US4610139A - Hydraulic speed control and braking apparatus for draw works - Google Patents

Hydraulic speed control and braking apparatus for draw works Download PDF

Info

Publication number
US4610139A
US4610139A US06/693,768 US69376885A US4610139A US 4610139 A US4610139 A US 4610139A US 69376885 A US69376885 A US 69376885A US 4610139 A US4610139 A US 4610139A
Authority
US
United States
Prior art keywords
draw works
motor
fluid
hydraulic
disk valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/693,768
Inventor
Michael Skelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US06/693,768 priority Critical patent/US4610139A/en
Application granted granted Critical
Publication of US4610139A publication Critical patent/US4610139A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/44Control devices non-automatic pneumatic of hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/026Fluid-resistance brakes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/008Winding units, specially adapted for drilling operations

Definitions

  • the invention relates to new and useful improvements in draw works use in a drilling rig.
  • the draw works on a drilling rig consists of a powerful winch having a large drum for storing cable.
  • the cable is interconnected to the drill pipe support mechanism by means of a travelling block, and rotation of the drum raises and lowers the travelling block, and thus the drill pipe string.
  • the draw works supports the full weight of the drill string until the slips are engaged to support the string while a section of pipe is being removed.
  • the winch is allowed to free-wheel as the drill string is dropped under the force of gravity. When a sufficient length of the drill string is thus inserted into the borehole, a brake is applied to stop the fall.
  • the draw works is usually powered by an internal combustion engine or an electic motor, and the braking is a sequential operation using two different types of braking mechanisms.
  • the typical draw works has a friction brake consisting of a metal band about a drum, it is not initially used since the momentum of the dropping drill string would quickly wear it out. Instead a water brake, consisting of a paddle wheel in a volume of fluid, is used to dampen, and thus slow, the fall of the drill string. Only when the drill string has been slowed sufficiently by the water brake is the band brake engaged to apply the final braking force.
  • the present invention uses a a hydraulic motor to drive the draw works and thereby raise the drill string.
  • the motor is driven by a first stream of hydraulic fluid when the drill string is being raised, but is is allowed to freewheel in the reverse direction when the drill string is being lowered into the borehole.
  • the flow of the first stream of fluid is reversed, and a second stream of fluid is combined with the first and provided to the motor in the reverse direction.
  • the combination of flow reversal and the second stream of fluid acts to brake the draw works through a dashpot action in the motor, and the increased pressure provided by such combination prevents cavitation in the motor.
  • FIG. 1 is a combined plan view of a draw works and a somewhat schematic view of the associated hydraulic supply and control system
  • FIG. 2 is is a sectional front view of the draw works of FIG. 1 taken along section line 2--2.
  • a workover or drilling rig draw works 10 of generally conventional design has a sand line drum 12 and a main, or tubing, drum 14, mounted on shafts 16 and 18, respectively in a frame 19.
  • Shaft 16 is rotatively supported by a pair of bearings 20 and 22, and shaft is likewise supported by a pair of bearings 24 and 26.
  • Shaft 16 has connected to on one end thereof a clutch 28, and shaft 18 has a clutch 30 connected to one end thereof and a clutch 32 connected to the other end thereof.
  • Drum 12 has a brake flange and brake band 34 on one end and a brake flange and band 35 on the other end.
  • drum 14 has a brake flange and band 36 on one end and a brake flange and band 38 on the other end.
  • Drums 10 and 12 are commonly driven by a hydraulic motor 40 connected to a drive shaft 42, which is supported in frame 19 by means of bearings 44, 46, and 48.
  • Shaft 42 has on one end thereof a sprocket 50 which drives a sprocket 52 on shaft 16 by means of a chain 54.
  • shaft 42 also has on the same end thereof another sprocket 56 which drives a sprocket 58 on shaft 18 by means of chain 60.
  • the other end of shaft 42 has a sprocket 62 which drives a sprocket 64 on shaft 16 by means of chain 66.
  • shaft 16 also has on the same end as sprocket 64 another sprocket 68 which is coupled to a sprocket 70 on shaft 18 by means of a chain 72.
  • Hydraulic motor 40 may be of any suitable type, but preferably it is of the type having a vane impeller.
  • Hydraulic motor 40 is connected to a multi-position rotary disk valve 100 by means of an input line 102 connected to port A on valve 100 and an output line 104 connected to port B on valve 100, which together form a fluid flow circuit.
  • Valve 100 is of the type described in Applicant's U.S. Pat. No. 4,448,215, issued May 15, 1984, the description of which valve therein is incorporated herein by reference.
  • Line 104 has connected therein a variable flow constrictor 106 which is bypassed by a check valve 108.
  • a bypass valve 110 Also tapped into line 104 is a bypass valve 110 through a main line 112 and a pilot line 114.
  • Valve 110 has a movable control section 118 which is held in the "off" position by a variable tension spring 120.
  • Valve 100 is constructed in several sections.
  • the main section 124 is a five position flow control valve as described in the above-referenced patent.
  • Section 124 is integrally connected to a directional control disk 126 as illustrated by line 125.
  • Directional control disk 126 is integrally connected to an output flow control disk 128 as illustrated by lines 130 and 132, which is itself connected to line 102 and 104.
  • Line 102 communicates directly with line 130
  • line 104 communicates directly with line 132 inside valve 100.
  • lines 125, 130, and 132 are illustrative only and the connections represented thereby are all made internally to valve 100.
  • Disks 126 and 128 are constructed in accordance with the principles described in the aforementioned U.S. Pat. No. 4,448,215. All disk sections in valve 100 may be rotated to provide different levels and types of flow control by means of a pneumatic actuator and associated logic unit (not shown).
  • Main valve section 124 is connected to three pumps 140, 142, and 144, by means of lines 146, 148, and 150.
  • Each of pumps 140-142 have different capacities, 140 being the largest, 142 being the next smallest, and 144 being the smallest, as illustrated.
  • Each of pumps 140-142 are connected by means of lines 152, 154, and 156, respectively, to a hydraulic fluid reservoir, or tank, 158.
  • Output control section 128 is connected by means of a line 170 to a high volume, low pressure pump 172, which is connected to hydraulic fluid reservoir 158 by means of a line 174. Output control section 128 is also connected by means of line 176 to a heat exchanger 178, which is itself connected to hydraulic fluid reservoir 158 by means of a line 180. Line 176 is also connected to flow control section 124 through a bypass line 182 and to bypass valve 110 through a line 184.
  • Pumps 140, 142, 144, and 172 are illustrated as separate pumps. It should be understood, however, that a part or all of these pumps may be implemented in a single multiplex pump as is commonly used in the drilling industry.
  • pumps 140-144 draw hydraulic fluid from tank 158 through lines 152-156, respectively, and supply it to flow control section 124 of valve 100 through lines 146-150, respectively.
  • Valve 124 combines the fluid flows provided by pumps 140-144 in various combinations as selected by the driller or other operator. In a flow control section of the type described, five such combinations are available, and they are selected in such a way as to provide a regular progression of flow rates as a selector (not shown) is moved through its various positions by the operator. The portion of the total flow from pumps 140-144 not selected for use is bypassed back to fluid tank 158 through lines 180 and 182 and heat exchanger 178, which removes heat produced as a result of pump and system inefficiencies.
  • the fluid combination thus passes through internal lines 130 and 132 in a direction determined by directional control section 126 to an output control section 128, which simply selects either the flow from section 126 alone or the combination of the flow from section 126 and the flow from pump 172. If the flow from pump 172 is not selected, that portion of the total flow through section 128 is diverted back to supply tank 158 through lines 176 and 180 and heat exchanger 178.
  • the flow drives hydraulic motor 40 in a manner to drive drums 10 and/or 12 to take up the cable supporting the drill string and thus raise the drill string from the borehole.
  • the clutches 28, 30, and 32 are engaged as necessary by the operator in a manner well-known in the art.
  • clutches 28, 30, and 32 When the operator decides to lower the drill string into the borehole, he releases clutches 28, 30, and 32, which permits the drill string to fall into the borehole by the action of gravity. During this time drums 10 and/or 12 freely rotate in the reverse direction. At an appropriate time during the fall determined by the driller as based upon his experience, the clutches 28, 30, and 32 are re-engaged as appropriate, which reconnects the reverse spinning drums 10 and/or 12 to hydraulic motor 40 through chains 54, 60, and 72, and shaft 42. This causes motor 12 to spin in the "reverse" direction in the fluid filling it, which dampens the drill string fall in the same manner as a water brake.
  • valve 126 is reversed to supply the maximum combination of fluid flows from pumps 140-144 to motor 12 in the reverse direction from port B as previously described.
  • valve 128 is positioned so that the additional flow from pump 174 is added to the reverse flow to hydraulic motor 40. In this manner the low pressure caused by reverse rotation of hydraulic motor 40 is countered by the reverse pressure provided by pumps 140-144 and 172, thereby eliminating the conditions which lead to cavitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

A winch apparatus, such as draw works used for raising and lowering drill pipe into a borehole, in which motive power is provided by a hydraulic motor. A multi-stage rotary disk valve is interposed between the fluid supply pump and the hydraulic motor to provide a variable fluid flow rate and thereby to provide means for variably controlling the speed and direction of rotation of the draw works. A directional control disk is provided in the valve to provide reverse flow to prevent cavitation when the drill pipe is in free fall into the borehole, which drives the hydraulic motor in reverse. The directional control disk also controls the entry into the reverse flow of additional fluid provided by a high volume, low pressure auxiliary pump.

Description

BACKGROUND OF THE INVENTION
The invention relates to new and useful improvements in draw works use in a drilling rig.
There are many situations in which it is desirable to drive a rotating object with a hydraulic apparatus, and further to provide a braking force to the object without the use of friction braking. An example is draw works used in the oil and gas drilling industry for raising and lowering drill pipe into a borehole during drilling or workover operations.
The draw works on a drilling rig consists of a powerful winch having a large drum for storing cable. The cable is interconnected to the drill pipe support mechanism by means of a travelling block, and rotation of the drum raises and lowers the travelling block, and thus the drill pipe string. When the drill string is being raised, the draw works supports the full weight of the drill string until the slips are engaged to support the string while a section of pipe is being removed. When the drill string is being lowered, the winch is allowed to free-wheel as the drill string is dropped under the force of gravity. When a sufficient length of the drill string is thus inserted into the borehole, a brake is applied to stop the fall.
In the present practice the draw works is usually powered by an internal combustion engine or an electic motor, and the braking is a sequential operation using two different types of braking mechanisms. Although the typical draw works has a friction brake consisting of a metal band about a drum, it is not initially used since the momentum of the dropping drill string would quickly wear it out. Instead a water brake, consisting of a paddle wheel in a volume of fluid, is used to dampen, and thus slow, the fall of the drill string. Only when the drill string has been slowed sufficiently by the water brake is the band brake engaged to apply the final braking force.
It is therefore an object of the present invention to provide a draw works, or similar winch device, driven by a hydraulic mechanism.
It is another object of the present invention to provide a draw works, or other similar winch device, having an easily operable speed control.
It is a further object of the present invention to provide a draw works, or other similar winch device, in which the motive mechanism is also used for braking.
It is a yet another object of the present invention to provide a hydraulically operated draw works, or other similar winch device, whose motor also acts as a water brake.
It is still another object of the present invention to provide a hydraulic draw works, or other similar winch device, having a hydraulic braking mechanism which is not subject to cavitation.
SUMMARY OF THE INVENTION
With these and other objects in view, the present invention uses a a hydraulic motor to drive the draw works and thereby raise the drill string. The motor is driven by a first stream of hydraulic fluid when the drill string is being raised, but is is allowed to freewheel in the reverse direction when the drill string is being lowered into the borehole. When braking is desired, the flow of the first stream of fluid is reversed, and a second stream of fluid is combined with the first and provided to the motor in the reverse direction. The combination of flow reversal and the second stream of fluid acts to brake the draw works through a dashpot action in the motor, and the increased pressure provided by such combination prevents cavitation in the motor.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may be more fully understood by reading the following description of a preferred embodiment of the invention in conjunction with the appended drawings wherein:
FIG. 1 is a combined plan view of a draw works and a somewhat schematic view of the associated hydraulic supply and control system; and
FIG. 2 is is a sectional front view of the draw works of FIG. 1 taken along section line 2--2.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
In FIGS. 1 and 2, a workover or drilling rig draw works 10 of generally conventional design has a sand line drum 12 and a main, or tubing, drum 14, mounted on shafts 16 and 18, respectively in a frame 19. Shaft 16 is rotatively supported by a pair of bearings 20 and 22, and shaft is likewise supported by a pair of bearings 24 and 26. Shaft 16 has connected to on one end thereof a clutch 28, and shaft 18 has a clutch 30 connected to one end thereof and a clutch 32 connected to the other end thereof. Drum 12 has a brake flange and brake band 34 on one end and a brake flange and band 35 on the other end. Likewise, drum 14 has a brake flange and band 36 on one end and a brake flange and band 38 on the other end. These brake flanges and bands in combination provide friction braking by drawing the band tightly against the flange.
Drums 10 and 12 are commonly driven by a hydraulic motor 40 connected to a drive shaft 42, which is supported in frame 19 by means of bearings 44, 46, and 48. Shaft 42 has on one end thereof a sprocket 50 which drives a sprocket 52 on shaft 16 by means of a chain 54. Similarly, shaft 42 also has on the same end thereof another sprocket 56 which drives a sprocket 58 on shaft 18 by means of chain 60. The other end of shaft 42 has a sprocket 62 which drives a sprocket 64 on shaft 16 by means of chain 66. Further, shaft 16 also has on the same end as sprocket 64 another sprocket 68 which is coupled to a sprocket 70 on shaft 18 by means of a chain 72.
It should be understood that the construction of draw works thus described in illustrative only, and any other suitable draw works design may be used, provided that a hydraulic motor 40 is used. Hydraulic motor 40 may be of any suitable type, but preferably it is of the type having a vane impeller.
Hydraulic motor 40 is connected to a multi-position rotary disk valve 100 by means of an input line 102 connected to port A on valve 100 and an output line 104 connected to port B on valve 100, which together form a fluid flow circuit. Valve 100 is of the type described in Applicant's U.S. Pat. No. 4,448,215, issued May 15, 1984, the description of which valve therein is incorporated herein by reference. Line 104 has connected therein a variable flow constrictor 106 which is bypassed by a check valve 108. Also tapped into line 104 is a bypass valve 110 through a main line 112 and a pilot line 114. Valve 110 has a movable control section 118 which is held in the "off" position by a variable tension spring 120.
Valve 100 is constructed in several sections. The main section 124 is a five position flow control valve as described in the above-referenced patent. Section 124 is integrally connected to a directional control disk 126 as illustrated by line 125. Directional control disk 126 is integrally connected to an output flow control disk 128 as illustrated by lines 130 and 132, which is itself connected to line 102 and 104. Line 102 communicates directly with line 130, and line 104 communicates directly with line 132 inside valve 100. It should be understood that lines 125, 130, and 132 are illustrative only and the connections represented thereby are all made internally to valve 100. Disks 126 and 128 are constructed in accordance with the principles described in the aforementioned U.S. Pat. No. 4,448,215. All disk sections in valve 100 may be rotated to provide different levels and types of flow control by means of a pneumatic actuator and associated logic unit (not shown).
Main valve section 124 is connected to three pumps 140, 142, and 144, by means of lines 146, 148, and 150. Each of pumps 140-142 have different capacities, 140 being the largest, 142 being the next smallest, and 144 being the smallest, as illustrated. Each of pumps 140-142 are connected by means of lines 152, 154, and 156, respectively, to a hydraulic fluid reservoir, or tank, 158.
Output control section 128 is connected by means of a line 170 to a high volume, low pressure pump 172, which is connected to hydraulic fluid reservoir 158 by means of a line 174. Output control section 128 is also connected by means of line 176 to a heat exchanger 178, which is itself connected to hydraulic fluid reservoir 158 by means of a line 180. Line 176 is also connected to flow control section 124 through a bypass line 182 and to bypass valve 110 through a line 184.
Pumps 140, 142, 144, and 172 are illustrated as separate pumps. It should be understood, however, that a part or all of these pumps may be implemented in a single multiplex pump as is commonly used in the drilling industry.
In operation, pumps 140-144 draw hydraulic fluid from tank 158 through lines 152-156, respectively, and supply it to flow control section 124 of valve 100 through lines 146-150, respectively. Valve 124 combines the fluid flows provided by pumps 140-144 in various combinations as selected by the driller or other operator. In a flow control section of the type described, five such combinations are available, and they are selected in such a way as to provide a regular progression of flow rates as a selector (not shown) is moved through its various positions by the operator. The portion of the total flow from pumps 140-144 not selected for use is bypassed back to fluid tank 158 through lines 180 and 182 and heat exchanger 178, which removes heat produced as a result of pump and system inefficiencies. These various flow combinations are best illustrated by means of the examples in the following table:
______________________________________                                    
Selector    Combination  Returned                                         
Position    Selected     to Tank                                          
______________________________________                                    
1           140          142 + 144                                        
2           142          140 + 144                                        
3           144          140 + 142                                        
4           140 + 142    144                                              
5           140 + 142 + 144                                               
                         --                                               
______________________________________                                    
Although other combinations are obviously available and could be used, they are not necessary in most applications.
The fluid combination thus selected passes through internal line 125 to directional control disk 126, which has three positions (not illustrated) controllable by the operator. In the forward position fluid emanates from port A in valve 100, for example, and returns through port B. In the reverse position fluid emanates from port B and returns through port A. Finally, in the neutral position all fluid flow is returned to tank 158. It should be understood that "forward" and "reverse" are relative terms and depend upon the order of connection of lines 102 and 104 to hydraulic motor 104.
The fluid combination thus passes through internal lines 130 and 132 in a direction determined by directional control section 126 to an output control section 128, which simply selects either the flow from section 126 alone or the combination of the flow from section 126 and the flow from pump 172. If the flow from pump 172 is not selected, that portion of the total flow through section 128 is diverted back to supply tank 158 through lines 176 and 180 and heat exchanger 178.
When the fluid flow in lines 102 and 104 is in the "forward" direction and output valve section 128 is open, the flow drives hydraulic motor 40 in a manner to drive drums 10 and/or 12 to take up the cable supporting the drill string and thus raise the drill string from the borehole. To do this, the clutches 28, 30, and 32 are engaged as necessary by the operator in a manner well-known in the art.
When the operator decides to lower the drill string into the borehole, he releases clutches 28, 30, and 32, which permits the drill string to fall into the borehole by the action of gravity. During this time drums 10 and/or 12 freely rotate in the reverse direction. At an appropriate time during the fall determined by the driller as based upon his experience, the clutches 28, 30, and 32 are re-engaged as appropriate, which reconnects the reverse spinning drums 10 and/or 12 to hydraulic motor 40 through chains 54, 60, and 72, and shaft 42. This causes motor 12 to spin in the "reverse" direction in the fluid filling it, which dampens the drill string fall in the same manner as a water brake.
In normal circumstances the spinning of hydraulic motor 12 in the hydraulic fluid causes a pressure drop in the motor sufficient to cause cavitation, which is a series of microscopic explosions that are destructive to the motor 12. To forestall cavitation valve 126 is reversed to supply the maximum combination of fluid flows from pumps 140-144 to motor 12 in the reverse direction from port B as previously described. In addition, valve 128 is positioned so that the additional flow from pump 174 is added to the reverse flow to hydraulic motor 40. In this manner the low pressure caused by reverse rotation of hydraulic motor 40 is countered by the reverse pressure provided by pumps 140-144 and 172, thereby eliminating the conditions which lead to cavitation.
Regardless of the direction of fluid flow determined by the position of the disk valve in output control section 128, if the fluid pressure sensed by bypass valve 110 via pilot tube 114 exceeds a preset value determined by the stiffness of spring 120, movable valve section 118 is forced into registry with lines 116 and 184. This causes the excess fluid to be bypassed back to tank 158 via lines 184, 176, and 180 through heat exchanger 178.
While the present invention has been shown and described in a particular embodiment suitable for application to draw works for use in drilling, it should be obvious that minor changes and modifications may be made therein to produce other embodiments within the true scope and spirit of the invention for use both in the particularly described application and for other applications. It is the intention in the foregoing description and in the appended claims to cover all such other embodiments, and the language used in such description and claims should be read broadly to fulfill such intention.

Claims (15)

What is claimed is:
1. In a draw works for use in raising and lowering a string of drill pipe in a borehole, a hydraulic motor for driving the draw works to raise the drill string; means for supplying a first stream of hydraulic fluid from the source to drive the motor; means for permitting said drill string to freely fall into the borehole under the influence of gravity when lowering of said drill string is desired; means for reversing the direction of flow of the first stream of hydraulic fluid; and means for supplying a second stream of hydraulic fluid to said motor when the flow of fluid to said motor is reversed; whereby said flow reversal combined with said second stream of fluid acts to brake said draw works when said string of drill pipe is freely falling into the borehole and to prevent cavitation in said motor.
2. In a draw works as described in claim 1 wherein said means for supplying a second stream of hydraulic fluid comprises a pump and a rotary disk valve section.
3. In a draw works as described in claim 2 wherein said reversing means comprises a second rotary disk valve section.
4. In a draw works as described in claim 3 wherein said means for supplying a first stream of hydraulic fluid is variable.
5. In a draw works as described in claim 4 wherein said variable means for supplying a stream of hydraulic fluid comprises a multiplicity of sources of fluid flows and means for combining said flows in various combinations and bypassing the portion of said flows not selected.
6. In a draw works as described in claim 5 wherein said multiplicity of sources provide fluid flows at different rates.
7. In a draw works as described in claim 6 wherein said combining and bypassing means comprises a third rotary disk valve section.
8. In a draw works as described in claim 7 wherein said multiplicity of sources comprises multiplex pump.
9. In a draw works as described in claim 8 wherein said hydraulic motor is of the vane type.
10. In a draw works as described in claim 9 wherein said first, second, and third rotary disk valve sections are combined in a single multi-section rotary disk valve.
11. A hydraulic draw works system for raising and lowering a drill string in a borehole, comprising a draw works having a cable take-up drum; a hydraulic motor operatively connected to the take-up drum; a multiplicity of pumps in fluid communication with the hydraulic motor; a rotary disk valve between said motor and the multiplicity of pumps; said valve including a first section for combining the flows from a first group of said pumps in a variety of combinations to drive said motor at different speeds, a second section for controlling the direction of flows of the combination of flows to said motor, and a third section for combining said combination of flows with the flows from a second group of said pumps; whereby the direction of fluid flow may be reversed and additional fluid may be provided during such reversal when said drill string is lowered into the borehole to thereby provide a fluid braking action while preventing cavitation in said motor.
12. A hydraulic draw works system as described in claim 11 wherein each of said first group of pumps operates at different flow rates, whereby said combination of flow rates may be varied in different increments.
13. A hydraulic draw works system as described in claim 12 wherein said first groups of pumps is combined into a single multiplex pump.
14. Method of lowering a string of drill pipe into a borehole using a draw works whose drum is driven by a hydraulic motor whose speed is controlled by a rotary disk valve, comprising the steps of: (a) disengaging the draw works clutch, thereby permitting the string to enter the borehole the action of gravity and causing the drum on the draw works to freewheel in the reverse direction; (b) reversing the flow of hydraulic fluid to the motor using the disk valve; (c) simultaneously with step (b), engaging the draw works clutch, (d) simultaneously with steps (b) and (c), directing an auxiliary stream of hydraulic fluid to said motor in the reverse direction using said disk valve; whereby steps (b), (c), and (d) act to brake the draw works and to prevent cavitation in said motor.
15. Method of providing a braking force to a string of drill pipe as it is lowered into a borehole using a draw works whose drum is driven through a clutch by a hydraulic motor whose speed is controlled by a rotary disk valve, comprising the steps of: (a) reversing the flow of hydraulic fluid to the motor using the disk valve; (b) simultaneously with step (a), engaging the draw works clutch, thereby causing said motor to rotate in the reverse direction in said hydraulic fluid, (c) simultaneously with steps (a) and (b), directing an auxiliary stream of hydraulic fluid to said motor in the reverse direction using said disk valve; whereby said steps (a) and (c) act to damp the reverse rotating motor works and to prevent cavitation in said motor.
US06/693,768 1985-01-23 1985-01-23 Hydraulic speed control and braking apparatus for draw works Expired - Fee Related US4610139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/693,768 US4610139A (en) 1985-01-23 1985-01-23 Hydraulic speed control and braking apparatus for draw works

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/693,768 US4610139A (en) 1985-01-23 1985-01-23 Hydraulic speed control and braking apparatus for draw works

Publications (1)

Publication Number Publication Date
US4610139A true US4610139A (en) 1986-09-09

Family

ID=24786037

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/693,768 Expired - Fee Related US4610139A (en) 1985-01-23 1985-01-23 Hydraulic speed control and braking apparatus for draw works

Country Status (1)

Country Link
US (1) US4610139A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036554A1 (en) * 1995-05-19 1996-11-21 Tamrock Oy An arrangement for controlling a winch of a rock drilling equipment
US20090084558A1 (en) * 2007-09-28 2009-04-02 Robert Lewis Bloom Electrically powered well servicing rigs
US20100044660A1 (en) * 2007-01-18 2010-02-25 Imc Corporate Liscensing B.V. Winch
CN103466491A (en) * 2013-09-18 2013-12-25 山河智能装备股份有限公司 Pressurization control loop and method of piling machinery power head
US9945192B2 (en) 2014-05-06 2018-04-17 Viola Group Limited Hydraulic draw works
US20210115949A1 (en) * 2019-10-16 2021-04-22 Caterpillar Inc. Hydraulic system for a work machine having a hydraulic winch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219049A (en) * 1978-07-31 1980-08-26 Michael Skelly Multiple flow selection valve
US4330008A (en) * 1978-07-31 1982-05-18 Michael Skelly Multiple flow and directional control valve
US4448215A (en) * 1979-11-20 1984-05-15 Michael Skelly Multiple flow control valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219049A (en) * 1978-07-31 1980-08-26 Michael Skelly Multiple flow selection valve
US4330008A (en) * 1978-07-31 1982-05-18 Michael Skelly Multiple flow and directional control valve
US4448215A (en) * 1979-11-20 1984-05-15 Michael Skelly Multiple flow control valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996036554A1 (en) * 1995-05-19 1996-11-21 Tamrock Oy An arrangement for controlling a winch of a rock drilling equipment
US20100044660A1 (en) * 2007-01-18 2010-02-25 Imc Corporate Liscensing B.V. Winch
US7878483B2 (en) * 2007-01-18 2011-02-01 Machine & Lierenfabriek C. Kraaijeveld B.V. Winch
US20090084558A1 (en) * 2007-09-28 2009-04-02 Robert Lewis Bloom Electrically powered well servicing rigs
WO2009040569A2 (en) * 2007-09-28 2009-04-02 National Oilwell Varco, L.P. A mobile land rig
WO2009040569A3 (en) * 2007-09-28 2009-06-04 Nat Oilwell Varco Lp A mobile land rig
CN103466491A (en) * 2013-09-18 2013-12-25 山河智能装备股份有限公司 Pressurization control loop and method of piling machinery power head
US9945192B2 (en) 2014-05-06 2018-04-17 Viola Group Limited Hydraulic draw works
US20210115949A1 (en) * 2019-10-16 2021-04-22 Caterpillar Inc. Hydraulic system for a work machine having a hydraulic winch
US11149755B2 (en) * 2019-10-16 2021-10-19 Caterpillar Inc. Hydraulic system for a work machine having a hydraulic winch

Similar Documents

Publication Publication Date Title
US8408328B2 (en) Methods of controllling hydraulic motors
US3719238A (en) Compact rotary well drilling rig with hydraulic swivel pull down mechanism
US20030029308A1 (en) Speed governor
US4610139A (en) Hydraulic speed control and braking apparatus for draw works
US3447400A (en) Speed control apparatus
US3757524A (en) Multiple speed hydraulic gear motor driven gear unit
US4756366A (en) Well servicing methods using a hydraulic actuated workover mast
US3516308A (en) Power pipe tong transmission assembly
US2576872A (en) Rotary drilling rig
US1935105A (en) Torque control drill feed
US2219215A (en) Hydraulic braking apparatus
CA1134717A (en) Hydraulic circuitry for raise drill apparatus
US3903697A (en) Variable speed hydraulic drive
US2953941A (en) Transmission
US4257578A (en) Oil well service rig
US2602635A (en) Drilling rig
US3540296A (en) Variable speed and load control hydraulic system
US2674188A (en) Multiple pumping units and drive therefor
US3157236A (en) Sprocket gear reduction drive for power swivel assembly
US2953222A (en) One-way hydraulic brake
USRE18947E (en) Control mechanism for rotary
US2589118A (en) Automatic well-drilling mechanism
US1927831A (en) Pumping apparatus
US3626695A (en) Control device for a power system for driving a hydraulic fluid actuated motor
US2160447A (en) Power drive

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19940914

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362