separation
US4523982A (en) * 1981-03-05 1985-06-18 The Dow Chemical Company Electron rich aromatics as cure promoters for radiation curable compositions
US4596464A (en) * 1983-10-14 1986-06-24 Ortho Diagnostic Systems, Inc. Screening method for red cell abnormality
US4673512A (en) * 1984-07-06 1987-06-16 Internationale Octrooi Maatschappij "Octropfa" Bv Particle separation
US4743361A (en) * 1983-10-31 1988-05-10 Internationale Octrooi Maatschappij "Octropa" Bv Manipulation of particles
US4743631A (en) * 1984-09-20 1988-05-10 Enichem Sintesi S.P.A. Acrylated phosphonoacetic acids as adhesion promoters, method for making, and curable coatings for metal
US4759775A (en) * 1986-02-21 1988-07-26 Utah Bioresearch, Inc. Methods and apparatus for moving and separating materials exhibiting different physical properties
US4790653A (en) * 1986-05-22 1988-12-13 Becton Dickinson And Company Housing for a flow cytometry apparatus with particle unclogging feature
US4845025A (en) * 1987-11-10 1989-07-04 Coulter Corporation Biological sample mixing apparatus and method
US4913883A (en) * 1987-07-20 1990-04-03 Hitachi, Ltd. Particle agglutination immunoassay apparatus
US4987086A (en) * 1987-11-30 1991-01-22 Becton, Dickinson And Company Method for analysis of subpopulations of cells
US4991923A (en) * 1989-01-17 1991-02-12 Board Of Trustees Of The Leland Stanford Junior University Acousto-optic modulator for optical fibers using Hertzian contact with a grooved transducer substrate
US5006266A (en) * 1987-10-14 1991-04-09 National Research Development Corporation Manipulating means utilizing ultrasonic wave energy for use with particulate material
US5030002A (en) * 1989-08-11 1991-07-09 Becton, Dickinson And Company Method and apparatus for sorting particles with a moving catcher tube
US5032381A (en) * 1988-12-20 1991-07-16 Tropix, Inc. Chemiluminescence-based static and flow cytometry
US5079959A (en) * 1988-09-19 1992-01-14 Hitachi, Ltd. Analyzing system using sheath flow of sample
US5085783A (en) * 1990-08-16 1992-02-04 Case Western Reserve University Acoustically driven particle separation method and apparatus
US5106187A (en) * 1989-03-31 1992-04-21 Maritime Scientific Services Ltd. Method and apparatus for the indentification of particles
US5225089A (en) * 1988-11-03 1993-07-06 Ewald Benes Method and apparatus for separating particles
US5395588A (en) * 1992-12-14 1995-03-07 Becton Dickinson And Company Control of flow cytometer having vacuum fluidics
US5430541A (en) * 1993-01-12 1995-07-04 Applied Biosystems Inc. High efficiency fluorescence flow cell for capillary liquid chromatography or capillary electrophoresis
US5491344A (en) * 1993-12-01 1996-02-13 Tufts University Method and system for examining the composition of a fluid or solid sample using fluorescence and/or absorption spectroscopy
US5504337A (en) * 1990-10-10 1996-04-02 Joseph R. Lakowicz Method and apparatus for performing phase fluorescence lifetime measurements in flow cytometry
US5528045A (en) * 1995-04-06 1996-06-18 Becton Dickinson And Company Particle analyzer with spatially split wavelength filter
US5527460A (en) * 1993-05-11 1996-06-18 Sonosep Biotech Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5626767A (en) * 1993-07-02 1997-05-06 Sonosep Biotech Inc. Acoustic filter for separating and recycling suspended particles
US5644388A (en) * 1994-04-19 1997-07-01 Toa Medical Electronics Co., Ltd. Imaging flow cytometer nearly simultaneously capturing a plurality of images
US5690895A (en) * 1993-01-26 1997-11-25 Hitachi, Ltd. Flow cell apparatus
US5711888A (en) * 1993-05-11 1998-01-27 Sonosep Biotech, Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5739902A (en) * 1993-06-08 1998-04-14 Gjelsnes; Oddbjorn Liquid flow cytometer
US5915925A (en) * 1997-01-07 1999-06-29 North, Jr.; Howard L. Pulseless liquid supply system for flow cytometry
US6055859A (en) * 1996-10-01 2000-05-02 Agency Of Industrial Science And Technology Non-contact micromanipulation method and apparatus
US6074879A (en) * 1997-06-23 2000-06-13 Bayer Corporation Synthetic polymer particles for use as standards and calibrators in flow cytometry
US6090295A (en) * 1998-08-11 2000-07-18 University Technology Corporation Method and apparatus for acoustically demixing aqueous solutions
US6197593B1 (en) * 1998-10-20 2001-03-06 Coulter International Corp. Method for enumerating blood cells
US6216538B1 (en) * 1992-12-02 2001-04-17 Hitachi, Ltd. Particle handling apparatus for handling particles in fluid by acoustic radiation pressure
US6221258B1 (en) * 1996-06-14 2001-04-24 Case Western Reserve University Method and apparatus for acoustically driven media filtration
US6228652B1 (en) * 1999-02-16 2001-05-08 Coulter International Corp. Method and apparatus for analyzing cells in a whole blood sample
US6248590B1 (en) * 1998-02-27 2001-06-19 Cytomation, Inc. Method and apparatus for flow cytometry
US6255118B1 (en) * 1997-06-11 2001-07-03 Nalco Chemical Company Method for using an all solid-state fluorometer in industrial water system applications
US6348687B1 (en) * 1999-09-10 2002-02-19 Sandia Corporation Aerodynamic beam generator for large particles
US6373567B1 (en) * 1999-12-17 2002-04-16 Micron Optical Systems Dispersive near-IR Raman spectrometer
US6532061B2 (en) * 2000-08-25 2003-03-11 Amnis Corporation Measuring the velocity of small moving objects such as cells
US20030059850A1 (en) * 2001-09-26 2003-03-27 Psychiatric Genomics, Inc. Fluorescence proximity assay
US6549275B1 (en) * 2000-08-02 2003-04-15 Honeywell International Inc. Optical detection system for flow cytometry
US20030086608A1 (en) * 2001-07-17 2003-05-08 Amnis Corporation Computational methods for the segmentation of images of objects from background in a flow imaging instrument
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US20030098421A1 (en) * 2001-11-27 2003-05-29 Ho Jim Yew-Wah Laser diode-excited biological particle detection system
US6592821B1 (en) * 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US20030235919A1 (en) * 1998-05-14 2003-12-25 Chandler Van S. Multi-analyte diagnostic system and computer implemented process for same
US6683314B2 (en) * 2001-08-28 2004-01-27 Becton, Dickinson And Company Fluorescence detection instrument with reflective transfer legs for color decimation
US6713019B2 (en) * 2001-03-29 2004-03-30 Sysmex Corporation Flow cytometer
US20040065599A1 (en) * 2002-10-02 2004-04-08 Amit Lal Method and apparatus for separating particles by size
US20040069717A1 (en) * 2001-03-09 2004-04-15 Thomas Laurell Device and method for separation
US6736904B2 (en) * 2001-03-02 2004-05-18 Paper Quality Management Associates Method and apparatus for the generation of ultrasonic energy fields within circular structures containing a liquid
US6794671B2 (en) * 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
US20050072677A1 (en) * 2003-02-18 2005-04-07 Board Of Regents, The University Of Texas System Dielectric particle focusing
US6881314B1 (en) * 2000-09-30 2005-04-19 Aviva Biosciences Corporation Apparatuses and methods for field flow fractionation of particles using acoustic and other forces
US20050097968A1 (en) * 2003-11-11 2005-05-12 Kaijo Sonic Corporation Ultrasonic flow meter and ultrasonic sensor
US6911082B2 (en) * 2002-02-05 2005-06-28 Hitachi Software Engineering Co., Ltd Method of manufacturing a multi-layer semiconductor nanoparticle, and a multi-layer semiconductor nanoparticle manufactured by the method
US20060006769A1 (en) * 1999-03-09 2006-01-12 Masters Brett P Laser machining of electroactive ceramics
US20060021437A1 (en) * 2004-07-29 2006-02-02 Gregory Kaduchak Ultrasonic analyte concentration and application in flow cytometry
US20060034733A1 (en) * 2004-08-16 2006-02-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Separation of particles from a fluid by wave action
US7008540B1 (en) * 2003-04-07 2006-03-07 The Ohio State University Ultrasonically cleaned membrane filtration system
US7018819B2 (en) * 2001-11-30 2006-03-28 Cellectricon Ab Method and apparatus for manipulation of cells and cell-like structures focused electric fields in microfludic systems and use thereof
US20060071580A1 (en) * 2003-04-01 2006-04-06 Olympus Corporation Ultrasonic transducer and manufacturing method thereof
US7025864B2 (en) * 2003-03-10 2006-04-11 Elchrom Scientific A.G. Method and apparatus for recovering target molecules from a gel containing said target molecules
US7047809B2 (en) * 2003-01-21 2006-05-23 Applied Sonics, Incorporated Ultrasonic monitor of material composition and particle size
US7052864B2 (en) * 2001-03-09 2006-05-30 Active Motif Chromeon Gmbh Bioanalytical measuring method using oxidases and lanthanoid-ligand complexes
US7064823B2 (en) * 2000-06-02 2006-06-20 Idexx Laboratories, Inc. Consumable tube for use with a flow cytometry-based hematology system
US20060163166A1 (en) * 2002-10-10 2006-07-27 Hawkes Jeremy J Apparatus for moving particles from a first fluid to a second fluid
US7113266B1 (en) * 2005-03-30 2006-09-26 Beckman Coulter, Inc. Flow cytometer for differentiating small particles in suspension
US7161665B2 (en) * 2002-12-18 2007-01-09 University Of Wyoming High resolution imaging fountain flow cytometry
US20070037172A1 (en) * 2005-08-11 2007-02-15 Chiu Daniel T Separation and concentration of biological cells and biological particles using a one-dimensional channel
US20070071683A1 (en) * 2005-09-27 2007-03-29 The Regents Of The University Of California Ultrasonic concentration of carrier particles
US20070098232A1 (en) * 2005-09-14 2007-05-03 University Of Washington Using optical scattering to measure properties of ultrasound contrast agent shells
US20070119239A1 (en) * 2005-11-30 2007-05-31 Aba Priev Method and apparatus for determination of the concentration of particles in multi-component fluid systems
US7315357B2 (en) * 1999-01-25 2008-01-01 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US20080053787A1 (en) * 2006-09-05 2008-03-06 Bagajewicz Miguel J Acoustic/Pressure Wave-Driven Separation Device
US7362432B2 (en) * 2004-01-14 2008-04-22 Luminex Corp. Method and systems for dynamic range expansion
US20080106736A1 (en) * 2006-11-03 2008-05-08 Los Alamos National Laboratory System and method for measuring particles in a sample stream of a flow cytometer or the like
US7373805B2 (en) * 2002-09-16 2008-05-20 The Secretary Of State For Defence Apparatus for directing particles in a fluid
US7477363B2 (en) * 2004-04-08 2009-01-13 Nihon Kohden Corporation Flow cytometer
US20090029870A1 (en) * 2007-04-02 2009-01-29 Ward Michael D Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure
US20090038932A1 (en) * 2007-08-08 2009-02-12 Battelle Memorial Institute Device and method for noninvasive ultrasonic treatment of fluids and materials in conduits and cylindrical containers
US20090107241A1 (en) * 2007-10-24 2009-04-30 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US20090139332A1 (en) * 2007-10-24 2009-06-04 Goddard Gregory Russ Method for non-contact particle manipulation and control of particle spacing along an axis
US20090162887A1 (en) * 2007-12-19 2009-06-25 Gregory Kaduchak Particle analysis in an acoustic cytometer
US20100009333A1 (en) * 2008-07-08 2010-01-14 Beckman Coulter, Inc. Methods for Acoustic Particle Focusing in Biological Sample Analyzers
US20110134426A1 (en) * 2009-12-04 2011-06-09 Life Technologies Corporation Apparatuses, systems, methods, and computer readable media for acoustic flow cytometry.

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB500271A (en) 1936-05-04 1939-02-06 Metallgesellschaft Ag Process of and apparatus for clarifying liquids
US2900536A (en) 1954-11-18 1959-08-18 Astatic Corp Design of electro-mechanical transducer elements
US3669542A (en) * 1969-10-09 1972-06-13 Coulter Electronics Liquid borne particle sensor
US4055491A (en) 1976-06-02 1977-10-25 Porath Furedi Asher Apparatus and method for removing fine particles from a liquid medium by ultrasonic waves
CA1142466A (en) 1979-01-09 1983-03-08 Cesar Milstein Cell lines
US4285810A (en) 1980-02-29 1981-08-25 E. I. Du Pont De Nemours And Company Method and apparatus for field flow fractionation
DE3027433A1 (en) 1980-07-19 1982-02-18 Messerschmitt Boelkow Blohm Pressure diffusion sepn. method for mixts. - uses perpendicular identical frequency wave fields with differing phases
US4503385A (en) * 1983-07-11 1985-03-05 Becton, Dickinson And Company Apparatus and method for regulating sheath fluid flow in a hydrodynamically focused fluid flow system
US4604542A (en) 1984-07-25 1986-08-05 Gould Inc. Broadband radial vibrator transducer with multiple resonant frequencies
US5346670A (en) 1986-12-24 1994-09-13 British Technology Group U.S.A. Inc. Phthalocyanine and tetrabenztriazaporphyrin reagents
US5800861A (en) 1985-08-15 1998-09-01 The Sherwin-Williams Company High solid infrared absorbing compositions
JPH0747259Y2 (en) 1985-08-20 1995-11-01 三菱自動車工業株式会社 Steering force control device for a power steering system
GB8612759D0 (en) 1986-05-27 1986-07-02 Unilever Plc Manipulating particulate matter
JPS63139231A (en) 1986-07-18 1988-06-11 Akira Mizuno Method for measuring fine particles in liquid
JPH01112161A (en) 1987-07-20 1989-04-28 Hitachi Ltd Immune agglutination determining device
US5245318A (en) * 1987-07-24 1993-09-14 Canon Kabushiki Kaisha Particle analyzing apparatus having pressure control system
US4777823A (en) 1987-08-20 1988-10-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled sample orientation and rotation in an acoustic levitator
US5040890A (en) * 1987-11-25 1991-08-20 Becton, Dickinson And Company Sheathed particle flow controlled by differential pressure
US4867559A (en) 1988-01-06 1989-09-19 Amoco Corporation Liquid/liquid fiber-optic fluorescence detector and absorbance analyzer
US4964303A (en) 1988-11-15 1990-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acoustic positioning and orientation prediction
US4979824A (en) 1989-05-26 1990-12-25 Board Of Trustees Of The Leland Stanford Junior University High sensitivity fluorescent single particle and single molecule detection apparatus and method
US5376551A (en) * 1991-03-12 1994-12-27 University Of Utah Research Foundation Apparatus for using fluorescently labeled ligands in studying interaction of a native ligand and its receptor
US5999256A (en) * 1992-02-12 1999-12-07 Cambridge Consultants Limited Particle measurement system
US5264906A (en) 1992-07-08 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Bioluminescence bathyphotometer
US5674698A (en) * 1992-09-14 1997-10-07 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
JP2763468B2 (en) * 1992-12-25 1998-06-11 株式会社日立製作所 Particle sorting apparatus in a liquid using light scattering
JP3205413B2 (en) 1993-02-15 2001-09-04 日立電子エンジニアリング株式会社 Particle measuring apparatus and particulate measuring method
US5547849A (en) 1993-02-17 1996-08-20 Biometric Imaging, Inc. Apparatus and method for volumetric capillary cytometry
JPH08266891A (en) 1995-04-03 1996-10-15 Hitachi Ltd Fine particle handling device
WO1997002482A1 (en) 1995-06-30 1997-01-23 Biometric Imaging, Inc. Volumetric cell quantification method and system
US5798222A (en) 1995-07-17 1998-08-25 Guava Technologies, Inc. Apparatus for monitoring substances in organisms
US5981180A (en) 1995-10-11 1999-11-09 Luminex Corporation Multiplexed analysis of clinical specimens apparatus and methods
JP3487699B2 (en) 1995-11-08 2004-01-19 株式会社日立製作所 Ultrasonic processing method and apparatus
JP2700058B2 (en) 1996-01-23 1998-01-19 工業技術院長 Non-contact micromanipulation method using the ultrasonic
US5688406A (en) 1996-02-28 1997-11-18 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for separating particulate from a flowing fluid
JP3467995B2 (en) * 1996-11-28 2003-11-17 株式会社日立製作所 Capillary electrophoresis apparatus
GB9708984D0 (en) 1997-05-03 1997-06-25 Univ Cardiff Particle manipulation
US6710871B1 (en) 1997-06-09 2004-03-23 Guava Technologies, Inc. Method and apparatus for detecting microparticles in fluid samples
JPH1114533A (en) 1997-06-19 1999-01-22 Hitachi Ltd Particulate shape measuring instrument
US6003388A (en) 1997-09-17 1999-12-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System for manipulating drops and bubbles using acoustic radiation pressure
KR20010041113A (en) 1998-02-20 2001-05-15 헤릭호프, 리사 A vibratory system for a sorting flow cytometer
WO2000004987A1 (en) 1998-07-21 2000-02-03 University Technology Corporation Method and apparatus for determining the state of fouling/cleaning of membrane modules
US20010006416A1 (en) 1999-01-11 2001-07-05 Johnson Paul E. Ribbon flow cytometry apparatus and methods
US6309886B1 (en) 1999-06-04 2001-10-30 The Regents Of The University Of California High throughput analysis of samples in flowing liquid
JP3306029B2 (en) 1999-07-27 2002-07-24 サーパス工業株式会社 Ultrasonic flow meter, and a manufacturing method thereof
US6449563B1 (en) 1999-10-12 2002-09-10 Dispersion Technology, Inc Method and device for determining particle size distribution and zeta potential in concentrated dispersions
US6813017B1 (en) 1999-10-20 2004-11-02 Becton, Dickinson And Company Apparatus and method employing incoherent light emitting semiconductor devices as particle detection light sources in a flow cytometer
US6263745B1 (en) 1999-12-03 2001-07-24 Xy, Inc. Flow cytometer nozzle and flow cytometer sample handling methods
JP2002022531A (en) 2000-07-11 2002-01-23 Sasakura Engineering Co Ltd Sound pressure measuring device for reasonator pipe system and control device therefor
US7262838B2 (en) 2001-06-29 2007-08-28 Honeywell International Inc. Optical detection system for flow cytometry
US7978329B2 (en) 2000-08-02 2011-07-12 Honeywell International Inc. Portable scattering and fluorescence cytometer
CN1181337C (en) 2000-08-08 2004-12-22 清华大学 Solid molecule operating method in microfluid system and relative reagent kit
US6467350B1 (en) 2001-03-15 2002-10-22 The Regents Of The University Of California Cylindrical acoustic levitator/concentrator
US6982165B2 (en) 2001-09-24 2006-01-03 Intel Corporation Nucleic acid sequencing by raman monitoring of molecular deconstruction
WO2003027027A1 (en) 2001-09-25 2003-04-03 P.M.G. Medica Ltd. System and method for sterilization of a liquid
CA2462914A1 (en) 2001-10-11 2003-04-17 Aviva Biosciences Corporation Methods, compositions, and automated systems for separating rare cells from fluid samples
US7166443B2 (en) 2001-10-11 2007-01-23 Aviva Biosciences Corporation Methods, compositions, and automated systems for separating rare cells from fluid samples
US6773556B1 (en) 2001-10-18 2004-08-10 Seagate Technology Llc Method for energy barrier equalization of magnetic recording media and media obtained thereby
CA2490961A1 (en) 2002-07-01 2004-01-08 Guava Technologies, Inc. Fluorescent dyes, energy transfer couples and methods
KR20040039091A (en) 2002-10-31 2004-05-10 히데오 나까조 Ice making machine
CN1246448C (en) 2003-02-25 2006-03-22 清华大学 Apparatus for supersonic cracking cell and cutting macro molecule and method for its use
EP2305171A3 (en) 2003-03-28 2011-08-10 Inguran, LLC Apparatus and methods for providing sex-sorted animal sperm
US7392908B2 (en) 2005-01-12 2008-07-01 Beckman Coulter, Inc. Methods and apparatus for sorting particles hydraulically
US7403125B2 (en) 2005-05-06 2008-07-22 Accuri Cytometers, Inc. Flow cytometry system with bubble detection
JP4756948B2 (en) 2005-08-08 2011-08-24 ベイバイオサイエンス株式会社 Flow cytometer and the flow cytometry method
US8264683B2 (en) 2005-09-14 2012-09-11 University Of Washington Dynamic characterization of particles with flow cytometry
DE102005050167B4 (en) 2005-10-19 2009-02-19 Advalytix Ag Concentration method, concentrator and reaction process
US8798338B2 (en) * 2006-01-09 2014-08-05 University Of Wyoming Method and system for counting particles in a laminar flow with an imaging device
JP4896534B2 (en) * 2006-01-31 2012-03-14 シスメックス株式会社 Particle analyzer sheath liquid
EP2005141A2 (en) * 2006-04-11 2008-12-24 Guava Technologies, Inc. Asymmetric capillary for capillary-flow cytometers
WO2007128795A3 (en) 2006-05-05 2008-01-17 Erysave Ab Method for separation
US7570676B2 (en) * 2006-05-09 2009-08-04 Spectralus Corporation Compact efficient and robust ultraviolet solid-state laser sources based on nonlinear frequency conversion in periodically poled materials
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8714014B2 (en) 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882732A (en) * 1973-08-31 1975-05-13 Nasa Material suspension within an acoustically excited resonant chamber
US4265124A (en) * 1979-06-04 1981-05-05 Rockwell International Corporation Remote acoustic wave sensors
US4523982A (en) * 1981-03-05 1985-06-18 The Dow Chemical Company Electron rich aromatics as cure promoters for radiation curable compositions
US4434230A (en) * 1981-08-12 1984-02-28 Research Corporation Human nonsecretory plasmacytoid cell line
US4523682A (en) * 1982-05-19 1985-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acoustic particle separation
US4492752A (en) * 1982-09-03 1985-01-08 Ortho Diagnostics Systems Inc. Method for discriminating between unstained and absorbing dye stained cells
US4596464A (en) * 1983-10-14 1986-06-24 Ortho Diagnostic Systems, Inc. Screening method for red cell abnormality
US4743361A (en) * 1983-10-31 1988-05-10 Internationale Octrooi Maatschappij "Octropa" Bv Manipulation of particles
US4673512A (en) * 1984-07-06 1987-06-16 Internationale Octrooi Maatschappij "Octropfa" Bv Particle separation
US4743631A (en) * 1984-09-20 1988-05-10 Enichem Sintesi S.P.A. Acrylated phosphonoacetic acids as adhesion promoters, method for making, and curable coatings for metal
US4759775A (en) * 1986-02-21 1988-07-26 Utah Bioresearch, Inc. Methods and apparatus for moving and separating materials exhibiting different physical properties
US4790653A (en) * 1986-05-22 1988-12-13 Becton Dickinson And Company Housing for a flow cytometry apparatus with particle unclogging feature
US4913883A (en) * 1987-07-20 1990-04-03 Hitachi, Ltd. Particle agglutination immunoassay apparatus
US5006266A (en) * 1987-10-14 1991-04-09 National Research Development Corporation Manipulating means utilizing ultrasonic wave energy for use with particulate material
US4845025A (en) * 1987-11-10 1989-07-04 Coulter Corporation Biological sample mixing apparatus and method
US4987086A (en) * 1987-11-30 1991-01-22 Becton, Dickinson And Company Method for analysis of subpopulations of cells
US5079959A (en) * 1988-09-19 1992-01-14 Hitachi, Ltd. Analyzing system using sheath flow of sample
US5225089A (en) * 1988-11-03 1993-07-06 Ewald Benes Method and apparatus for separating particles
US5032381A (en) * 1988-12-20 1991-07-16 Tropix, Inc. Chemiluminescence-based static and flow cytometry
US4991923A (en) * 1989-01-17 1991-02-12 Board Of Trustees Of The Leland Stanford Junior University Acousto-optic modulator for optical fibers using Hertzian contact with a grooved transducer substrate
US5106187A (en) * 1989-03-31 1992-04-21 Maritime Scientific Services Ltd. Method and apparatus for the indentification of particles
US5030002A (en) * 1989-08-11 1991-07-09 Becton, Dickinson And Company Method and apparatus for sorting particles with a moving catcher tube
US5085783A (en) * 1990-08-16 1992-02-04 Case Western Reserve University Acoustically driven particle separation method and apparatus
US5504337A (en) * 1990-10-10 1996-04-02 Joseph R. Lakowicz Method and apparatus for performing phase fluorescence lifetime measurements in flow cytometry
US6216538B1 (en) * 1992-12-02 2001-04-17 Hitachi, Ltd. Particle handling apparatus for handling particles in fluid by acoustic radiation pressure
US5395588A (en) * 1992-12-14 1995-03-07 Becton Dickinson And Company Control of flow cytometer having vacuum fluidics
US5430541A (en) * 1993-01-12 1995-07-04 Applied Biosystems Inc. High efficiency fluorescence flow cell for capillary liquid chromatography or capillary electrophoresis
US5690895A (en) * 1993-01-26 1997-11-25 Hitachi, Ltd. Flow cell apparatus
US5527460A (en) * 1993-05-11 1996-06-18 Sonosep Biotech Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5711888A (en) * 1993-05-11 1998-01-27 Sonosep Biotech, Inc. Multilayered piezoelectric resonator for the separation of suspended particles
US5739902A (en) * 1993-06-08 1998-04-14 Gjelsnes; Oddbjorn Liquid flow cytometer
US5626767A (en) * 1993-07-02 1997-05-06 Sonosep Biotech Inc. Acoustic filter for separating and recycling suspended particles
US5491344A (en) * 1993-12-01 1996-02-13 Tufts University Method and system for examining the composition of a fluid or solid sample using fluorescence and/or absorption spectroscopy
US5644388A (en) * 1994-04-19 1997-07-01 Toa Medical Electronics Co., Ltd. Imaging flow cytometer nearly simultaneously capturing a plurality of images
US5528045A (en) * 1995-04-06 1996-06-18 Becton Dickinson And Company Particle analyzer with spatially split wavelength filter
US6221258B1 (en) * 1996-06-14 2001-04-24 Case Western Reserve University Method and apparatus for acoustically driven media filtration
US6055859A (en) * 1996-10-01 2000-05-02 Agency Of Industrial Science And Technology Non-contact micromanipulation method and apparatus
US5915925A (en) * 1997-01-07 1999-06-29 North, Jr.; Howard L. Pulseless liquid supply system for flow cytometry
US6255118B1 (en) * 1997-06-11 2001-07-03 Nalco Chemical Company Method for using an all solid-state fluorometer in industrial water system applications
US6074879A (en) * 1997-06-23 2000-06-13 Bayer Corporation Synthetic polymer particles for use as standards and calibrators in flow cytometry
US6248590B1 (en) * 1998-02-27 2001-06-19 Cytomation, Inc. Method and apparatus for flow cytometry
US20030235919A1 (en) * 1998-05-14 2003-12-25 Chandler Van S. Multi-analyte diagnostic system and computer implemented process for same
US6090295A (en) * 1998-08-11 2000-07-18 University Technology Corporation Method and apparatus for acoustically demixing aqueous solutions
US6197593B1 (en) * 1998-10-20 2001-03-06 Coulter International Corp. Method for enumerating blood cells
US7315357B2 (en) * 1999-01-25 2008-01-01 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US6228652B1 (en) * 1999-02-16 2001-05-08 Coulter International Corp. Method and apparatus for analyzing cells in a whole blood sample
US20060006769A1 (en) * 1999-03-09 2006-01-12 Masters Brett P Laser machining of electroactive ceramics
US6592821B1 (en) * 1999-05-17 2003-07-15 Caliper Technologies Corp. Focusing of microparticles in microfluidic systems
US6348687B1 (en) * 1999-09-10 2002-02-19 Sandia Corporation Aerodynamic beam generator for large particles
US6373567B1 (en) * 1999-12-17 2002-04-16 Micron Optical Systems Dispersive near-IR Raman spectrometer
US7064823B2 (en) * 2000-06-02 2006-06-20 Idexx Laboratories, Inc. Consumable tube for use with a flow cytometry-based hematology system
US6549275B1 (en) * 2000-08-02 2003-04-15 Honeywell International Inc. Optical detection system for flow cytometry
US6532061B2 (en) * 2000-08-25 2003-03-11 Amnis Corporation Measuring the velocity of small moving objects such as cells
US6881314B1 (en) * 2000-09-30 2005-04-19 Aviva Biosciences Corporation Apparatuses and methods for field flow fractionation of particles using acoustic and other forces
US6736904B2 (en) * 2001-03-02 2004-05-18 Paper Quality Management Associates Method and apparatus for the generation of ultrasonic energy fields within circular structures containing a liquid
US7052864B2 (en) * 2001-03-09 2006-05-30 Active Motif Chromeon Gmbh Bioanalytical measuring method using oxidases and lanthanoid-ligand complexes
US20040069717A1 (en) * 2001-03-09 2004-04-15 Thomas Laurell Device and method for separation
US6713019B2 (en) * 2001-03-29 2004-03-30 Sysmex Corporation Flow cytometer
US20030086608A1 (en) * 2001-07-17 2003-05-08 Amnis Corporation Computational methods for the segmentation of images of objects from background in a flow imaging instrument
US6683314B2 (en) * 2001-08-28 2004-01-27 Becton, Dickinson And Company Fluorescence detection instrument with reflective transfer legs for color decimation
US20030059850A1 (en) * 2001-09-26 2003-03-27 Psychiatric Genomics, Inc. Fluorescence proximity assay
US20030098421A1 (en) * 2001-11-27 2003-05-29 Ho Jim Yew-Wah Laser diode-excited biological particle detection system
US7018819B2 (en) * 2001-11-30 2006-03-28 Cellectricon Ab Method and apparatus for manipulation of cells and cell-like structures focused electric fields in microfludic systems and use thereof
US6911082B2 (en) * 2002-02-05 2005-06-28 Hitachi Software Engineering Co., Ltd Method of manufacturing a multi-layer semiconductor nanoparticle, and a multi-layer semiconductor nanoparticle manufactured by the method
US6794671B2 (en) * 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
US7373805B2 (en) * 2002-09-16 2008-05-20 The Secretary Of State For Defence Apparatus for directing particles in a fluid
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US20040065599A1 (en) * 2002-10-02 2004-04-08 Amit Lal Method and apparatus for separating particles by size
US20060163166A1 (en) * 2002-10-10 2006-07-27 Hawkes Jeremy J Apparatus for moving particles from a first fluid to a second fluid
US7161665B2 (en) * 2002-12-18 2007-01-09 University Of Wyoming High resolution imaging fountain flow cytometry
US7047809B2 (en) * 2003-01-21 2006-05-23 Applied Sonics, Incorporated Ultrasonic monitor of material composition and particle size
US20050072677A1 (en) * 2003-02-18 2005-04-07 Board Of Regents, The University Of Texas System Dielectric particle focusing
US7025864B2 (en) * 2003-03-10 2006-04-11 Elchrom Scientific A.G. Method and apparatus for recovering target molecules from a gel containing said target molecules
US20060071580A1 (en) * 2003-04-01 2006-04-06 Olympus Corporation Ultrasonic transducer and manufacturing method thereof
US7008540B1 (en) * 2003-04-07 2006-03-07 The Ohio State University Ultrasonically cleaned membrane filtration system
US20050097968A1 (en) * 2003-11-11 2005-05-12 Kaijo Sonic Corporation Ultrasonic flow meter and ultrasonic sensor
US7362432B2 (en) * 2004-01-14 2008-04-22 Luminex Corp. Method and systems for dynamic range expansion
US7477363B2 (en) * 2004-04-08 2009-01-13 Nihon Kohden Corporation Flow cytometer
US20060021437A1 (en) * 2004-07-29 2006-02-02 Gregory Kaduchak Ultrasonic analyte concentration and application in flow cytometry
US20100000325A1 (en) * 2004-07-29 2010-01-07 Gregory Kaduchak Ultrasonic analyte concentration and application in flow cytometry
US7340957B2 (en) * 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US20060034733A1 (en) * 2004-08-16 2006-02-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Separation of particles from a fluid by wave action
US7113266B1 (en) * 2005-03-30 2006-09-26 Beckman Coulter, Inc. Flow cytometer for differentiating small particles in suspension
US20070037172A1 (en) * 2005-08-11 2007-02-15 Chiu Daniel T Separation and concentration of biological cells and biological particles using a one-dimensional channel
US20070098232A1 (en) * 2005-09-14 2007-05-03 University Of Washington Using optical scattering to measure properties of ultrasound contrast agent shells
US20070071683A1 (en) * 2005-09-27 2007-03-29 The Regents Of The University Of California Ultrasonic concentration of carrier particles
US20070119239A1 (en) * 2005-11-30 2007-05-31 Aba Priev Method and apparatus for determination of the concentration of particles in multi-component fluid systems
US20080053787A1 (en) * 2006-09-05 2008-03-06 Bagajewicz Miguel J Acoustic/Pressure Wave-Driven Separation Device
US20080106736A1 (en) * 2006-11-03 2008-05-08 Los Alamos National Laboratory System and method for measuring particles in a sample stream of a flow cytometer or the like
US20090042239A1 (en) * 2007-04-02 2009-02-12 Ward Michael D Particle Fusing Systems and Methods Using Acoustic Radiation Pressure
US20090029870A1 (en) * 2007-04-02 2009-01-29 Ward Michael D Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure
US20090042310A1 (en) * 2007-04-02 2009-02-12 Ward Michael D Particle Quantifying Systems and Methods Using Acoustic Radiation Pressure
US20090045107A1 (en) * 2007-04-02 2009-02-19 Ward Michael D Kits for Systems and Methods Using Acoustic Radiation Pressure
US20090048805A1 (en) * 2007-04-02 2009-02-19 Gregory Kaduchak Particle Imaging Systems and Methods Using Acoustic Radiation Pressure
US20090053686A1 (en) * 2007-04-02 2009-02-26 Ward Michael D Particle Switching Systems and Methods Using Acoustic Radiation Pressure
US20090050573A1 (en) * 2007-04-02 2009-02-26 Ward Michael D Medium Switching Systems and Methods Using Acoustic Radiation Pressure
US20090038932A1 (en) * 2007-08-08 2009-02-12 Battelle Memorial Institute Device and method for noninvasive ultrasonic treatment of fluids and materials in conduits and cylindrical containers
US20090139332A1 (en) * 2007-10-24 2009-06-04 Goddard Gregory Russ Method for non-contact particle manipulation and control of particle spacing along an axis
US20090107241A1 (en) * 2007-10-24 2009-04-30 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US20090162887A1 (en) * 2007-12-19 2009-06-25 Gregory Kaduchak Particle analysis in an acoustic cytometer
US20090158823A1 (en) * 2007-12-19 2009-06-25 Gregory Kaduchak Particle analysis in an acoustic cytometer
US20100009333A1 (en) * 2008-07-08 2010-01-14 Beckman Coulter, Inc. Methods for Acoustic Particle Focusing in Biological Sample Analyzers
US20110134426A1 (en) * 2009-12-04 2011-06-09 Life Technologies Corporation Apparatuses, systems, methods, and computer readable media for acoustic flow cytometry.

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000325A1 (en) * 2004-07-29 2010-01-07 Gregory Kaduchak Ultrasonic analyte concentration and application in flow cytometry
US9074979B2 (en) 2004-07-29 2015-07-07 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US8783109B2 (en) 2004-07-29 2014-07-22 Los Alamos National Sercurity, LLC Ultrasonic analyte concentration and application in flow cytometry
US9457139B2 (en) 2007-04-02 2016-10-04 Life Technologies Corporation Kits for systems and methods using acoustic radiation pressure
US20090045107A1 (en) * 2007-04-02 2009-02-19 Ward Michael D Kits for Systems and Methods Using Acoustic Radiation Pressure
US20090053686A1 (en) * 2007-04-02 2009-02-26 Ward Michael D Particle Switching Systems and Methods Using Acoustic Radiation Pressure
US20090050573A1 (en) * 2007-04-02 2009-02-26 Ward Michael D Medium Switching Systems and Methods Using Acoustic Radiation Pressure
US8900870B2 (en) 2007-04-02 2014-12-02 Life Technologies Corporation Methods for fusing cells using acoustic radiation pressure
US8873051B2 (en) 2007-04-02 2014-10-28 Life Technologies Corporation Methods and systems for controlling the flow of particles for detection
US8865476B2 (en) 2007-04-02 2014-10-21 Life Technologies Corporation Particle switching systems and methods using acoustic radiation pressure
US8846408B2 (en) 2007-04-02 2014-09-30 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US9476855B2 (en) 2007-04-02 2016-10-25 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US20090048805A1 (en) * 2007-04-02 2009-02-19 Gregory Kaduchak Particle Imaging Systems and Methods Using Acoustic Radiation Pressure
US20090042239A1 (en) * 2007-04-02 2009-02-12 Ward Michael D Particle Fusing Systems and Methods Using Acoustic Radiation Pressure
US8507293B2 (en) 2007-04-02 2013-08-13 Life Technologies Corporation Medium switching systems and methods using acoustic radiation pressure
US20090029870A1 (en) * 2007-04-02 2009-01-29 Ward Michael D Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure
US8227257B2 (en) 2007-04-02 2012-07-24 Life Technologies Corporation Medium switching systems and methods using acoustic radiation pressure
US8134705B2 (en) 2007-04-02 2012-03-13 Life Technologies Corporation Particle imaging systems and methods using acoustic radiation pressure
US9134271B2 (en) 2007-04-02 2015-09-15 Life Technologies Corporation Particle quantifying systems and methods using acoustic radiation pressure
US9909117B2 (en) 2007-04-09 2018-03-06 Los Alamos National Security, Llc Systems and methods for separating particles utilizing engineered acoustic contrast capture particles
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US20080245709A1 (en) * 2007-04-09 2008-10-09 Gregory Kaduchak Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US9339744B2 (en) 2007-04-09 2016-05-17 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US20110024335A1 (en) * 2007-04-09 2011-02-03 Los Alamos National Security, Llc Acoustic Concentration of Particles in Fluid Flow
US8863958B2 (en) 2007-04-09 2014-10-21 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US9733171B2 (en) 2007-04-09 2017-08-15 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8263407B2 (en) 2007-10-24 2012-09-11 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US20090139332A1 (en) * 2007-10-24 2009-06-04 Goddard Gregory Russ Method for non-contact particle manipulation and control of particle spacing along an axis
US20090107241A1 (en) * 2007-10-24 2009-04-30 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8932520B2 (en) 2007-10-24 2015-01-13 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8528406B2 (en) 2007-10-24 2013-09-10 Los Alamos National Security, LLP Method for non-contact particle manipulation and control of particle spacing along an axis
US9038467B2 (en) 2007-12-19 2015-05-26 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US20090162887A1 (en) * 2007-12-19 2009-06-25 Gregory Kaduchak Particle analysis in an acoustic cytometer
US8266950B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, LLP Particle analysis in an acoustic cytometer
US9488621B2 (en) 2007-12-19 2016-11-08 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US20090158823A1 (en) * 2007-12-19 2009-06-25 Gregory Kaduchak Particle analysis in an acoustic cytometer
US20090178716A1 (en) * 2008-01-16 2009-07-16 Acoustic Cytometry Systems, Inc. System and Method for Acoustic Focusing Hardware and Implementations
US8714014B2 (en) 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
US9746412B2 (en) 2012-05-30 2017-08-29 Iris International, Inc. Flow cytometer
US10126227B2 (en) 2012-05-30 2018-11-13 Iris International, Inc. Flow cytometer

Also Published As

Publication number Publication date Type
US20140247451A1 (en) 2014-09-04 application
US8564776B2 (en) 2013-10-22 grant
US9494509B2 (en) 2016-11-15 grant
US7835000B2 (en) 2010-11-16 grant
US8767208B2 (en) 2014-07-01 grant
US20130330763A1 (en) 2013-12-12 application
US20080106736A1 (en) 2008-05-08 application

Similar Documents

Publication Publication Date Title
US3624835A (en) Microparticle analyzer employing a spherical detector array
US5030002A (en) Method and apparatus for sorting particles with a moving catcher tube
US4745285A (en) Multi-color fluorescence analysis with single wavelength excitation
US5043591A (en) Portable particle analysers having plural detectors
US7106442B2 (en) Multi-spectral optical method and system for detecting and classifying biological and non-biological particles
US6507400B1 (en) Optical system for multi-part differential particle discrimination and an apparatus using the same
US6794671B2 (en) Sensors and methods for high-sensitivity optical particle counting and sizing
US4263508A (en) Pulse edge measurement for determining particle dimensional characteristics
US7267798B2 (en) Multi-analyte diagnostic system and computer implemented process for same
Steinkamp Flow cytometry
US4172227A (en) Flow microfluorometer
US5739902A (en) Liquid flow cytometer
US6139800A (en) Interlaced lasers for multiple fluorescence measurement
US5719666A (en) Particle analyzer classifying particles of various biological types using a correlation of measurements
US4850707A (en) Optical pulse particle size analyzer
US5270548A (en) Phase-sensitive flow cytometer
US5315122A (en) Apparatus and method for fluorescent lifetime measurement
EP0317809A2 (en) Sheated particle flow controlled by differential pressure
US4727020A (en) Method for analysis of subpopulations of blood cells
US20050162648A1 (en) System and method for multiple laser triggering
US6177277B1 (en) Flow fluorometric method
US4915501A (en) Device for measuring the light scattering of biological cells in flow cytophotometers
US20100009333A1 (en) Methods for Acoustic Particle Focusing in Biological Sample Analyzers
EP0121261A2 (en) Method and apparatus for distinguishing subclasses of leukocytes in a sample
US5125737A (en) Multi-part differential analyzing apparatus utilizing light scatter techniques

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TRIAD NATIONAL SECURITY, LLC, NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOS ALAMOS NATIONAL SECURITY, LLC;REEL/FRAME:047485/0260

Effective date: 20181101