US4584328A - Method of accelerating the breakdown of phenolic resin bonded cores - Google Patents
Method of accelerating the breakdown of phenolic resin bonded cores Download PDFInfo
- Publication number
- US4584328A US4584328A US06/541,233 US54123383A US4584328A US 4584328 A US4584328 A US 4584328A US 54123383 A US54123383 A US 54123383A US 4584328 A US4584328 A US 4584328A
- Authority
- US
- United States
- Prior art keywords
- phenolic resin
- basic salt
- breakdown
- cores
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical group [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000005011 phenolic resin Substances 0.000 title claims abstract description 25
- 229920001568 phenolic resin Polymers 0.000 title claims abstract description 25
- 230000015556 catabolic process Effects 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000004576 sand Substances 0.000 claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 16
- 150000001447 alkali salts Chemical class 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 12
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 11
- -1 organic acid salts Chemical class 0.000 claims abstract description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims abstract description 5
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims abstract description 5
- 150000008041 alkali metal carbonates Chemical class 0.000 claims abstract description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 12
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 claims 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 claims 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims 1
- IRXRGVFLQOSHOH-UHFFFAOYSA-L dipotassium;oxalate Chemical compound [K+].[K+].[O-]C(=O)C([O-])=O IRXRGVFLQOSHOH-UHFFFAOYSA-L 0.000 claims 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 claims 1
- 235000011056 potassium acetate Nutrition 0.000 claims 1
- 229960004109 potassium acetate Drugs 0.000 claims 1
- 239000011736 potassium bicarbonate Substances 0.000 claims 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims 1
- 235000015497 potassium bicarbonate Nutrition 0.000 claims 1
- 235000011181 potassium carbonates Nutrition 0.000 claims 1
- 239000001508 potassium citrate Substances 0.000 claims 1
- 229960002635 potassium citrate Drugs 0.000 claims 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 claims 1
- 235000011082 potassium citrates Nutrition 0.000 claims 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims 1
- 239000001472 potassium tartrate Substances 0.000 claims 1
- 229940111695 potassium tartrate Drugs 0.000 claims 1
- 235000011005 potassium tartrates Nutrition 0.000 claims 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 claims 1
- 239000001632 sodium acetate Substances 0.000 claims 1
- 235000017281 sodium acetate Nutrition 0.000 claims 1
- 229960004249 sodium acetate Drugs 0.000 claims 1
- 235000017550 sodium carbonate Nutrition 0.000 claims 1
- 239000001509 sodium citrate Substances 0.000 claims 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims 1
- 229960001790 sodium citrate Drugs 0.000 claims 1
- 235000011083 sodium citrates Nutrition 0.000 claims 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 claims 1
- 229940039790 sodium oxalate Drugs 0.000 claims 1
- 239000001433 sodium tartrate Substances 0.000 claims 1
- 229960002167 sodium tartrate Drugs 0.000 claims 1
- 235000011004 sodium tartrates Nutrition 0.000 claims 1
- 239000004033 plastic Substances 0.000 abstract description 9
- 229920003023 plastic Polymers 0.000 abstract description 9
- 238000005266 casting Methods 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 150000001339 alkali metal compounds Chemical class 0.000 description 7
- 238000005979 thermal decomposition reaction Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000016337 monopotassium tartrate Nutrition 0.000 description 2
- KYKNRZGSIGMXFH-ZVGUSBNCSA-M potassium bitartrate Chemical compound [K+].OC(=O)[C@H](O)[C@@H](O)C([O-])=O KYKNRZGSIGMXFH-ZVGUSBNCSA-M 0.000 description 2
- 229940081543 potassium bitartrate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/20—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
- B22C1/22—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/02—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
Definitions
- This invention relates to a method of accelerating the breakdown of phenolic resin bonded cores and to additive compositions for its acceleration.
- Cores bonded with phenolic resin have been widely used in foundries of metals ranging from steel to aluminum.
- this type of core has the difficult problem that it fails in breakdown capability This is due to the fact that the melting temperature of aluminum is too low to promote the thermal decomposition of phenolic resin during its casting.
- Phenolic resin is heat resistant and undergoes thermal decomposition only when it is heated above 500° C. Hence, cores bonded with the resin fail in breakdown capability in aluminum castings whose melting temperature is too low to heat them up to the critical temperature. In most aluminum casting methods, pouring is at around 700° C. and the temperature to which cores are heated is estimated to be below 500° C. For shaking out cores completely, it is often necessary to reheat castings in a furnace above 500° C. for several hours. Naturally, this results not only in excessive man-hours but also in high fuel costs.
- the inventor of this invention has found that this object is achieved by adding a breakdown accelerator to core sand which is coated with a conventional phenolic resin.
- the accelerator which the inventor found contains alkali metal compounds such as carbonates, bicarbonates, or organic acid salts, and has the form of a fine powder.
- Core sand mixed with the accelerator is formed in the usual way, i.e. by blowing it into a core box.
- this invention resides in a method of accelerating the breakdown of phenolic resin bonded cores by means of adding basic salts of alkali metals in powder form to phenolic resin coated sand, wherein the basic salts are selected from the group consisting of alkali metal carbonates, bicarbonates, organic acid salts, and mixtures thereof.
- the phenolic resin coated sand employed in this invention may be the conventional one.
- alkali metal carbonates such as sodium carbonate, potassium carbonate, etc.
- alkali metal bicarbonates such as sodium bicarbonate
- organic acid salts of alkali metals such as tartrates, citrates, acetates, and oxalates of alkali metals
- alkali metal compounds or “basic salts of alkali metals” collectively hereunder.
- the use of sodium carbonate is preferred.
- the accelerator of this invention i.e. the basic salts of alkali metals in powder form may be microencapsulated with plastic.
- This invention also resides in an additive composition for use in accelerating the breakdown of phenolic resin bonded cores, the additive composition comprising basic salts of alkali metals in powder form, and which is microencapsulated with plastic.
- the above-mentioned alkali metal compounds have the excellent property of promoting the thermal decomposition of phenolic resin.
- they have the disadvantage that their addition to the core sand results in lowering the baked strength of cores thus made.
- Another disadvantage is that they become moist easily, and if they become wet, their addition to core sand results not only in a reduction in the baked strength of cores but also in an increase in casting defects caused due to gas blowing.
- the alkali metal compounds of this invention may be microencapsulated with plastic.
- powder of the compounds is mixed with a plastic solution or colloidal solution and then dried up.
- the plastic usable for this microencapsulation include polystyrene, polymethacrylate, and polyvinyl. They are thermoplastic and undergo thermal decomposition when they are heated above about 300° C.
- the plastic capsule On pouring molten metal, the plastic capsule decomposes and then the alkali metal compounds react directly with phenolic binder. Therefore, it does not disturb the alkali metal compounds in their accelerating the breakdown of cores.
- the amount of the accelerator to be added to core sand is less than 2% by weight.
- the amount should be varied in accordance not only with the content of the phenolic resin used for coating but also in accordance with the grain size of the sand.
- One part of sodium carbonate was mixed with 5 parts of polystyrene colloidal solution whose solvent was a mixture of xylene and kerosene.
- the colloidal solution had a composition of 10% of polystyrene, 30% solvent and 60% ceramic powder.
- the resulting paste was warmed to remove xylene and reduced to a powder.
- Example 1 or 2 In core making one part by weight of the powder prepared in Example 1 or 2 was mixed with 100 parts by weight of the conventional phenolic resin coated sand whose resin content was 2% by weight. The addition of the powder to the sand had no detrimental effect upon the baked properties of the resulting cores. They had a bending strength of higher than 40 kg/cm 2 and there were few differences in the performance of the thus prepared cores and the conventional cores made without the additive.
- cores prepared in accordance with Examples 1 and 2 above were used for aluminum castings of cylinder heads and intake manifolds. On casting no casting defects were produced by gas evolution. Their breakdown property was excellent, and thus the core sand prepared in accordance with this invention was able to be easily shaken out by mechanical vibration. By contrast, it is necessary to reheat castings above 500° C. for several hours to remove cores unless prepared with the addition of the breakdown accelerator according to this invention.
- potassium bitartrate was mixed with 100 parts by weight of resin coated sand having a content of 2% by weight phenolic resin. Cores made from this sand had excellent breakdown capability in aluminum casting. However, they had the disadvantage that their baked bending strength was less than 20 kg/cm 2 , and that they were too weak to make cores of delicate design.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
A method of accelerating the breakdown of phenolic resin bonded cores by means of adding a basic salt of alkali metals in powder form to phenolic resin coated sand is disclosed. The basic salt is selected from the group consisting of alkali metal carbonates, bicarbonates and organic acid salts, and mixtures thereof, and is microcapsulated with plastic.
Description
1. Field of the Invention
This invention relates to a method of accelerating the breakdown of phenolic resin bonded cores and to additive compositions for its acceleration.
2. Description of the Prior Art
Cores bonded with phenolic resin have been widely used in foundries of metals ranging from steel to aluminum. However, in some cases such as aluminum casting, this type of core has the difficult problem that it fails in breakdown capability This is due to the fact that the melting temperature of aluminum is too low to promote the thermal decomposition of phenolic resin during its casting. In addition, there are other causes which are characteristic of aluminum casting and which worsen the problem.
Phenolic resin is heat resistant and undergoes thermal decomposition only when it is heated above 500° C. Hence, cores bonded with the resin fail in breakdown capability in aluminum castings whose melting temperature is too low to heat them up to the critical temperature. In most aluminum casting methods, pouring is at around 700° C. and the temperature to which cores are heated is estimated to be below 500° C. For shaking out cores completely, it is often necessary to reheat castings in a furnace above 500° C. for several hours. Naturally, this results not only in excessive man-hours but also in high fuel costs.
To improve the breakdown property of phenolic resin bonded cores, various solutions have been proposed. For example, various derivatives of phenolic resin having a lower thermal decomposition temperature are used for core making. However, cores thus made bring about another undesirable result in aluminum castings. That is, since thermal decomposition of resin is always accompanied by gas evolution, it tends to cause blow holes in castings. In particular, there is a tendency that the lower the thermal decomposition temperature of the resin is, the more marked is the production of blow holes are caused.
It is the object of the present invention to improve the breakdown properties of phenolic resin bonded cores.
The inventor of this invention has found that this object is achieved by adding a breakdown accelerator to core sand which is coated with a conventional phenolic resin. The accelerator which the inventor found contains alkali metal compounds such as carbonates, bicarbonates, or organic acid salts, and has the form of a fine powder. Core sand mixed with the accelerator is formed in the usual way, i.e. by blowing it into a core box.
Thus, this invention resides in a method of accelerating the breakdown of phenolic resin bonded cores by means of adding basic salts of alkali metals in powder form to phenolic resin coated sand, wherein the basic salts are selected from the group consisting of alkali metal carbonates, bicarbonates, organic acid salts, and mixtures thereof.
The phenolic resin coated sand employed in this invention may be the conventional one.
According to this invention, as an accelerator for decomposition of phenolic resin, alkali metal carbonates such as sodium carbonate, potassium carbonate, etc., alkali metal bicarbonates such as sodium bicarbonate, and the organic acid salts of alkali metals such as tartrates, citrates, acetates, and oxalates of alkali metals may be used. These compounds will be referred to as "alkali metal compounds" or "basic salts of alkali metals" collectively hereunder. The use of sodium carbonate is preferred.
The accelerator of this invention, i.e. the basic salts of alkali metals in powder form may be microencapsulated with plastic.
This invention also resides in an additive composition for use in accelerating the breakdown of phenolic resin bonded cores, the additive composition comprising basic salts of alkali metals in powder form, and which is microencapsulated with plastic.
The above-mentioned alkali metal compounds have the excellent property of promoting the thermal decomposition of phenolic resin. However, they have the disadvantage that their addition to the core sand results in lowering the baked strength of cores thus made. Another disadvantage is that they become moist easily, and if they become wet, their addition to core sand results not only in a reduction in the baked strength of cores but also in an increase in casting defects caused due to gas blowing.
To eliminate these disadvantages successfully, the alkali metal compounds of this invention may be microencapsulated with plastic. To do so, powder of the compounds is mixed with a plastic solution or colloidal solution and then dried up. The plastic usable for this microencapsulation include polystyrene, polymethacrylate, and polyvinyl. They are thermoplastic and undergo thermal decomposition when they are heated above about 300° C.
The plastic microencapsulated alkali metal compounds have the following advantages:
(1) They scarcely become moist even after they are heated at the high temperatures of core baking;
(2) Since plastic wets phenolic resin well, it improves the baked strength of cores;
(3) On pouring molten metal, the plastic capsule decomposes and then the alkali metal compounds react directly with phenolic binder. Therefore, it does not disturb the alkali metal compounds in their accelerating the breakdown of cores.
The amount of the accelerator to be added to core sand is less than 2% by weight. The amount should be varied in accordance not only with the content of the phenolic resin used for coating but also in accordance with the grain size of the sand.
The method of producing the breakdown accelerator and core sand according to this invention will be described in conjunction with the following examples, which are presented as specific illustrations of the claimed invention. It should be understood, however, that the invention is not limited to the specific details set forth in the examples.
One part by weight of sodium carbonate was mixed with two parts by weight of potassium bitartrate. The mixture was added to a 20% polystyrene solution and thoroughly kneaded to produce a paste mixture. Subsequently, kerosene was added to the paste for microencapsulation by means of coacervation. The paste was dried and reduced to a powder. The powder did not become moist and could be stored for long periods.
One part of sodium carbonate was mixed with 5 parts of polystyrene colloidal solution whose solvent was a mixture of xylene and kerosene. The colloidal solution had a composition of 10% of polystyrene, 30% solvent and 60% ceramic powder. The resulting paste was warmed to remove xylene and reduced to a powder.
In core making one part by weight of the powder prepared in Example 1 or 2 was mixed with 100 parts by weight of the conventional phenolic resin coated sand whose resin content was 2% by weight. The addition of the powder to the sand had no detrimental effect upon the baked properties of the resulting cores. They had a bending strength of higher than 40 kg/cm2 and there were few differences in the performance of the thus prepared cores and the conventional cores made without the additive.
In this example, cores prepared in accordance with Examples 1 and 2 above were used for aluminum castings of cylinder heads and intake manifolds. On casting no casting defects were produced by gas evolution. Their breakdown property was excellent, and thus the core sand prepared in accordance with this invention was able to be easily shaken out by mechanical vibration. By contrast, it is necessary to reheat castings above 500° C. for several hours to remove cores unless prepared with the addition of the breakdown accelerator according to this invention.
One part by weight of potassium bitartrate was mixed with 100 parts by weight of resin coated sand having a content of 2% by weight phenolic resin. Cores made from this sand had excellent breakdown capability in aluminum casting. However, they had the disadvantage that their baked bending strength was less than 20 kg/cm2, and that they were too weak to make cores of delicate design.
One part by weight of potassium carbonate was mixed with 300 parts by weight of resin coated sand having a content of 2% by weight of phenolic resin. Cores thus made had excellent breakdown capability in aluminum castings. However, they had the disadvantage that since they easily became moist, it was difficult to store them for long.
Although this invention has been described with preferred embodiments it is to be understood that variations and modifications may be employed without departing from the concept of the invention as defined in the following claims.
Claims (6)
1. A method of accelerating the breakdown of phenolic resin bonded cores by means of adding a basic salt of alkali metals in powder form to phenolic resin coated sand, wherein the basic salt is selected from the group consisting of alkali metal carbonates, bicarbonates and organic acid salts, and mixtures thereof and wherein the basic salt powder is microencapsulated with a thermoplastic polymer.
2. The method defined in claim 1, wherein said basic salt of alkali metals is selected from the group consisting of sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium tartrate, potassium tartrate, postassium bitartrate, sodium citrate, potassium citrate, sodium acetate, potassium acetate, sodium oxalate, potassium oxalate, and mixtures thereof
3. The method defined in claim 2, wherein said basic salt of alkali metals is sodium carbonate.
4. The method defined in claim 1, wherein the thermoplastic polymer is selected from the group consisting of polystyrene, polymethacrylate, and mixtures thereof.
5. The method defined in claim 1, wherein the thermoplastic polymer is polystyrene.
6. A method of accelerating the breakdown of phenolic resin bonded cores comprising the step of adding a substantially dry basic salt of alkali metals in powder form to a phenolic resin coated sand, wherein the basic salt is selected from the group consisting of alkali metal carbonates, bicarbonates and organic acid salts, and mixtures thereof and wherein the basic salt powder is microencapsulated with a thermoplastic polymer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57-179117 | 1982-10-14 | ||
JP57179117A JPS5970438A (en) | 1982-10-14 | 1982-10-14 | Improvement in collapsing property of shell core |
Publications (1)
Publication Number | Publication Date |
---|---|
US4584328A true US4584328A (en) | 1986-04-22 |
Family
ID=16060301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/541,233 Expired - Fee Related US4584328A (en) | 1982-10-14 | 1983-10-12 | Method of accelerating the breakdown of phenolic resin bonded cores |
Country Status (2)
Country | Link |
---|---|
US (1) | US4584328A (en) |
JP (1) | JPS5970438A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4789693A (en) * | 1987-08-28 | 1988-12-06 | Ashland Oil, Inc. | Heat curable foundry mixes and binder compositions |
US20030227066A1 (en) * | 2002-06-07 | 2003-12-11 | Rumer Christopher L. | Microelectronic packaging and methods for thermally protecting package interconnects and components |
US20050025368A1 (en) * | 2003-06-26 | 2005-02-03 | Arkady Glukhovsky | Device, method, and system for reduced transmission imaging |
US20050087321A1 (en) * | 2003-10-28 | 2005-04-28 | Thomas Hathaway | Apparatus for cleaning metal parts |
US20050087323A1 (en) * | 2003-10-28 | 2005-04-28 | Thomas Hathaway | Foundry casting material composition |
US20100122791A1 (en) * | 2008-11-14 | 2010-05-20 | Gm Global Technology Operations, Inc. | Binder degradation of sand cores |
US20110139311A1 (en) * | 2009-12-16 | 2011-06-16 | Showman Ralph E | Foundry mixes containing an organic acid salt and their uses |
US9038708B1 (en) | 2014-06-18 | 2015-05-26 | Newton Engine Corporation | Foundry mixture and related methods for casting and cleaning cast metal parts |
US9963799B2 (en) | 2014-06-18 | 2018-05-08 | York Innovators Group, Llc | Foundry mixture and related methods for casting and cleaning cast metal parts |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60227944A (en) * | 1984-04-27 | 1985-11-13 | Nissan Motor Co Ltd | Binder for foundry sand |
JP2520907B2 (en) * | 1987-05-26 | 1996-07-31 | 積水化学工業株式会社 | How to maintain grass leaves of sand-containing artificial grass |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666703A (en) * | 1969-05-13 | 1972-05-30 | Sumitomo Durez Co | Foundry sand composition for cores and molds |
US4459376A (en) * | 1981-10-26 | 1984-07-10 | Sumitomo Durez Company, Ltd. | Resin-coated sand for shell-molds and method for producing same |
US4468486A (en) * | 1981-11-02 | 1984-08-28 | Sumitomo Durez Company, Ltd. | Coated sand and method for producing |
-
1982
- 1982-10-14 JP JP57179117A patent/JPS5970438A/en active Granted
-
1983
- 1983-10-12 US US06/541,233 patent/US4584328A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666703A (en) * | 1969-05-13 | 1972-05-30 | Sumitomo Durez Co | Foundry sand composition for cores and molds |
US4459376A (en) * | 1981-10-26 | 1984-07-10 | Sumitomo Durez Company, Ltd. | Resin-coated sand for shell-molds and method for producing same |
US4468486A (en) * | 1981-11-02 | 1984-08-28 | Sumitomo Durez Company, Ltd. | Coated sand and method for producing |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4789693A (en) * | 1987-08-28 | 1988-12-06 | Ashland Oil, Inc. | Heat curable foundry mixes and binder compositions |
WO1989001835A1 (en) * | 1987-08-28 | 1989-03-09 | Ashland Oil, Inc. | Heat curable foundry mixes and binder compositions |
US20030227066A1 (en) * | 2002-06-07 | 2003-12-11 | Rumer Christopher L. | Microelectronic packaging and methods for thermally protecting package interconnects and components |
US6911726B2 (en) * | 2002-06-07 | 2005-06-28 | Intel Corporation | Microelectronic packaging and methods for thermally protecting package interconnects and components |
US20050214977A1 (en) * | 2002-06-07 | 2005-09-29 | Rumer Christopher L | Microelectronic packaging and methods for thermally protecting package interconnects and components |
US20050025368A1 (en) * | 2003-06-26 | 2005-02-03 | Arkady Glukhovsky | Device, method, and system for reduced transmission imaging |
US20050087321A1 (en) * | 2003-10-28 | 2005-04-28 | Thomas Hathaway | Apparatus for cleaning metal parts |
US20050087323A1 (en) * | 2003-10-28 | 2005-04-28 | Thomas Hathaway | Foundry casting material composition |
US20100122791A1 (en) * | 2008-11-14 | 2010-05-20 | Gm Global Technology Operations, Inc. | Binder degradation of sand cores |
US7984750B2 (en) | 2008-11-14 | 2011-07-26 | GM Global Technology Operations LLC | Binder degradation of sand cores |
US20110139311A1 (en) * | 2009-12-16 | 2011-06-16 | Showman Ralph E | Foundry mixes containing an organic acid salt and their uses |
WO2011075222A1 (en) | 2009-12-16 | 2011-06-23 | Ashland Lincesing And Intellectual Property Llc | Foundry mixes containing an organic acid salt and their uses |
EP2513004A4 (en) * | 2009-12-16 | 2015-12-09 | Ask Chemicals Lp | FOOD MIXTURES WITH CARBONATE SALTS AND THEIR USES |
EP2513006A4 (en) * | 2009-12-16 | 2015-12-16 | Ask Chemicals Lp | Foundry mixes containing an organic acid salt and their uses |
US9038708B1 (en) | 2014-06-18 | 2015-05-26 | Newton Engine Corporation | Foundry mixture and related methods for casting and cleaning cast metal parts |
US9963799B2 (en) | 2014-06-18 | 2018-05-08 | York Innovators Group, Llc | Foundry mixture and related methods for casting and cleaning cast metal parts |
Also Published As
Publication number | Publication date |
---|---|
JPS5970438A (en) | 1984-04-20 |
JPH0246294B2 (en) | 1990-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4584328A (en) | Method of accelerating the breakdown of phenolic resin bonded cores | |
US2422118A (en) | Making cores for casting light metal alloys | |
JP3540842B2 (en) | Method of manufacturing ceramic core for casting | |
JP2831794B2 (en) | Method of manufacturing sand mold for castings | |
EP0154055A1 (en) | Method of accelerating the breakdown of phenolic resin bonded cores | |
US3211560A (en) | Mold wash composition and casting mold coated therewith | |
JPH01262041A (en) | Manufacture of mold and core | |
US4188450A (en) | Shell investment molds embodying a metastable mullite phase in its physical structure | |
JPS5844945A (en) | Mold coating material for prevention of carburization and sulfurization used for organic self-hardening mold | |
JPS58202943A (en) | Resin coated sand for casting | |
JPH0947840A (en) | Molding composition | |
JPH0663683A (en) | Production of casting mold | |
JPH0640766A (en) | High strength and low thermal expansion ceramics | |
KR101943874B1 (en) | Moldwash composition for full mold process and manufacturing thereof | |
JPS6338254B2 (en) | ||
SU780945A1 (en) | Fire-resistant face coating for chill moulds | |
SU1766575A1 (en) | Self-hardening sand for mould and rod producing | |
RU2058210C1 (en) | Refractory filler for ceramic casting moulds manufacture | |
JPS5973143A (en) | Resin-coated sand grain for shell mold | |
US3815658A (en) | Process for making a metallurgically slow reacting mold | |
SU1380845A1 (en) | Mould coating composition | |
SU790023A1 (en) | Current-conducting coating for manufacturing casting moulds by lost patterns by electrophoresis method | |
JPS58218342A (en) | Binder for molding sand | |
SU1009603A1 (en) | Suspension for making shell moulds with use of investment pattern | |
JPS62244546A (en) | Coating agent for chilling cast steel castings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19900422 |