US4625484A - Structural systems and components - Google Patents
Structural systems and components Download PDFInfo
- Publication number
- US4625484A US4625484A US06/751,808 US75180885A US4625484A US 4625484 A US4625484 A US 4625484A US 75180885 A US75180885 A US 75180885A US 4625484 A US4625484 A US 4625484A
- Authority
- US
- United States
- Prior art keywords
- members
- structure
- panel members
- roof
- reinforced concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004567 concrete Substances 0 abstract claims description 38
- 239000011150 reinforced concrete Substances 0 abstract claims description 36
- 238000009740 moulding (composite fabrication) Methods 0 abstract claims description 13
- 238000009413 insulation Methods 0 abstract claims description 4
- 239000004033 plastic Substances 0 claims description 42
- 229920003023 plastics Polymers 0 claims description 42
- 239000011162 core materials Substances 0 abstract description 16
- 230000003014 reinforcing Effects 0 claims description 14
- 238000010276 construction Methods 0 claims description 13
- 239000010959 steel Substances 0 claims description 12
- 229910001294 Reinforcing steel Inorganic materials 0 abstract description 10
- 238000005304 joining Methods 0 claims description 8
- 239000000203 mixtures Substances 0 claims description 8
- 238000004891 communication Methods 0 claims description 4
- 239000010410 layers Substances 0 claims description 4
- 239000000945 fillers Substances 0 abstract description 2
- 229920002994 synthetic fibers Polymers 0 claims 4
- 230000000875 corresponding Effects 0 claims 1
- 239000011799 hole materials Substances 0 claims 1
- 239000011810 insulating materials Substances 0 claims 1
- 230000002093 peripheral Effects 0 claims 1
- 238000005365 production Methods 0 abstract 1
- 230000000576 supplementary Effects 0 claims 1
- 239000000463 materials Substances 0 description 16
- 239000011797 cavity materials Substances 0 description 9
- 229910000831 Steel Inorganic materials 0 description 8
- 239000002131 composite material Substances 0 description 7
- 238000004378 air conditioning Methods 0 description 5
- 239000011152 fibreglass Substances 0 description 5
- 238000000034 methods Methods 0 description 5
- 229920002223 polystyrenes Polymers 0 description 5
- 239000011378 shotcrete Substances 0 description 5
- 238000005452 bending Methods 0 description 4
- 239000002184 metal Substances 0 description 4
- 229910052751 metals Inorganic materials 0 description 4
- 239000011505 plaster Substances 0 description 4
- 238000009415 formwork Methods 0 description 3
- 230000001965 increased Effects 0 description 3
- 239000008261 styrofoam Substances 0 description 3
- 239000004793 Polystyrene Substances 0 description 2
- 238000004089 heat treatment Methods 0 description 2
- 239000002991 molded plastic Substances 0 description 2
- 230000001264 neutralization Effects 0 description 2
- 239000004814 polyurethane Substances 0 description 2
- 229920002635 polyurethanes Polymers 0 description 2
- 229910001868 water Inorganic materials 0 description 2
- 238000007792 addition Methods 0 description 1
- 238000004026 adhesive bonding Methods 0 description 1
- 238000009739 binding Methods 0 description 1
- 230000027455 binding Effects 0 description 1
- 239000011248 coating agents Substances 0 description 1
- 238000000576 coating method Methods 0 description 1
- 239000004035 construction material Substances 0 description 1
- 230000001419 dependent Effects 0 description 1
- 230000000694 effects Effects 0 description 1
- 239000004794 expanded polystyrene Substances 0 description 1
- 239000011519 fill dirt Substances 0 description 1
- 239000003063 flame retardant Substances 0 description 1
- 238000005187 foaming Methods 0 description 1
- 239000006260 foams Substances 0 description 1
- 230000002401 inhibitory effects Effects 0 description 1
- 238000004519 manufacturing process Methods 0 description 1
- 239000000615 nonconductor Substances 0 description 1
- 239000002984 plastic foam Substances 0 description 1
- 238000009428 plumbing Methods 0 description 1
- 230000001603 reducing Effects 0 description 1
- 238000006722 reduction reaction Methods 0 description 1
- 230000002787 reinforcement Effects 0 description 1
- 238000009436 residential construction Methods 0 description 1
- 230000000452 restraining Effects 0 description 1
- 239000000126 substances Substances 0 description 1
- 238000003466 welding Methods 0 description 1
- 239000002023 wood Substances 0 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/16—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
- E04B1/161—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, both being partially cast in situ
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/04—Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
Abstract
Description
This invention relates to structural systems formed by prefabricated components used in the manufacture of homes, buildings and other structures and, more particularly, to the eclectic combination of lightweight panel members, load bearing members and reinforcing members in achieving structural rigidity.
With increasing emphasis on the need to provide low cost energy efficient housing and buildings, utilization of expanded plastic material and panels for insulation is becoming more prevalent. Such plastic materials are generally applied to conventional construction, or prefabricated in the form of lightweight composite panels applied to conventional on-site or prefabricated structures, thereby generally increasing somewhat the cost of such construction.
Referring to conventional multifloor structures, these generally incorporate prefabricated panel elements as enclosure material or sheathing, the structure itself being erected in situ using standard structural sections or forming and pouring concrete around reinforcing steel to form reinforced concrete structural elements.
Prefabricated expanded plastic material is also presently used as a filler between sheet metal surfaces, plane or corrugated, affixed to opposing sides of the plastic. Although this solution provides, if properly installed, both required rigidity and thermal properties, it is not particularly applicable to residential construction. The general use of the prefabricated plastic panel or sheet is therefore presently confined to thermal applications and reduction of energy costs, and has done little or nothing to lower initial construction costs. Conventional structural costs may even be increased as a result of accommodating these prefabricated elements to achieve thermal energy savings.
The foregoing problems and shortcomings of the prior art have been carefully considered and effectively solved in accordance with the present invention. A site is prepared and a grade beam constructed. The top of the grade beam is finished to floor level. At intervals, reinforcing rods are anchored to foundations poured integrally with the grade beam. Alternately, plastic or steel I-beam columns may be erected and anchored to the foundations.
A plurality of prefabricated panels are then assembled at the job site. These panels are manufactured so as to be lightweight for easy handling, and of dimensions such as to form standard building wall and roof components for any selected type structure. Panels will be composed of an expanded plastic material, such as polystyrene, polyurethane, or similar material, and may contain fire retardant chemicals if required. Each panel may be delivered as one piece, or several pieces joined together on site to achieve any required dimension. Joining the panels may be achieved by gluing or or bonding together, or pins and splines may be used, separately or in conjunction with the bonding process. Panels may contain a mesh of plastic or metal affixed to one or both sides, or such mesh may be applied following erection on site.
Each wall panel will contain edge contours which will surround the previously located reinforcing steel, or steel or plastic I-beams, allowing columns to form an integral structure together with the panels following pneumatic or manual application of the concrete or plaster later applied to the panel surfaces. The concrete or plaster will also incorporate a mesh, which if used, is firmly affixed to the reinforcing steel or to the flanges of the plastic or steel I-beams.
Following setting of the applied or poured concrete, the panel wall units revert to insulation members only, and may even be removed, leaving in place reinforced concrete columns at intervals equivalent to the width of the plastic panels.
The reinforcing mesh may be affixed to one, two or no sides of each panel, and mesh placed on both sides of any panel may be joined by wire inserted through any panel prior to application of the concrete and/or plaster wall covering.
Prefabricated intermediate floor panels or roof sections are assembled and placed similarly to and following erection of the wall panels. In each case, a perimeter beam is poured together with the floor or roof concrete covering. This covering is applied following erection, and a steel mesh is included over the entire roof or floor section, which mesh is first tied or welded to both the column reinforcing steel and to the perimeter beam reinforcing steel so as to achieve a complete reinforced concrete structure which firmly joins all elements together. In the case of the steel beam column, this column must also be firmly fastened to the mesh as well as to the perimeter reinforcing steel so as to achieve the same result.
The intermediate floor panels will have beams at intervals, which beams will be perpendicular to the perimeter beam, and the steel for which is joined to the perimeter beam steel prior to pouring of the concrete. As is the case with the wall panels, following curing of the concrete, the plastic will revert to a sound and thermal insulator only, and the reinforced concrete beams and slab will absorb any applied loading. The plastic underside will also serve as a flat surface to which ceiling finish of the lower floor may be applied. Curved shapes and other contours may also be used, if required, on the underside of the intermediate floor panels.
Roof panels will be assembled and installed similarly to the intermediate floor panels, except that the longitudinal beams perpendicular to the perimeter beams may not be required, dependent upon the selected span. The roof panels will include, however, a cut-out on either side so as to enable pouring and joining the upper portion of each lateral column with the perimeter beam, following joining of all reinforcing steel and mesh required for completing the structure.
For roof panels, the plastic material will be utilized not only as a form to enable the pouring of the roof slab, but also as a structural component composite section formed by reinforced concrete on top, and expanded plastic below. For long spans, a third tensile member may be incorporated, such a member being a mesh incorporated into the bottom of the plastic material, or applied to and firmly affixed to or near the underside of the plastic material. This tensile member may also be a fiberglass mat affixed to the underside of the expanded plastic.
The entire plastic panel erection may be accomplished prior to pouring or placing any concrete, or the assembly of the building may be phased, depending upon the geometry of the completed structure.
The concrete may be poured or placed pneumatically, and all columns and beams covered, once joining of the mesh elements and reinforcing steel has been completed. A combination of pouring of certain areas and manual or pneumatic concrete placement of others may also be accomplished. For pneumatic placement and completing of structural elements, gunite or Shotcrete may be used. Gunite and Shotcrete are two processes for pneumatically applying high density, low water concrete which cures to a very high strength such as from 5,000 to 8,000 PSI.
The process allows completion of a structure with a minimum of labor intensive formwork, and will result in a great economy in construction. In addition, the thermal and acoustic properties of the plastic panels will result in an energy efficient, sound proof and low cost construction solution.
Electrical, plumbing, and HVAC (i.e., heating, ventilating and air conditioning) problems are also easily accommodated by the process. Channels and ducts may be molded into the panels prior to erection, or cut into the plastic following erection. These services may also be partially accommodated in the floor slab which may be poured following building erection.
The HVAC ducting may be installed in the eave overhang of the roof panels so as not to interfere with the structural characteristics of the composite roof panel, and connected to the interior of the strucutre via openings left or cut into the wall panels between the columns and beneath the perimeter beam formed into the roof panels.
The inherent advantages and improvements of the present invention will become more readily apparent upon reference to the following detailed description of the invention and by reference to the drawings wherein:
FIG. 1 is a fragmentary top plan view of a wall structure made in accordance with the present invention, taken in horizontal cross section;
FIG. 1a is a fragmentary elevational view, drawn to an enlarged scale, showing a detail of FIG. 1;
FIG. 2 is a front elevational view of the wall structure of FIG. 1;
FIG. 3 is an elevational view taken in vertical cross section along the line 3--3 of FIG. 2;
FIG. 4 is a fragmentary top plan view of another embodiment of the present invention;
FIG. 5 is an elevational view taken in vertical cross section along line 5--5 of FIG. 4;
FIG. 6 is a fragmentary perspective view of a building made in accordance with the present invention taken partially in cross section and with portions broken away and all roof and intermediate floor plastic removed;
FIG. 7 is a fragmentary elevational view illustrating another embodiment of the present invention and taken in vertical cross section;
FIG. 8 is an elevational view taken in vertical cross section illustrating a variant for multifloor construction of the embodiment of FIG. 7;
FIG. 9 is a top plan view of the construction of FIG. 8 with portions broken away;
FIG. 10 is an elevational view taken in vertical cross section along the line 10--10 of FIG. 9;
FIG. 11 is a fragmentary plan view taken in horizontal cross section of another embodiment of the invention;
FIG. 12 is a fragmentary plan view taken in horizontal cross section of a further embodiment of the invention;
FIG. 12a is a fragmentary plan view, taken in horizontal cross section, of another embodiment of the invention;
FIG. 13 is a fragmentary perspective view illustrating another form of panel construction;
FIG. 14 is a fragmentary perspective view illustrating still another form of panel construction;
FIG. 15 is a fragmentary elevational view taken in vertical cross section of one embodiment of a roof panel material; and
FIG. 16 is a fragmentary elevational view taken in vertical cross section of another embodiment of a roof panel material.
Referring now to FIG. 1 of the drawings, there is illustrated a wall section, indicated generally at 20, for a building structure. FIG. 1 illustrates individual panel members by the general designation 22 each of which is provided with a plastic core 24, an optional outer wall mesh member 26 plus an optional inner wall mesh member 28. Mesh members 26, 28 may be fixedly secured to each other through the plastic core 24 or hung on the plastic core 24 by suitable hooks, not shown, and are also optionally secured to the I-beam flanges by welding or other means. Following erection and placement of the mesh, a concrete 29 or plastic 31 or other coating is applied manually or pneumatically to the mesh covered surfaces of the panel as seen in FIG. 1a. These materials bond firmly to the plastic material and to the mesh, allowing then a structural member of great strength to be formed.
Vertically disposed I-beams are indicated generally at 30 thereby providing a vertical column. These I-beams 30 are preferably regularly spaced along wall section 20. The I-beams are secured to a suitable foundation or concrete slab 32 in conventional manner. The I-beams themselves include end flange members 34 which separate optional adjacent mesh members 26 from and along the outer wall and adjacent optional mesh members 28 from and along the inner walls. This lifting of the mesh away from the wall places the mesh 26 and 28 in the best position for reinforcing the coatings to be applied to the surfaces. A central or interconnecting web member 36 carries the end flange members.
As can be seen in both FIGS. 2 and 3, a horizontally disposed I-beam 38 is affixed to the columnar I-beams 30 in the plane of wall section 20 and on top of a plate member along the upper wall of the wall section. The columnar I-beams 30 and the horizontal I-beams 38 may be metallic, but could also be made of fiberglass, concrete, or wood in any combination. Alternately, the I-beams could be replaced by square or rectangular wooden or plastic or metallic building shapes.
FIG. 3 also illustrates a roof panel member indicated generally at 40. Roof panel member 40 is provided with a central plastic core 42, an upper or outer mesh member 44 and an optional lower or inner mesh member 46. A truncated optional panel member indicated generally at 48 provides an overhang for the roof. The truncated panel member 48 may be provided with an upstanding or elevated end lip member 50 and elevated side lip members 52 with these lip members provided on at least three sides of the roof structure so as to provide restraining means for a layer of concrete which is poured atop the upper surface of the roof panel member 40. While roof panel member 40 is generally provided with straight sides, it may be tapered as in the roof panel members illustrated in FIG. 5. Thus, it will be seen that the roof panel members may taper inwardly as the panel structure approaches an apex of the roof structure.
FIGS. 4 and 5 illustrate a modified form of the individual panel members and is designated 22a in FIG. 5. In FIG. 4 a reinforced concrete column member is indicated generally at 54 which is in the plane of wall section 20. The panel member 22a is provided with a longitudinally extending groove 56 so as to receive reinforced concrete therein. The reinforced concrete in groove 56 establishes a perimeter beam for the structure extending around the four sides thereof. The pouring of the concrete on an in situ basis is effected prior to placement of the roof panel members 40a, or following placement of the roof panel members 40a, with the aid of a plurality of apertures 58 which provide conduits for the concrete that provides a layer thereof atop the roof panel members designated 40a in FIGS. 4 and 5. These apertures 58 extend entirely through the roof panel members 40a. Optionally, the panel members 40a may be provided with an air conditioning duct 51 and an optional soffit member 53. FIG. 7 also shows an air conditioning duct 51, soffit member 53 and a grill member 55. With the ducts for heating, ventilating and air conditioning located outside the enclosed perimeter of the house, these ducts may be brought into communication with the inside of the house by openings cut through the perimeter walls.
As can also be seen in FIGS. 4, 8 and 9, roof members 48a and intermediate floor panel members 40a may be also provided with longitudinally extending channels 60 to receive reinforced concrete therein. For relatively short spans, the channel 60 is not required, the concrete and the plastic forming a composite beam. Additionally, as will be observed in FIGS. 9 and 10, at least one laterally extending conduit 62 is provided in fluid communication with the longitudinally extending channel means 60, and the columns 54, and is poured together with the extension of the reinforced column 54, joining together the entire structure. Preferably, a laterally extending conduit such as is illustrated at 62 is provided at opposite ends of the roof panel member 40a. While the reinforced conduit itself is not illustrated in FIGS. 4 and 5, it is illustrated in FIGS. 8-10 at 64.
Reference to FIG. 6 illustrates a typical building manufactured in accordance with the present invention. As is illustrated, the invention is applicable to multi-story buildings as well as to single story buildings. This figure illustrates the general relationship between the reinforced concrete column members 54 and the reception of individual panel members 22 therebetween. The building illustrates optional tapered rafters 66 with the roof panel members removed for purposes of clarity. The tapered rafters are not required for short spans, and, if employed, may be tapered or parallel sided. The specific construction for the peak of the building is not critical insofar as the present invention is concerned and may be effected in any conventional manner, with or without a reinforced concrete ridge beam 89.
Referring now to FIGS. 11 and 12, there are illustrated two methods of forming the concrete column members 54. In the FIG. 11 embodiment, two molded panel members 22b having top and bottom major surfaces, are provided with cooperating corner grooves which extend for the height of the panel members 22b. The panel members are abutted so as to align the cooperating corner grooves or notches 68 and the previously installed and anchored reinforcing by vertical rebars 90, and establish at least a major portion of a mold cavity. The mold cavity in this instance may be completed by straddling the adjacent grooves of the abutting panel members with a temporary form member 70 to complete the mold cavity, then pouring the concrete into the cavity so as to form a concrete column and permanently establish a portion of a wall with the abutting panel members of the concrete column. Or, following attachment of the outer mesh 26 to the appropriately located vertical rebar 90, the cavity formed may be filled with gunite at the same time that surface 22b is concreted over mesh 26, binding the entire structure. Alternatively, the panel members 22b may be removed and other panel members supplied.
In the embodiment of FIG. 12, cooperating longitudinal grooves 72 are provided in the sides of panel members 22c between the top and bottom major surfaces thereof so as to complete the mold cavity for reception of concrete. The cavity will be formed around previously placed and anchored vertical rebars 90, following which the concrete is poured or tremied into the mold cavity. Again it is possible either to leave the panel members 22c in place forming a permanent portion of a wall or to remove the panel members 22c and utilize other panel members. The rebar should be previously located so that the mesh can be attached prior to the guniting or plastering of the outer vertical wall sections, thereby joining the entire structure when the column and the vertical wall surfaces are gunited.
In the embodiment of FIG. 12a, the panel members are not provided with end grooves. Instead the panels are positioned a distance apart equal to the width of the vertical column members and a temporary formwork 70 spans the gap in the rear between the adjacent panels. The rebars 90 are placed in position and the mesh in front of the panels is secured to the reinforcing rebars. The column member is then formed by guniting through the mesh to fill the cavity. After the reinforced concrete hardens, the temporary form member 70 is removed.
Returning now to the illustration in FIG. 8, the reinforced concrete column members 54 illustrated in this figure may be formed by either of the methods illustrated in FIGS. 11 and 12 after which the concrete is poured atop the flat roof or intermediate floor panel members 40a at the same time filling the optional longitudinally extending channels 60. The laterally extending channel or conduit 62 flowing into the area designated 64a immediately above columns 54 are filled at the same time, firmly joining the conduit 62 to the columns 54.
FIG. 13 illustrates a core structure 22d for a modular panel member which comprises a heat insulating plastic member 24 which is molded with top and bottom major surfaces and which has a rigid strip member 76 embedded therewithin. The rigid strip member 76 is provided with substantially V-shaped corrugations which have ridges substantially coincident with the top major surface of the molded plastic core 24 and troughs which are substantially coincident with the bottom major surface of plastic core 24. To facilitate the foaming of the molded plastic core 24, the rigid strip member 76 may also be provided with a plurality of apertures 77, either randomly or regularly placed. While the reinforcement provided by rigid strip member 76 will prevent bending about one axis, in order to prevent bending at 90 degrees thereto, the rigid strip member 76 is provided with slots 78 at a plurality of locations so as to provide parallel lines of slots which then receive a plurality of tension members 80 thereby inhibiting bending about two plans 90 degrees with respect to each other. While the drawing depicts the deposition of a plurality of tension members 80 in the ridges of the rigid strip member 76, it is also possible to provide a similar set of tension members 80 in the troughs of the rigid strip member 76. Tension members may be rods, wires, fiberglass, or plastic.
FIG. 14 illustrates another core structure for a modular panel member designated 22e. In this panel member a heat insulating plastic member 24 is molded with parallel top and bottom major surfaces and a honeycomb member indicated generally at 82 is embedded therewithin. The honeycomb member 82 has cell members which extend between the top and bottom major surfaces of the heat insulating plastic member 24 and an optional frame means 84 may extend around the sides and ends of the core structure, or may be placed within the perimeter of the plastic core rectangle, thereby forming framed openings for doors and windows.
FIGS. 15 and 16 illustrate two preferred building panels for roof structures. In both embodiments a core construction of styrofoam or similar core material is illustrated at 24 and a thin layer of reinforced concrete 64 is applied atop the styrofoam core. In both embodiments a relatively thin tensile member is secured to the bottom of the styrofoam core. In the FIG. 15 embodiment, the relatively thin tensile member is a metal mesh member 46 and in the FIG. 16 embodiment, the relatively thin tensile member is fiberglass. The tensile members may be then covered with plaster or concrete, forming a composite beam type structure.
The panel members of the present invention permit all openings to be either cast in or cut in either before or after the covering operations. Provisions may be made for air conditioning and other duct work including electrical conduit raceways or other devices for inserting electrical cables or the like. The panels may also be ducted for water and sewer connection.
As is generally known, composite structure are employed in many different ways in the construction process. The foregoing deals with a non-conventional application of construction materials, and in particular with the utilization of expanded polystyrene (or polyurethane or similar), which serves not only as a formwork to receive a deck or wall or roof slab, but also serves to cooperate with a concrete or reinforced concrete slab to resist externally applied loads. Finally, the same expanded plastic foam couplies as an insulating thermal material of superior quality.
In the function of cooperating to resist an externally applied load, the material when joined to a reinforced concrete slab which absorbs compressive forces, assists in achieving longer spans than would be the case without the foam.
The resistance of the reinforced concrete slab above would be calculated by the formula:
σ=(My/I);
where
σ=Force
M=Bending moment
y=Distance from the neutral axis
I=Moment of inertia with respect to the neutral axis.
In the case of the composite section the same formula would apply, but considering that the upper reinforced concrete section may now be multiplied by a factor n:
n=(Ec/Ep)
where
Ec=Modulus of elasticity of the concrete
Ep=Modulus of elasticity of the plastic material.
In the particular case of the roof of a building, if the polystyrene thickness is three or five times the thickness of the reinforced concrete roof slab, the factor n will allow much longer clear spans than would be the case without the plastic over which the slab is poured.
The addition of a tension member at the bottom of the slab greatly increases this effect. The tension member could be a steel or plastic mesh located at the bottom of the plastic section, or could be metal, fiberglass, or similar strands applied to the bottom of the plastic, as long as a firm adherance is achieved.
While presently preferred embodiments of the inventions have been illustrated and described, it will be recognized that the invention may be otherwise variously embodied and practiced within the scope of the claims which follow.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/751,808 US4625484A (en) | 1985-07-05 | 1985-07-05 | Structural systems and components |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/751,808 US4625484A (en) | 1985-07-05 | 1985-07-05 | Structural systems and components |
CA000511809A CA1276422C (en) | 1985-07-05 | 1986-06-18 | Structural systems and components |
DE8686305235A DE3678759D1 (en) | 1985-07-05 | 1986-07-07 | Gebaeudekonstruktionen of reinforced concrete. |
AT86305235T AT62722T (en) | 1985-07-05 | 1986-07-07 | Gebaeudekonstruktionen of reinforced concrete. |
EP86305235A EP0208529B1 (en) | 1985-07-05 | 1986-07-07 | Reinforced-concrete building structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US4625484A true US4625484A (en) | 1986-12-02 |
Family
ID=25023569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/751,808 Expired - Fee Related US4625484A (en) | 1985-07-05 | 1985-07-05 | Structural systems and components |
Country Status (5)
Country | Link |
---|---|
US (1) | US4625484A (en) |
EP (1) | EP0208529B1 (en) |
AT (1) | AT62722T (en) |
CA (1) | CA1276422C (en) |
DE (1) | DE3678759D1 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4811770A (en) * | 1986-03-25 | 1989-03-14 | Rapp Albert B | Structural element for a building |
US4841702A (en) * | 1988-02-22 | 1989-06-27 | Huettemann Erik W | Insulated concrete building panels and method of making the same |
US4909001A (en) * | 1988-03-17 | 1990-03-20 | Gonzalez Espinosa De Los Monte | System of housing and building construction by means of prefabricated components |
EP0363544A1 (en) * | 1987-04-16 | 1990-04-18 | Thouraud Sa | Reinforced concrete modular structure for the construction of buildings |
US4942707A (en) * | 1988-02-22 | 1990-07-24 | Huettemann Erik W | Load-bearing roof or ceiling assembly made up of insulated concrete panels |
US5371990A (en) * | 1992-08-11 | 1994-12-13 | Salahuddin; Fareed-M. | Element based foam and concrete modular wall construction and method and apparatus therefor |
US5404685A (en) * | 1992-08-31 | 1995-04-11 | Collins; Dennis W. | Polystyrene foamed plastic wall apparatus and method of construction |
US5584151A (en) * | 1993-12-20 | 1996-12-17 | R.A.R. Consultants Ltd. | Earthquake, wind resistant and fire resistant pre-fabricated building panels and structures formed therefrom |
WO1997022770A1 (en) | 1995-12-20 | 1997-06-26 | Arthur Perrin | Prefabricated construction panels and modules for multistory buildings and method for their use |
US5737895A (en) * | 1995-12-20 | 1998-04-14 | Perrin; Arthur | Prefabricated construction panels and modules for multistory buildings and method for their use |
US5921046A (en) * | 1997-04-04 | 1999-07-13 | Recobond, Inc. | Prefabricated building system for walls, roofs, and floors using a foam core building panel and connectors |
US20020174608A1 (en) * | 1999-09-07 | 2002-11-28 | Rapisarda Joseph R. | Clean room facility and construction method |
WO2003008730A1 (en) * | 2001-07-17 | 2003-01-30 | Modul Hogar Inmobiliaria S.A. | Construction system with pre-fabricated panels having a metallic spatial structure |
US20030168775A1 (en) * | 2002-03-08 | 2003-09-11 | Ulrich Eberth | Method and apparatus for manufacturing a fiber reinforced synthetic composite structural element using fiber textile preforms |
US6622452B2 (en) | 1999-02-09 | 2003-09-23 | Energy Efficient Wall Systems, L.L.C. | Insulated concrete wall construction method and apparatus |
US20040006516A1 (en) * | 2002-07-05 | 2004-01-08 | Anjali Anagol-Subbarao | Architecture and method for order placement web service |
US6735914B2 (en) * | 2002-07-03 | 2004-05-18 | Peter J. Konopka | Load bearing wall |
US20040111989A1 (en) * | 2002-12-13 | 2004-06-17 | Housing Technology, Inc. | Method for interlocking molded building panels |
US20040231264A1 (en) * | 2003-05-23 | 2004-11-25 | Littleton Earl Raymond | Simple handle |
US20050055918A1 (en) * | 2003-08-14 | 2005-03-17 | York International Corporation | Roof panel construction for an air handling unit |
US6920729B2 (en) * | 2002-07-03 | 2005-07-26 | Peter J. Konopka | Composite wall tie |
EP1612344A1 (en) * | 2004-07-01 | 2006-01-04 | PIGAZZI RETI S.r.l. | System of electrowelded elements for the reinforcement of building products |
US7254925B2 (en) | 1999-02-09 | 2007-08-14 | Efficient Building Systems, L.L.C. | Insulated wall assembly |
US20070210522A1 (en) * | 2004-10-01 | 2007-09-13 | Halverson Michael D | Modular shooting range |
US20080008538A1 (en) * | 2005-05-05 | 2008-01-10 | Timdil, Inc. | Foundation system |
US7353642B1 (en) * | 1995-07-17 | 2008-04-08 | Jose Luis Henriquez | Concrete slab system with self-supported insulation |
US20080169380A1 (en) * | 2007-01-12 | 2008-07-17 | The Nordam Group, Inc. | Composite aircraft window frame |
US20080235565A1 (en) * | 2007-03-21 | 2008-09-25 | International Business Machines Corporation | System and Method for Reference Validation in Word Processor Documents |
US20080276568A1 (en) * | 2000-01-12 | 2008-11-13 | Atco Structures Inc. | Building structure and components thereof |
US20090070131A1 (en) * | 2005-12-29 | 2009-03-12 | Lin Chen | Standardized urban product |
US20100139177A1 (en) * | 2008-12-10 | 2010-06-10 | Stephen Llewellyn Simons | Perfect perch roofing system |
US20100225024A1 (en) * | 2009-03-04 | 2010-09-09 | Schock Bauteile Gmbh | Forming device and method for creating a recess when casting a part |
US7886651B2 (en) | 2004-11-02 | 2011-02-15 | Life Shield Engineering Systems, LLC | Shrapnel and projectile containment systems and equipment and methods for producing same |
US7967296B1 (en) | 2006-03-14 | 2011-06-28 | Sri Aquisition Corp. | Modular shooting system |
US8039102B1 (en) | 2007-01-16 | 2011-10-18 | Berry Plastics Corporation | Reinforced film for blast resistance protection |
WO2012009752A1 (en) * | 2010-07-21 | 2012-01-26 | Formcraft Pty Ltd | An insulating form |
US8245619B2 (en) | 2004-12-01 | 2012-08-21 | Life Shield Engineered Systems, Llc | Shrapnel and projectile containment systems and equipment and methods for producing same |
US8316613B2 (en) * | 2003-04-07 | 2012-11-27 | Life Shield Engineered Systems, Llc | Shrapnel containment system and method for producing same |
WO2013158152A1 (en) * | 2012-04-20 | 2013-10-24 | Spray Rock Llc | Composite concrete and framing system and method for building construction |
US8572900B1 (en) | 2010-01-22 | 2013-11-05 | Epic Metals Corporation | Decking having a removable rib |
US8590242B1 (en) * | 2009-03-04 | 2013-11-26 | Thomas J. Ogorchock | Insulated concrete wall |
US20150204067A1 (en) * | 2012-06-29 | 2015-07-23 | Wolfgang Adolf Binder | Building system and method |
US9738009B2 (en) | 2014-04-30 | 2017-08-22 | Bautex Systems, LLC | Methods and systems for the formation and use of reduced weight building blocks forms |
US9790406B2 (en) | 2011-10-17 | 2017-10-17 | Berry Plastics Corporation | Impact-resistant film |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102505838B (en) * | 2011-10-26 | 2014-06-04 | 广州市建筑置业有限公司 | Method for constructing multifunctional mass concrete framework |
CN103821366B (en) * | 2014-03-03 | 2016-02-10 | 永升建设集团有限公司 | Clear water concrete metope grooved stereo wood pattern decoration construction method |
CN107587659B (en) * | 2016-02-24 | 2019-06-28 | 乐王(上海)文化发展股份有限公司 | A kind of heat-insulating sound-insulating log cabin roof |
CN106320601B (en) * | 2016-08-22 | 2018-11-02 | 沈阳建筑大学 | Assembly concrete is whole without heat bridge board wall and its vertical connection method |
CN107587630A (en) * | 2017-09-05 | 2018-01-16 | 山东绿昱建筑科技有限公司 | A kind of lightweight aggregate partition wall and its with main body simultaneously construction technology |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2744042A (en) * | 1951-06-21 | 1956-05-01 | Goodyear Tire & Rubber | Laminated panels |
US2851873A (en) * | 1949-09-02 | 1958-09-16 | Wheeler-Nicholson Malcolm | Building construction |
US3310917A (en) * | 1964-04-13 | 1967-03-28 | Sam A Simon | Building construction and modular panels therefor |
US3315424A (en) * | 1963-09-20 | 1967-04-25 | Eugene S Smith | Building construction |
US3398491A (en) * | 1965-05-13 | 1968-08-27 | Henry N. Babcock | Building construction and method |
US3446692A (en) * | 1964-06-01 | 1969-05-27 | Pullman Inc | Insulated panel and method of making same |
US3458609A (en) * | 1966-01-06 | 1969-07-29 | Dow Chemical Co | Method and apparatus for preparing foamed plastic slabs |
US3677874A (en) * | 1970-03-24 | 1972-07-18 | Grace W R & Co | Insulation product and method |
US3803788A (en) * | 1968-06-19 | 1974-04-16 | P Artmann | Building construction and process for producing structural elements for such construction |
US3874139A (en) * | 1973-11-30 | 1975-04-01 | Edmund A Landwoski | Basement wall construction |
US3879908A (en) * | 1971-11-29 | 1975-04-29 | Victor P Weismann | Modular building panel |
US4006570A (en) * | 1974-04-01 | 1977-02-08 | Stolz Owen M | Wall structure and manufacturing method therefor |
US4015387A (en) * | 1973-08-30 | 1977-04-05 | Tramex S.A. | Prefabricated structural elements for partitions and walls of buildings and partitions and walls consisting of such elements |
US4038798A (en) * | 1975-03-05 | 1977-08-02 | U-Forms International, Inc. | Composite permanent block-form for reinforced concrete construction and method of making same |
US4047357A (en) * | 1974-09-03 | 1977-09-13 | Mulholland Stanley C | Roof structure of concrete edge-to-edge abutting panels and method of interconnecting same |
US4071984A (en) * | 1976-09-16 | 1978-02-07 | Kenneth Larrow | House assembly with prefabricated elements |
US4079560A (en) * | 1976-01-05 | 1978-03-21 | Victor Paul Weismann | Wire truss and apparatus for manufacturing a wire truss |
US4090340A (en) * | 1973-08-30 | 1978-05-23 | Otto Alfred Becker | Load bearing structural element |
US4140824A (en) * | 1975-11-19 | 1979-02-20 | Hunter Douglas International N.V. | Prefabricated wall panel |
US4187651A (en) * | 1976-07-15 | 1980-02-12 | Auke Tolsma | Method for manufacturing thermally insulated buildings, construction elements suitable for application in this method and a method of manufacturing the building construction elements |
US4226067A (en) * | 1977-12-05 | 1980-10-07 | Covington Brothers Building Systems, Inc. | Structural panel |
US4236361A (en) * | 1978-06-12 | 1980-12-02 | Joseph Boden | Prefabricated building components |
US4249354A (en) * | 1979-03-05 | 1981-02-10 | Wynn Gayle B | Reinforced insulated wall construction |
US4250670A (en) * | 1978-11-30 | 1981-02-17 | Larry Garner | Method and article for use in building construction |
US4253288A (en) * | 1979-07-13 | 1981-03-03 | Chun Joo H | Prefabricated wall panel |
US4288962A (en) * | 1979-02-27 | 1981-09-15 | Kavanaugh Harvey H | Method of forming structural walls and roofs |
US4297820A (en) * | 1977-12-05 | 1981-11-03 | Covington Brothers Technologies | Composite structural panel with multilayered reflective core |
US4336676A (en) * | 1977-12-05 | 1982-06-29 | Covington Brothers, Inc. | Composite structural panel with offset core |
US4340802A (en) * | 1977-12-05 | 1982-07-20 | Covington Brothers Technologies | Method and apparatus for welding |
US4342180A (en) * | 1980-02-11 | 1982-08-03 | Gibco International Corporation | Assembly method of constructing a building |
US4393636A (en) * | 1980-09-24 | 1983-07-19 | Rockstead Raymond H | Box beam reinforced concrete structure |
US4454702A (en) * | 1981-03-24 | 1984-06-19 | Bonilla Lugo Juan | Building construction and method of constructing same |
US4455793A (en) * | 1980-07-16 | 1984-06-26 | Franco Nania | Prefabricated building block and civil building composed of a plurality of such blocks assembled together |
US4486993A (en) * | 1977-04-08 | 1984-12-11 | Solarcrete Corporation | Building structure and method of construction |
US4486996A (en) * | 1982-05-19 | 1984-12-11 | Luis Alejos | Construction-panel prefabrication method, panels thus made and equipment for implementing said method |
US4489530A (en) * | 1981-12-23 | 1984-12-25 | Chi Ming Chang | Sandwich wall structure and the method for constructing the same |
US4505019A (en) * | 1983-03-02 | 1985-03-19 | Deinzer Dietrich F | Method of forming construction panel |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2914920A1 (en) * | 1978-04-19 | 1979-10-31 | Kurt Ing Beranek | Light concrete prefabricated wall section - has horizontal reinforcing bars and protruding top batten of ceiling thickness (OE 15.7.79) |
IL40245D0 (en) * | 1971-09-20 | 1972-10-29 | Co Data Corp | Building construction |
BG23127A1 (en) * | 1976-04-28 | 1979-12-12 | Penev | Combinated building system, method and apparatus for its realising |
CH625297A5 (en) * | 1977-08-22 | 1981-09-15 | Lc Housing Corp Ag | Set of structural elements for a building |
FR2501264B1 (en) * | 1981-03-04 | 1985-01-04 | Milh Alfred Henri |
-
1985
- 1985-07-05 US US06/751,808 patent/US4625484A/en not_active Expired - Fee Related
-
1986
- 1986-06-18 CA CA000511809A patent/CA1276422C/en not_active Expired - Fee Related
- 1986-07-07 AT AT86305235T patent/AT62722T/en not_active IP Right Cessation
- 1986-07-07 DE DE8686305235A patent/DE3678759D1/en not_active Expired - Fee Related
- 1986-07-07 EP EP86305235A patent/EP0208529B1/en not_active Expired - Lifetime
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2851873A (en) * | 1949-09-02 | 1958-09-16 | Wheeler-Nicholson Malcolm | Building construction |
US2744042A (en) * | 1951-06-21 | 1956-05-01 | Goodyear Tire & Rubber | Laminated panels |
US3315424A (en) * | 1963-09-20 | 1967-04-25 | Eugene S Smith | Building construction |
US3310917A (en) * | 1964-04-13 | 1967-03-28 | Sam A Simon | Building construction and modular panels therefor |
US3446692A (en) * | 1964-06-01 | 1969-05-27 | Pullman Inc | Insulated panel and method of making same |
US3398491A (en) * | 1965-05-13 | 1968-08-27 | Henry N. Babcock | Building construction and method |
US3458609A (en) * | 1966-01-06 | 1969-07-29 | Dow Chemical Co | Method and apparatus for preparing foamed plastic slabs |
US3803788A (en) * | 1968-06-19 | 1974-04-16 | P Artmann | Building construction and process for producing structural elements for such construction |
US3677874A (en) * | 1970-03-24 | 1972-07-18 | Grace W R & Co | Insulation product and method |
US3879908A (en) * | 1971-11-29 | 1975-04-29 | Victor P Weismann | Modular building panel |
US4090340A (en) * | 1973-08-30 | 1978-05-23 | Otto Alfred Becker | Load bearing structural element |
US4015387A (en) * | 1973-08-30 | 1977-04-05 | Tramex S.A. | Prefabricated structural elements for partitions and walls of buildings and partitions and walls consisting of such elements |
US3874139A (en) * | 1973-11-30 | 1975-04-01 | Edmund A Landwoski | Basement wall construction |
US4006570A (en) * | 1974-04-01 | 1977-02-08 | Stolz Owen M | Wall structure and manufacturing method therefor |
US4047357A (en) * | 1974-09-03 | 1977-09-13 | Mulholland Stanley C | Roof structure of concrete edge-to-edge abutting panels and method of interconnecting same |
US4038798A (en) * | 1975-03-05 | 1977-08-02 | U-Forms International, Inc. | Composite permanent block-form for reinforced concrete construction and method of making same |
US4140824A (en) * | 1975-11-19 | 1979-02-20 | Hunter Douglas International N.V. | Prefabricated wall panel |
US4079560A (en) * | 1976-01-05 | 1978-03-21 | Victor Paul Weismann | Wire truss and apparatus for manufacturing a wire truss |
US4187651A (en) * | 1976-07-15 | 1980-02-12 | Auke Tolsma | Method for manufacturing thermally insulated buildings, construction elements suitable for application in this method and a method of manufacturing the building construction elements |
US4071984A (en) * | 1976-09-16 | 1978-02-07 | Kenneth Larrow | House assembly with prefabricated elements |
US4486993A (en) * | 1977-04-08 | 1984-12-11 | Solarcrete Corporation | Building structure and method of construction |
US4226067A (en) * | 1977-12-05 | 1980-10-07 | Covington Brothers Building Systems, Inc. | Structural panel |
US4340802A (en) * | 1977-12-05 | 1982-07-20 | Covington Brothers Technologies | Method and apparatus for welding |
US4297820A (en) * | 1977-12-05 | 1981-11-03 | Covington Brothers Technologies | Composite structural panel with multilayered reflective core |
US4336676A (en) * | 1977-12-05 | 1982-06-29 | Covington Brothers, Inc. | Composite structural panel with offset core |
US4236361A (en) * | 1978-06-12 | 1980-12-02 | Joseph Boden | Prefabricated building components |
US4250670A (en) * | 1978-11-30 | 1981-02-17 | Larry Garner | Method and article for use in building construction |
US4288962A (en) * | 1979-02-27 | 1981-09-15 | Kavanaugh Harvey H | Method of forming structural walls and roofs |
US4249354A (en) * | 1979-03-05 | 1981-02-10 | Wynn Gayle B | Reinforced insulated wall construction |
US4253288A (en) * | 1979-07-13 | 1981-03-03 | Chun Joo H | Prefabricated wall panel |
US4342180A (en) * | 1980-02-11 | 1982-08-03 | Gibco International Corporation | Assembly method of constructing a building |
US4455793A (en) * | 1980-07-16 | 1984-06-26 | Franco Nania | Prefabricated building block and civil building composed of a plurality of such blocks assembled together |
US4393636A (en) * | 1980-09-24 | 1983-07-19 | Rockstead Raymond H | Box beam reinforced concrete structure |
US4454702A (en) * | 1981-03-24 | 1984-06-19 | Bonilla Lugo Juan | Building construction and method of constructing same |
US4489530A (en) * | 1981-12-23 | 1984-12-25 | Chi Ming Chang | Sandwich wall structure and the method for constructing the same |
US4486996A (en) * | 1982-05-19 | 1984-12-11 | Luis Alejos | Construction-panel prefabrication method, panels thus made and equipment for implementing said method |
US4505019A (en) * | 1983-03-02 | 1985-03-19 | Deinzer Dietrich F | Method of forming construction panel |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4811770A (en) * | 1986-03-25 | 1989-03-14 | Rapp Albert B | Structural element for a building |
EP0363544A1 (en) * | 1987-04-16 | 1990-04-18 | Thouraud Sa | Reinforced concrete modular structure for the construction of buildings |
US4841702A (en) * | 1988-02-22 | 1989-06-27 | Huettemann Erik W | Insulated concrete building panels and method of making the same |
US4942707A (en) * | 1988-02-22 | 1990-07-24 | Huettemann Erik W | Load-bearing roof or ceiling assembly made up of insulated concrete panels |
US4909001A (en) * | 1988-03-17 | 1990-03-20 | Gonzalez Espinosa De Los Monte | System of housing and building construction by means of prefabricated components |
US5371990A (en) * | 1992-08-11 | 1994-12-13 | Salahuddin; Fareed-M. | Element based foam and concrete modular wall construction and method and apparatus therefor |
US5697196A (en) * | 1992-08-11 | 1997-12-16 | Unique Development Corporation | Element based foam and concrete wall construction and method and apparatus therefor |
US5404685A (en) * | 1992-08-31 | 1995-04-11 | Collins; Dennis W. | Polystyrene foamed plastic wall apparatus and method of construction |
US5785904A (en) * | 1993-12-20 | 1998-07-28 | R.A.R. Consultants Ltd. | Method of securing and architectural finish element to a surface |
US5584151A (en) * | 1993-12-20 | 1996-12-17 | R.A.R. Consultants Ltd. | Earthquake, wind resistant and fire resistant pre-fabricated building panels and structures formed therefrom |
US5862639A (en) * | 1993-12-20 | 1999-01-26 | R.A.R. Consultants Ltd. | Earthquake, wind resistant and fire resistant pre-fabricated building panels and structures formed therefrom |
US7353642B1 (en) * | 1995-07-17 | 2008-04-08 | Jose Luis Henriquez | Concrete slab system with self-supported insulation |
EA000200B1 (en) * | 1995-12-20 | 1998-12-24 | Артур Перрин | Prefabricated construction panels and modules for multistory buildings and methods for their use |
US5737895A (en) * | 1995-12-20 | 1998-04-14 | Perrin; Arthur | Prefabricated construction panels and modules for multistory buildings and method for their use |
US5867964A (en) * | 1995-12-20 | 1999-02-09 | Perrin; Arthur | Prefabricated construction panels and modules for multistory buildings and method for their use |
WO1997022770A1 (en) | 1995-12-20 | 1997-06-26 | Arthur Perrin | Prefabricated construction panels and modules for multistory buildings and method for their use |
US5921046A (en) * | 1997-04-04 | 1999-07-13 | Recobond, Inc. | Prefabricated building system for walls, roofs, and floors using a foam core building panel and connectors |
US6305142B1 (en) * | 1997-04-04 | 2001-10-23 | Recobond, Inc. | Apparatus and method for installing prefabricated building system for walls roofs and floors using a foam core building pane |
US6622452B2 (en) | 1999-02-09 | 2003-09-23 | Energy Efficient Wall Systems, L.L.C. | Insulated concrete wall construction method and apparatus |
US7254925B2 (en) | 1999-02-09 | 2007-08-14 | Efficient Building Systems, L.L.C. | Insulated wall assembly |
US20070210237A1 (en) * | 1999-02-09 | 2007-09-13 | Oscar Stefanutti | Insulated wall assembly |
US20020174608A1 (en) * | 1999-09-07 | 2002-11-28 | Rapisarda Joseph R. | Clean room facility and construction method |
US7083515B2 (en) * | 1999-09-07 | 2006-08-01 | Speedfam-Ipec Corporation | Clean room facility and construction method |
US20080276568A1 (en) * | 2000-01-12 | 2008-11-13 | Atco Structures Inc. | Building structure and components thereof |
WO2003008730A1 (en) * | 2001-07-17 | 2003-01-30 | Modul Hogar Inmobiliaria S.A. | Construction system with pre-fabricated panels having a metallic spatial structure |
US20030168775A1 (en) * | 2002-03-08 | 2003-09-11 | Ulrich Eberth | Method and apparatus for manufacturing a fiber reinforced synthetic composite structural element using fiber textile preforms |
US7175795B2 (en) * | 2002-03-08 | 2007-02-13 | Airbus Deutschland Gmbh | Method for manufacturing a fiber reinforced synthetic composite structural element using fiber textile preforms |
US6920729B2 (en) * | 2002-07-03 | 2005-07-26 | Peter J. Konopka | Composite wall tie |
US6735914B2 (en) * | 2002-07-03 | 2004-05-18 | Peter J. Konopka | Load bearing wall |
US20040006516A1 (en) * | 2002-07-05 | 2004-01-08 | Anjali Anagol-Subbarao | Architecture and method for order placement web service |
US20040111989A1 (en) * | 2002-12-13 | 2004-06-17 | Housing Technology, Inc. | Method for interlocking molded building panels |
US8316613B2 (en) * | 2003-04-07 | 2012-11-27 | Life Shield Engineered Systems, Llc | Shrapnel containment system and method for producing same |
US8713865B2 (en) | 2003-04-07 | 2014-05-06 | Life Shield Engineered Systems, Llc | Shrapnel containment system and method for producing same |
US20040231264A1 (en) * | 2003-05-23 | 2004-11-25 | Littleton Earl Raymond | Simple handle |
US20050055918A1 (en) * | 2003-08-14 | 2005-03-17 | York International Corporation | Roof panel construction for an air handling unit |
EP1612344A1 (en) * | 2004-07-01 | 2006-01-04 | PIGAZZI RETI S.r.l. | System of electrowelded elements for the reinforcement of building products |
US7357394B2 (en) | 2004-10-01 | 2008-04-15 | Sri Acquisition Corp. | Modular shooting range |
US7909331B2 (en) | 2004-10-01 | 2011-03-22 | Sri Aquisition Corp. | Modular shooting range |
US20070210522A1 (en) * | 2004-10-01 | 2007-09-13 | Halverson Michael D | Modular shooting range |
US20080302026A1 (en) * | 2004-10-01 | 2008-12-11 | Sri Aquisition Corp. | Modular shooting range |
US8151687B2 (en) | 2004-11-02 | 2012-04-10 | Life Shield Engineered Systems, Llc | Shrapnel and projectile containment systems and equipment and methods for producing same |
US7886651B2 (en) | 2004-11-02 | 2011-02-15 | Life Shield Engineering Systems, LLC | Shrapnel and projectile containment systems and equipment and methods for producing same |
US8245619B2 (en) | 2004-12-01 | 2012-08-21 | Life Shield Engineered Systems, Llc | Shrapnel and projectile containment systems and equipment and methods for producing same |
US20080008538A1 (en) * | 2005-05-05 | 2008-01-10 | Timdil, Inc. | Foundation system |
US20090070131A1 (en) * | 2005-12-29 | 2009-03-12 | Lin Chen | Standardized urban product |
US7967296B1 (en) | 2006-03-14 | 2011-06-28 | Sri Aquisition Corp. | Modular shooting system |
US7988094B2 (en) | 2007-01-12 | 2011-08-02 | Scott Ernest Ostrem | Aircraft window erosion shield |
US20080169381A1 (en) * | 2007-01-12 | 2008-07-17 | The Nordam Group, Inc. | Aircraft window erosion shield |
US20080169380A1 (en) * | 2007-01-12 | 2008-07-17 | The Nordam Group, Inc. | Composite aircraft window frame |
US8039102B1 (en) | 2007-01-16 | 2011-10-18 | Berry Plastics Corporation | Reinforced film for blast resistance protection |
US20080235565A1 (en) * | 2007-03-21 | 2008-09-25 | International Business Machines Corporation | System and Method for Reference Validation in Word Processor Documents |
US20100139177A1 (en) * | 2008-12-10 | 2010-06-10 | Stephen Llewellyn Simons | Perfect perch roofing system |
US7905062B2 (en) * | 2008-12-10 | 2011-03-15 | Stephen Llewellyn Simons | Perfect perch roofing system |
US20100225024A1 (en) * | 2009-03-04 | 2010-09-09 | Schock Bauteile Gmbh | Forming device and method for creating a recess when casting a part |
US8590242B1 (en) * | 2009-03-04 | 2013-11-26 | Thomas J. Ogorchock | Insulated concrete wall |
US8572900B1 (en) | 2010-01-22 | 2013-11-05 | Epic Metals Corporation | Decking having a removable rib |
WO2012009752A1 (en) * | 2010-07-21 | 2012-01-26 | Formcraft Pty Ltd | An insulating form |
US9790406B2 (en) | 2011-10-17 | 2017-10-17 | Berry Plastics Corporation | Impact-resistant film |
WO2013158152A1 (en) * | 2012-04-20 | 2013-10-24 | Spray Rock Llc | Composite concrete and framing system and method for building construction |
US20150204067A1 (en) * | 2012-06-29 | 2015-07-23 | Wolfgang Adolf Binder | Building system and method |
US9993941B2 (en) | 2014-04-30 | 2018-06-12 | Bautex Systems, LLC | Methods and systems for the formation and use of reduced weight building blocks forms |
US9738009B2 (en) | 2014-04-30 | 2017-08-22 | Bautex Systems, LLC | Methods and systems for the formation and use of reduced weight building blocks forms |
US9802335B2 (en) | 2014-04-30 | 2017-10-31 | Bautex Systems, LLC | Methods and systems for the formation and use of reduced weight building blocks forms |
US9849607B2 (en) | 2014-04-30 | 2017-12-26 | Bautex Systems, LLC | Methods and systems for the formation and use of reduced weight building blocks forms |
US9919451B2 (en) | 2014-04-30 | 2018-03-20 | Bautex Systems, LLC | Methods and systems for the formation and use of reduced weight building blocks forms |
Also Published As
Publication number | Publication date |
---|---|
EP0208529B1 (en) | 1991-04-17 |
DE3678759D1 (en) | 1991-05-23 |
AT62722T (en) | 1991-05-15 |
EP0208529A1 (en) | 1987-01-14 |
CA1276422C (en) | 1990-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3495367A (en) | Precast lightweight reinforced concrete plank | |
US4774794A (en) | Energy efficient building system | |
US5519971A (en) | Building panel, manufacturing method and panel assembly system | |
DE60023894T2 (en) | Panel and method for producing concrete walls | |
US6401417B1 (en) | Concrete form structure | |
US5787665A (en) | Composite wall panel | |
US4226061A (en) | Reinforced masonry construction | |
CN102959162B (en) | Prefabricated wall panels | |
US5505031A (en) | Building structure and method of use | |
US5678378A (en) | Joist for use in a composite building system | |
US4616459A (en) | Building construction using hollow core wall | |
US4336676A (en) | Composite structural panel with offset core | |
US4641468A (en) | Panel structure and building structure made therefrom | |
US5038541A (en) | Polymer building wall form construction | |
US7254925B2 (en) | Insulated wall assembly | |
US7810293B2 (en) | Multiple layer polymer foam and concrete system for forming concrete walls, panels, floors, and decks | |
US8161699B2 (en) | Building construction using structural insulating core | |
US4443992A (en) | Method of prefabricated construction, and building structure constructed in accordance with such method | |
US4841702A (en) | Insulated concrete building panels and method of making the same | |
US5344700A (en) | Structural panels and joint connector arrangement therefor | |
US6612083B1 (en) | System of building construction | |
US6167671B1 (en) | Prefabricated concrete wall form system | |
EP1528171A2 (en) | Wood-Concrete composite system comprising wooden construction elements, intermediate layers and concrete construction elements | |
US7409800B2 (en) | Structural thermal framing and panel system for assembling finished or unfinished walls with multiple panel combinations for poured and nonpoured wall | |
US5335472A (en) | Concrete walls for buildings and method of forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HIGH TECH HOMES, INC. 4640 SOUTH CARROLLTON AVE., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OBOLER, LEONARD;REEL/FRAME:004461/0718 Effective date: 19850723 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Expired due to failure to pay maintenance fee |
Effective date: 19981202 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |