US4543556A - Inductive coupler systems - Google Patents

Inductive coupler systems Download PDF

Info

Publication number
US4543556A
US4543556A US06/633,968 US63396884A US4543556A US 4543556 A US4543556 A US 4543556A US 63396884 A US63396884 A US 63396884A US 4543556 A US4543556 A US 4543556A
Authority
US
United States
Prior art keywords
frame member
actuation means
inductive coupler
socket region
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/633,968
Inventor
Douglas R. Taylor
David W. Pearce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allard Way Holdings Ltd
Original Assignee
Marconi Avionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marconi Avionics Ltd filed Critical Marconi Avionics Ltd
Assigned to MARCONI AVIONICS LIMITED, A BRITISH COMPANY reassignment MARCONI AVIONICS LIMITED, A BRITISH COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TAYLOR, DOUGLAS R.
Assigned to MARCONI AVIONICS LIMITED, A BRITISH COMPANY reassignment MARCONI AVIONICS LIMITED, A BRITISH COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PEARCE, DAVID W., TAYLOR, DOUGLAS R.
Application granted granted Critical
Publication of US4543556A publication Critical patent/US4543556A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S336/00Inductor devices
    • Y10S336/02Separable

Definitions

  • This invention relates to inductive coupler systems, and has particular application to inductive coupler systems for use in undersea applications.
  • Such inductive coupler systems frequently consist of two parts, the first part being connected to a movable surface vessel, and the second part being located on the sea bed. It is then desirable to be able to connect, and disconnect, the two parts on the sea bed under remote control from the surface vessel.
  • an inductive coupler system comprises: a first part in which is defined a socket region, said first part supporting a first frame member which carries a first magnetic half-core constituting one half of an inductive coupler; a second part comprising a plug member adapted to be received by the socket region, said second part incorporating a second frame member which carries a second magnetic half-core constituting the other half of the inductive coupler; first actuation means connected to said first part; and second actuation means connected to said second part, said first actuation means being operable by the insertion of said plug member into said socket region to move said first frame member towards said second frame member to a position where a mating surface of each of said half-cores are in surface-to-surface alignment with each other, said second actuation means being operative in a first sense to drive the aligned mating surfaces into intimate contact, and operable in a second sense to cause said first actuation means to move said first frame member away from said second frame member.
  • said first part includes a further frame member which carries a third magnetic half-core constituting one half of a further inductive coupler, said first and further frame members being positioned on opposing sides of said socket region; a fourth magnetic half core constituting the other half of said further inductive coupler is carried by said second frame member with its mating surface on the opposite side of said second frame member to that of the second magnetic half-core; and a further said first actuation means is connected to said mount, said further first actuation means being operable by the insertion of said plug member into said socket region to move said further frame member to a position where a mating surface of said third and fourth half-cores are in surface-to-surface alignment with each other, operation of said second actuation means in said first sense being effective to drive the aligned mating surfaces of said third and fourth magnetic half-cores into intimate contact, and operation of said second actuation means in said second sense being effective to cause said further first actuation means to move said further frame member
  • each of said first actuation means comprises a parallel motion linkage connecting said first or further frame member to said first part, said linkage having a lever arm extending into the path of movement of said plug member into said socket region.
  • said second actuation means comprises a hydraulic jack.
  • FIG. 1 is a perspective view of a first part of the system
  • FIG. 2 is a perspective view of a second part of the system
  • FIG. 3 is a schematic end elevation of the system in a non-operative condition
  • FIG. 4 is a view corresponding to that of FIG. 3 of the system in an operative condition.
  • the inductive coupler system includes a first part including a mount 1 secured to a sub-sea oil production system production template (not shown) on the sea bed (not shown).
  • the mount 1 has extending from it eight pairs of flanges 3 arranged in a parallel, spaced configuration in two rows along the mount such that a socket region 5 is defined between the two rows.
  • each pair of flanges 3 there is provided a pair of frame members 7 arranged side by side, each pair of frame members 7 being moveably connected to the pair of flanges by a parallel motion linkage consisting of two parallel lever arms 9, 11 each pivoted both to the pair of flanges 3 and each pair of frame members 7.
  • the sets of lever arms 9, 11 connected to the flanges 3 in the two rows are set at an angle to each other such that an extension 11a on one 11 of each pair of lever arms extends into the socket region 5, and the front faces 13 of the frame members 7 connected to each row of flanges 3 face towards the socket region 5.
  • the end regions 11b of the extensions 11a within the socket region 5 are of cylindrical formation, in each of which is a channel 11c as best seen in FIG. 1.
  • Each frame member 7 supports two magnetic half cores 15a, b which each constitutes a first half of a respective inductive coupler, one such coupler being provided in respect of each wellhead (not shown) present on the template.
  • Each frame member 7 also supports a further four magnetic halfcores 17a, b, c, d which each constitute a first half of a respective signal coupler.
  • Each magnetic half-core 15a, b, 17a, b, c, d is spring loaded for movement away from the front face 13 of the respective frame member 7 by a preloaded spring (not shown). Projecting from the front face of each of the frame members 7 are upper and lower dowel pins 19a, 19b.
  • the inductive coupler system further includes a second part including a plug member 21 designed to be received by the socket region 5 defined in the mount 1.
  • the end of the second part remote from the plug member 21 is suspended by a support cable 23 attached to a controlling surface vessel (not shown) such as a semi-submerged floating platform above the mount 1 as shown in FIG. 3.
  • a controlling surface vessel such as a semi-submerged floating platform above the mount 1 as shown in FIG. 3.
  • An umbilical cable 25 containing an electrical cable or cables, and a hydraulic conduit is also connected between the plug member 21 and the surface vessel.
  • each of the two opposing long surfaces 27, 29 of the second part above the plug member 21 are two rows of eight magnetic half-cores 31a, b, each half-core constituting a second half of a respective inductive coupler, and four rows of eight magnetic half-cores 33a, b, c, d each constituting a second half of a respective signal coupler.
  • Each magnetic half-core 19a, b, 33a, b, c, d is spring loaded for movement away from the respective surface 27 or 29 by a preloaded spring (not shown).
  • Each surface 27, 29 is also provided with upper and lower rows of indentations 35a, b.
  • each hydraulic jack 37 Towards the end of the plug member 21 remote from the support cable 23 and umbilical cable 25 are provided four hydraulic jacks 37, each capable of expansion in directions away from the surfaces 27 and 29. At each side of each jack 37 is provided an appendage in the form of a knob 37a, b.
  • the second part is suspended above the first part such that the plug member 21 lies above the socket region 5 defined in the mount 1 as shown in FIG. 3.
  • the plug member 21 is lowered into the socket region, the knobs 37a, b on each of the jacks 37 entering a respective channel 11c in one of the cylindrical regions 11b of the extensions 11a of the lever arms 11.
  • the plug member 21 moves further downwards within the socket region 5 towards the position shown in FIG. 4, displacement of the extensions 11a by the plug member 21 causes the frame members 7 to swing towards the surfaces 27, 29 of the second part 20.
  • the knobs 37a, b finally each reach a shoulder 11d in the channels 11c, at which point the plug member 21 is prevented from moving further down in the socket region 5.
  • the front surfaces of the half-cores 15a, b, 17a, b c, d carried by each of the frame members 7 are in face-to-face alignment with half-cores 31a, b, 33a, b, c, d carried by the second part 20.
  • the dowel pins 19a, b extending from the surfaces 13 of the frame members are then in a position to engage the complementary indentations 35a, b in the surfaces 27, 29 of the second part 20, thus assuring the alignment of the respective halves of the inductive couplers and signal couplers.
  • the hydraulic jacks 37 are actuated by hydraulic fluid passing through the umbilical cable 25 so as to drive the aligned mating surfaces of the half-cores 19a, 31a; 19b, 31b; 17a, 33a; 17b, 33b; 17c, 33c and 17d, 33d into intimate contact with each other against the bias of the spring loading of each of the half-cores the lever arms 9, 11, then lying in a substantially vertical position.
  • the spring loading of the half-cores ensures the intimate contact of each of the pairs of half-cores within each inductive or signal coupler, even if the mating surfaces of each of the half-cores along each of the surfaces 13 of the two rows of frame members 7, and the two surfaces 27, 29 of the second part 20 do not precisely lie in the same plane.
  • the hydraulic jacks 37 are caused to contract, the knobs 37a, b pulling the lever arm extensions 11a in with them by virtue of their being trapped in the lower ends of the channels 11a.
  • the front surfaces 13, together with the respective magnetic half-cores are thus disengaged from the surfaces 27, 29 of the second part 20, the positive pulling action of the jacks 37 overcoming any reluctance of the frames 7 to move due to for example corrosion of any of the dowel pegs 19a, b in the complementary indentations 35a, b or corrosion of any of the bearings.
  • the plug member 21 may then be lifted out of the socket region 5, the knobs 37a, b, sliding out of their respective channels 11a. As the plug member 21 is removed from the socket region 5, the weight of the frame members 7 causes them to swing back on the lever arms 9, 11 to the position shown in FIGS. 1 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Electronic Switches (AREA)

Abstract

An inductive coupler system including a first part in which is defined a socket region and a second part including a plug member. A first frame member carrying a first magnetic half-core constituting one half of an inductive coupler is supported by the first part, while the second part carries a second magnetic half-core constituting the other half of the inductive coupler. The first part includes actuation means responsive to the insertion of said plug member in said socket region to move the first frame member towards the second part to a position where a mating surface of each of the half-cores are in surface-to-surface alignment with each other. Second actuation means drives the aligned mating surfaces into intimate contact or moves the first frame member away from the second part.

Description

This invention relates to inductive coupler systems, and has particular application to inductive coupler systems for use in undersea applications.
Such inductive coupler systems frequently consist of two parts, the first part being connected to a movable surface vessel, and the second part being located on the sea bed. It is then desirable to be able to connect, and disconnect, the two parts on the sea bed under remote control from the surface vessel.
It is an object of the present invention to provide such an inductive coupler system.
According to the present invention an inductive coupler system comprises: a first part in which is defined a socket region, said first part supporting a first frame member which carries a first magnetic half-core constituting one half of an inductive coupler; a second part comprising a plug member adapted to be received by the socket region, said second part incorporating a second frame member which carries a second magnetic half-core constituting the other half of the inductive coupler; first actuation means connected to said first part; and second actuation means connected to said second part, said first actuation means being operable by the insertion of said plug member into said socket region to move said first frame member towards said second frame member to a position where a mating surface of each of said half-cores are in surface-to-surface alignment with each other, said second actuation means being operative in a first sense to drive the aligned mating surfaces into intimate contact, and operable in a second sense to cause said first actuation means to move said first frame member away from said second frame member.
In one particular inductive coupler system in accordance with the invention said first part includes a further frame member which carries a third magnetic half-core constituting one half of a further inductive coupler, said first and further frame members being positioned on opposing sides of said socket region; a fourth magnetic half core constituting the other half of said further inductive coupler is carried by said second frame member with its mating surface on the opposite side of said second frame member to that of the second magnetic half-core; and a further said first actuation means is connected to said mount, said further first actuation means being operable by the insertion of said plug member into said socket region to move said further frame member to a position where a mating surface of said third and fourth half-cores are in surface-to-surface alignment with each other, operation of said second actuation means in said first sense being effective to drive the aligned mating surfaces of said third and fourth magnetic half-cores into intimate contact, and operation of said second actuation means in said second sense being effective to cause said further first actuation means to move said further frame member away from said second frame member.
Preferably the or each of said first actuation means comprises a parallel motion linkage connecting said first or further frame member to said first part, said linkage having a lever arm extending into the path of movement of said plug member into said socket region.
Preferably said second actuation means comprises a hydraulic jack.
One inductive coupler system in accordance with the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
FIG. 1 is a perspective view of a first part of the system;
FIG. 2 is a perspective view of a second part of the system;
FIG. 3 is a schematic end elevation of the system in a non-operative condition; and
FIG. 4 is a view corresponding to that of FIG. 3 of the system in an operative condition.
Referring firstly to FIG. 1 the inductive coupler system includes a first part including a mount 1 secured to a sub-sea oil production system production template (not shown) on the sea bed (not shown). The mount 1 has extending from it eight pairs of flanges 3 arranged in a parallel, spaced configuration in two rows along the mount such that a socket region 5 is defined between the two rows. In respect of each pair of flanges 3 there is provided a pair of frame members 7 arranged side by side, each pair of frame members 7 being moveably connected to the pair of flanges by a parallel motion linkage consisting of two parallel lever arms 9, 11 each pivoted both to the pair of flanges 3 and each pair of frame members 7. The sets of lever arms 9, 11 connected to the flanges 3 in the two rows are set at an angle to each other such that an extension 11a on one 11 of each pair of lever arms extends into the socket region 5, and the front faces 13 of the frame members 7 connected to each row of flanges 3 face towards the socket region 5. The end regions 11b of the extensions 11a within the socket region 5 are of cylindrical formation, in each of which is a channel 11c as best seen in FIG. 1. Each frame member 7 supports two magnetic half cores 15a, b which each constitutes a first half of a respective inductive coupler, one such coupler being provided in respect of each wellhead (not shown) present on the template. Each frame member 7 also supports a further four magnetic halfcores 17a, b, c, d which each constitute a first half of a respective signal coupler. Each magnetic half-core 15a, b, 17a, b, c, d is spring loaded for movement away from the front face 13 of the respective frame member 7 by a preloaded spring (not shown). Projecting from the front face of each of the frame members 7 are upper and lower dowel pins 19a, 19b.
Referring now also to FIG. 2, the inductive coupler system further includes a second part including a plug member 21 designed to be received by the socket region 5 defined in the mount 1. The end of the second part remote from the plug member 21 is suspended by a support cable 23 attached to a controlling surface vessel (not shown) such as a semi-submerged floating platform above the mount 1 as shown in FIG. 3. An umbilical cable 25 containing an electrical cable or cables, and a hydraulic conduit is also connected between the plug member 21 and the surface vessel.
Incorporated along each of the two opposing long surfaces 27, 29 of the second part above the plug member 21 are two rows of eight magnetic half-cores 31a, b, each half-core constituting a second half of a respective inductive coupler, and four rows of eight magnetic half-cores 33a, b, c, d each constituting a second half of a respective signal coupler. Each magnetic half-core 19a, b, 33a, b, c, d is spring loaded for movement away from the respective surface 27 or 29 by a preloaded spring (not shown). Each surface 27, 29 is also provided with upper and lower rows of indentations 35a, b.
Towards the end of the plug member 21 remote from the support cable 23 and umbilical cable 25 are provided four hydraulic jacks 37, each capable of expansion in directions away from the surfaces 27 and 29. At each side of each jack 37 is provided an appendage in the form of a knob 37a, b.
In use of the inductive coupler system the second part is suspended above the first part such that the plug member 21 lies above the socket region 5 defined in the mount 1 as shown in FIG. 3. When it is required to effect the coupling of the two halves of the respective inductive couplers and signal couplers, the plug member 21 is lowered into the socket region, the knobs 37a, b on each of the jacks 37 entering a respective channel 11c in one of the cylindrical regions 11b of the extensions 11a of the lever arms 11. As the plug member 21 moves further downwards within the socket region 5 towards the position shown in FIG. 4, displacement of the extensions 11a by the plug member 21 causes the frame members 7 to swing towards the surfaces 27, 29 of the second part 20. The knobs 37a, b finally each reach a shoulder 11d in the channels 11c, at which point the plug member 21 is prevented from moving further down in the socket region 5. With the plug member 21 in this position, the front surfaces of the half-cores 15a, b, 17a, b c, d carried by each of the frame members 7 are in face-to-face alignment with half-cores 31a, b, 33a, b, c, d carried by the second part 20. The dowel pins 19a, b extending from the surfaces 13 of the frame members are then in a position to engage the complementary indentations 35a, b in the surfaces 27, 29 of the second part 20, thus assuring the alignment of the respective halves of the inductive couplers and signal couplers. Following this alignment the hydraulic jacks 37 are actuated by hydraulic fluid passing through the umbilical cable 25 so as to drive the aligned mating surfaces of the half-cores 19a, 31a; 19b, 31b; 17a, 33a; 17b, 33b; 17c, 33c and 17d, 33d into intimate contact with each other against the bias of the spring loading of each of the half-cores the lever arms 9, 11, then lying in a substantially vertical position. The spring loading of the half-cores ensures the intimate contact of each of the pairs of half-cores within each inductive or signal coupler, even if the mating surfaces of each of the half-cores along each of the surfaces 13 of the two rows of frame members 7, and the two surfaces 27, 29 of the second part 20 do not precisely lie in the same plane.
In order to disconnect the two parts of the coupler system such that for example the surface vessel supporting the second part 20 may move away from the template, the hydraulic jacks 37 are caused to contract, the knobs 37a, b pulling the lever arm extensions 11a in with them by virtue of their being trapped in the lower ends of the channels 11a. The front surfaces 13, together with the respective magnetic half-cores are thus disengaged from the surfaces 27, 29 of the second part 20, the positive pulling action of the jacks 37 overcoming any reluctance of the frames 7 to move due to for example corrosion of any of the dowel pegs 19a, b in the complementary indentations 35a, b or corrosion of any of the bearings. The plug member 21 may then be lifted out of the socket region 5, the knobs 37a, b, sliding out of their respective channels 11a. As the plug member 21 is removed from the socket region 5, the weight of the frame members 7 causes them to swing back on the lever arms 9, 11 to the position shown in FIGS. 1 and 3.

Claims (6)

We claim:
1. An inductive coupler system comprising: a first part in which is defined a socket region, said first part supporting a first frame member which carries a first magnetic half-core constituting one half of an inductive coupler; a second part comprising a plug member adapted to be received by the socket region, said second part incorporating a second frame member which carries a second magnetic half-core constituting the other half of the inductive coupler; first actuation means connected to said first part; and second actuation means connected to said second part, said first actuation means being operable by the insertion of said plug member into said socket region to move said first frame member towards said second frame member to a position where a mating surface of each of said half-cores are in surface-to-surface alignment with each other, said second actuation means being operative in a first sense to drive the aligned mating surface into intimate contact, and operable in a second sense to cause said first actuation means to move said first frame member away from said second frame member.
2. An inductive coupler system in accordance with claim 1 in which: said first part includes a further frame member which carries a third magnetic half-core constituting one half of a further inductive coupler, said first and further frame members being positioned on opposing sides of said socket region; a fourth magnetic half-core constituting the other half of said further inductive coupler is carried by said second frame member with its mating surface on the opposite side of said second frame member to that of the second magnetic half-core; and a further said first actuation means is connected to a mount, said further first actuation means being operable by the insertion of said plug member into said socket region to move said further frame member to a position where a mating surface of said third and fourth half-cores are in surface-to-surface alignment with each other, operation of said second actuation means in said first sense being effective to drive the aligned mating surfaces of said third and fourth magnetic halfcores into intimate contact, and operation of said second actuation means in said second sense being effective to cause said further first actuation means to move said further frame member away from said second frame member.
3. An inductive coupler system in accordance with claim 1 in which the first actuation means comprises a parallel motion linkage connecting said first frame member to said first part, said linkage having a lever arm extending into the path of movement of said plug member into said socket region.
4. An inductive coupler system in accordance with claim 3 in which said second actuation means comprises a hydraulic jack.
5. An inductive coupler system in accordance with claim 4 in which said jack exerts a positive pulling action on said lever arm on operation of said jack in said second sense.
6. An inductive coupler system in accordance with claim 1 in which at least one of said magnetic half-cores is spring loaded for movement away from its associated frame member.
US06/633,968 1983-07-29 1984-07-24 Inductive coupler systems Expired - Fee Related US4543556A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838320510A GB8320510D0 (en) 1983-07-29 1983-07-29 Inductive coupler systems
GB8320510 1983-07-29

Publications (1)

Publication Number Publication Date
US4543556A true US4543556A (en) 1985-09-24

Family

ID=10546498

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/633,968 Expired - Fee Related US4543556A (en) 1983-07-29 1984-07-24 Inductive coupler systems

Country Status (3)

Country Link
US (1) US4543556A (en)
GB (1) GB8320510D0 (en)
NO (1) NO164269C (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216402A (en) * 1992-01-22 1993-06-01 Hughes Aircraft Company Separable inductive coupler
US5379021A (en) * 1992-12-11 1995-01-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for transferring electrical power
US5536979A (en) * 1994-06-30 1996-07-16 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with switch for reduced magnetic field
US5652479A (en) * 1995-01-25 1997-07-29 Micro Linear Corporation Lamp out detection for miniature cold cathode fluorescent lamp system
US5680028A (en) * 1994-06-30 1997-10-21 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with reduced magnetic field
US5754012A (en) * 1995-01-25 1998-05-19 Micro Linear Corporation Primary side lamp current sensing for minature cold cathode fluorescent lamp system
US5818669A (en) * 1996-07-30 1998-10-06 Micro Linear Corporation Zener diode power dissipation limiting circuit
US5825223A (en) * 1996-07-30 1998-10-20 Micro Linear Corporation Technique for controlling the slope of a periodic waveform
US5844378A (en) * 1995-01-25 1998-12-01 Micro Linear Corp High side driver technique for miniature cold cathode fluorescent lamp system
US5896015A (en) * 1996-07-30 1999-04-20 Micro Linear Corporation Method and circuit for forming pulses centered about zero crossings of a sinusoid
US5965989A (en) * 1996-07-30 1999-10-12 Micro Linear Corporation Transformer primary side lamp current sense circuit
US6344980B1 (en) 1999-01-14 2002-02-05 Fairchild Semiconductor Corporation Universal pulse width modulating power converter
US20070050030A1 (en) * 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
US20070287508A1 (en) * 2006-06-08 2007-12-13 Flextronics Ap, Llc Contactless energy transmission converter
US20080190480A1 (en) * 2007-02-14 2008-08-14 Flextronics Ap, Llc Leadframe based photo voltaic electronic assembly
EP3133213A1 (en) * 2015-08-21 2017-02-22 MTS Maschinentechnik Schrode AG Connection assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398224A (en) * 1972-03-01 1975-06-18 Krautkraemer Gmbh Cable connector unit for ultrasonic instruments
US4038625A (en) * 1976-06-07 1977-07-26 General Electric Company Magnetic inductively-coupled connector
US4303902A (en) * 1979-08-31 1981-12-01 Westinghouse Electric Corp. Inductive coupler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398224A (en) * 1972-03-01 1975-06-18 Krautkraemer Gmbh Cable connector unit for ultrasonic instruments
US4038625A (en) * 1976-06-07 1977-07-26 General Electric Company Magnetic inductively-coupled connector
US4303902A (en) * 1979-08-31 1981-12-01 Westinghouse Electric Corp. Inductive coupler

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216402A (en) * 1992-01-22 1993-06-01 Hughes Aircraft Company Separable inductive coupler
US5379021A (en) * 1992-12-11 1995-01-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for transferring electrical power
US5680028A (en) * 1994-06-30 1997-10-21 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with reduced magnetic field
US5536979A (en) * 1994-06-30 1996-07-16 Mceachern; Alexander Charger for hand-held rechargeable electric apparatus with switch for reduced magnetic field
US5844378A (en) * 1995-01-25 1998-12-01 Micro Linear Corp High side driver technique for miniature cold cathode fluorescent lamp system
US5754012A (en) * 1995-01-25 1998-05-19 Micro Linear Corporation Primary side lamp current sensing for minature cold cathode fluorescent lamp system
US5652479A (en) * 1995-01-25 1997-07-29 Micro Linear Corporation Lamp out detection for miniature cold cathode fluorescent lamp system
US5818669A (en) * 1996-07-30 1998-10-06 Micro Linear Corporation Zener diode power dissipation limiting circuit
US5825223A (en) * 1996-07-30 1998-10-20 Micro Linear Corporation Technique for controlling the slope of a periodic waveform
US5896015A (en) * 1996-07-30 1999-04-20 Micro Linear Corporation Method and circuit for forming pulses centered about zero crossings of a sinusoid
US5965989A (en) * 1996-07-30 1999-10-12 Micro Linear Corporation Transformer primary side lamp current sense circuit
US6344980B1 (en) 1999-01-14 2002-02-05 Fairchild Semiconductor Corporation Universal pulse width modulating power converter
US6469914B1 (en) 1999-01-14 2002-10-22 Fairchild Semiconductor Corporation Universal pulse width modulating power converter
US20070050030A1 (en) * 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
US20070287508A1 (en) * 2006-06-08 2007-12-13 Flextronics Ap, Llc Contactless energy transmission converter
US7826873B2 (en) 2006-06-08 2010-11-02 Flextronics Ap, Llc Contactless energy transmission converter
US20080190480A1 (en) * 2007-02-14 2008-08-14 Flextronics Ap, Llc Leadframe based photo voltaic electronic assembly
US8609978B2 (en) 2007-02-14 2013-12-17 Flextronics Ap, Llc Leadframe based photo voltaic electronic assembly
EP3133213A1 (en) * 2015-08-21 2017-02-22 MTS Maschinentechnik Schrode AG Connection assembly

Also Published As

Publication number Publication date
NO164269B (en) 1990-06-05
GB8320510D0 (en) 1983-09-01
NO164269C (en) 1990-09-12
NO842974L (en) 1985-01-30

Similar Documents

Publication Publication Date Title
US4543556A (en) Inductive coupler systems
US8511908B2 (en) Wet mate connector
JPH0222986B2 (en)
CN209387915U (en) To prospective component and undersea fiber-optic connector
US9097861B2 (en) Subsea optical connector using multiple seals
US4934778A (en) Zero insertion force optical connector
CN108551045B (en) A kind of multivariant charging pile mechanism
GB2144274A (en) Inductive coupler system
US8342866B2 (en) Connector assemblies having mating sides moved by fluidic coupling mechanisms
NO823933L (en) Pluggable Pipeline Coupler.
EP3841603B1 (en) Mechanical input/output selector
US4586767A (en) Inductive coupler systems
CN112901609A (en) Assembled buoyancy tank and flexible connection device thereof
JP2591394B2 (en) Piping connection device
CN219477113U (en) Automatic net twine plugging structure
CN217583292U (en) One-way hydraulic valve structure
JP3049632B2 (en) Auto coupling device
SU720593A1 (en) Electrical jack for interconnecting different units
CN220772367U (en) Sensor quick-operation joint with verifying attachment butt joint
CN220121035U (en) Optical fiber connector convenient to use
CN214837552U (en) Assembled buoyancy tank and flexible connection device thereof
SU1094166A1 (en) Device for coupling radio electric unit with rack
SU680091A1 (en) Electric connector
SU1027844A1 (en) Device for joining electronic unit to rack
JPS5741144A (en) Work suspension device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: MARCONI AVIONICS LIMITED AIRPORT WORKS, ROCHESTER,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TAYLOR, DOUGLAS R.;PEARCE, DAVID W.;REEL/FRAME:004331/0648

Effective date: 19841024

Owner name: MARCONI AVIONICS LIMITED, AIRPORT WORKS, ROCHESTER

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TAYLOR, DOUGLAS R.;REEL/FRAME:004331/0643

Effective date: 19840925

FPAY Fee payment

Year of fee payment: 4

LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19930926

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362