US4534845A - Separator-gas electrode combination - Google Patents

Separator-gas electrode combination Download PDF

Info

Publication number
US4534845A
US4534845A US06/637,456 US63745684A US4534845A US 4534845 A US4534845 A US 4534845A US 63745684 A US63745684 A US 63745684A US 4534845 A US4534845 A US 4534845A
Authority
US
United States
Prior art keywords
separator
combination
gas
face
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/637,456
Inventor
James A. McIntyre
Robert F. Phillips
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US06/637,456 priority Critical patent/US4534845A/en
Assigned to DOW CHEMICAL COMPANY, THE reassignment DOW CHEMICAL COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MCINTYRE, JAMES A., PHILLIPS, ROBERT F.
Priority to CA000481760A priority patent/CA1258822A/en
Application granted granted Critical
Publication of US4534845A publication Critical patent/US4534845A/en
Assigned to FIRST UNION NATIONAL BANK OF FLORIDA reassignment FIRST UNION NATIONAL BANK OF FLORIDA SUPPLEMENTAL INTELLECTUAL PROPERTY PLEDGE AGREEMENT Assignors: 442 CORPORATION, HURON TECH CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to electrolytic cells, and particularly to electrolytic cells having a separator and a gas electrode.
  • the separator is a member designed to impede the flow of liquids between the two electrodes.
  • Separators are often composed of a mat of fibrous material or an ion exchange membrane sheet supported by a screen-like support member. It is important that the separator be held firmly in place to minimize excessive flexing, which causes cracks or breaks in the separator and defeats its purpose. Corrosion problems make it difficult to supply a support member that will provide the necessary rigidity over a long period of time.
  • These gas electrodes have a plurality of passageways traversing the electrode which provide a pathway for liquids and gases to enter and exit the electrode.
  • a gas-liquid interface is formed by flowing a gas reactant into the passageways from one face of the electrode and flowing a liquid reactant into the passageways from another face of the electrode. Electrochemical reactions are caused to occur at this interface to produce a nonvolatile product.
  • the invention provides a simple method whereby a separator may be rigidly supported on a gas electrode of the type described above.
  • the invention is separator-gas electrode combination which comprises (a) a separator adapted to permit the flow of fluids or ions therethrough and having at least a first and a second face; and (b) a hydraulically permeable gas electrode adapted to permit a liquid and a gas to enter and exit and having at least a first face and a second face; and (c) an electrically non-conductive self-draining member having a fluid outlet and at least two faces.
  • At least a portion of a first face of the self-draining member is contiguous to at least a portion of one face of the separator and at least a portion of a second face of the self-draining member is contiguous to at least a portion of one face of the gas electrode.
  • the self-draining member has a plurality of interconnected passageways which are in fluid-transferring communication with the separator, the gas electrode, and the fluid outlet and provide the major conduit therebetween.
  • FIG. 1 illustrates one embodiment of the invention. It shows a separator-gas electrode combination which is planar.
  • FIG. 2 illustrates another embodiment of the invention. It shows a cylindrical shaped separator-gas electrode combination.
  • FIG. 3 illustrates the separator-gas electrode combination in an electrochemical cell.
  • FIG. 1 shows the separator-gas electrode combination 100.
  • the combination comprises a separator 101, a gas electrode 103, and a self-draining member 102 which has a fluid outlet 107.
  • One face of the self-draining member 102 is contiguous to at least a portion of one face of the separator 101 and a second face of the self-draining member is contiguous to at least a portion of one face of the gas electrode 103.
  • a second face of the gas electrode is contiguous to a gas chamber 105 which has a gas inlet port 104 and an optional gas outlet port 106.
  • the separator-gas electrode combination 200 is illustrated in a cylindrical shape.
  • the combination comprises a separator 101 and a self-draining member 102 having a fluid outlet 107.
  • a first face of the self-draining member is contiguous to at least a portion of one face of the separator 101.
  • a second face of the self-draining member 102 is contiguous to at least a portion of one face of a gas electrode 103.
  • the gas electrode 103 encloses a gas chamber 105 which has a gas inlet port 104 and an optional gas outlet port 106.
  • FIG. 3 illustrates the separator-electrode combination in place in an electrochemical cell 300.
  • the cell comprises an anode 309 in an anode chamber 310.
  • the anode chamber has an inlet port through conduit 311 and an outlet port through conduit 316.
  • Conduit 312 provides another outlet port from the anode chamber 310.
  • the separator-gas electrode combination comprises a separator 101, a gas electrode 103 and a self-draining member 102, which has a fluid outlet 107. Contiguous to one face of the gas electrode 103 is a gas chamber 105.
  • the chamber has a gas inlet port 104 and an optional gas outlet port 106. Electrical power is supplied to the anode and the cathode by power source 314 through electrical leads 313 and 315.
  • the separator 101 (FIGS. 1-3) is a diaphragm or an ion exchange membrane.
  • a diaphragm is a hydraulically permeable separator most commonly composed of asbestos fibers, although many other materials may be used, such as: (1) mixtures of fibrous asbestos and polytetrafluoroethylene (sold under the trade name "Teflon"); (2) fibers of other polymers; and (3) fibrous copolymers of fluorinated ethylenes, propylenes, and the like.
  • the diaphragm must be thin enough to be substantially permeable to liquid flow and should not become easily plugged. Conversely, it should be thick enough to hold well to the self-draining member and not rupture or have large openings. Suitable asbestos diaphragm thicknesses have been found to be from about 0.06 of an inch to about 0.25 of an inch for most applications.
  • the separator may be a substantially completely hydraulically impermeable ion exchange membrane.
  • Membranes are usually comprised of a sheet of resinous material which contains fixed anion or cation exchange groups that permit intrusion and exchange of some ions, while excluding other ions.
  • Commonly used cation selective membranes comprise polymers having one or more negatively charged radicals such as: --SO 3 - ; --COO - ; --PO 3 -- ; --HPO 2 - ; --AsO 3 -- ; and --SeO 3 - .
  • Vinyl addition polymers and condensation polymers are well suited for use as ion exchange membrane.
  • the gas electrode 103 (FIGS. 1-3) is an electrically conductive, hydraulically permeable member having a plurality of interconnecting passageways traversing the member.
  • the passageways have diameters sufficiently large to allow gases and liquids to enter and flow at least partially through the electrode.
  • Such electrodes are usually from about 0.01 to about 0.10 inch thick and are most commonly from about 0.03 to about 0.04 inch thick.
  • the electrode must be constructed of a material which is thermally and chemically suitable to the conditions present in a cell. Materials such as nickel, iron, steel, titanium, carbon particles or carbon particles bonded together with a plastic- or wax-like material have been found to be suitable for most electrochemical processes. Other suitable gas electrodes and methods for preparing them are taught in the following patents: U.S. Pat. No.
  • the self-draining member 102 (FIGS. 1-3) is positioned between the separator and the gas electrode.
  • a plurality of interconnecting passageways traverse the member. These passageways have average diameters sufficiently large to make the member self-draining, i.e., the effects of gravity are greater than the effects of capillary pressure on a liquid present within the passageways.
  • the actual required diameter depends on the surface tension, the viscosity and other physical characteristics of a liquid present within the passageways of the member 102. In most commonly encountered processes, the passageways should have minimum diameters of about 30 to 50 microns. The maximum diameter is not critical but it should not be so large as to not be supportive.
  • the thickness of the self-draining member should be minimized. If the member is too thick, the distance between the electrodes is increased and the resistance losses of the cell become excessive. Conversely, if the member is too thin, there is insufficient space to allow nonvolatile products to drain into the fluid outlet. Suitable thicknesses for the self-draining member have been found to be from about 0.03 inch to about 0.25 inch. However, for most applications, thicknesses of from about 0.06 inch to about 0.20 inch have been determined to be most suitable.
  • the self-draining member 102 must be electrically non-conductive, otherwise, undesirable electrochemical reactions will occur in the self-draining member where no gas is present.
  • Suitable non-conductive materials include glass, plastic and various ceramics.
  • the components of the member may be individual particles supported by a screen-type or other suitable support, or they may be particles sintered or bonded together.
  • the electrode is either a rigid, self-supporting member or an accumulation of loose particles held rigidly together by a screen-like container.
  • the self-draining member may be assembled by bonding or fusing together a plurality of individual particles.
  • the member may be composed of loose particles held rigidly together by a screen-like container.
  • the assembled, self-draining member is then pressed against the electrode and secured (e.g. bolted, bonded, sintered or fused) thereto.
  • the so-formed combination with then be self-supporting and substantially rigid.
  • the separator is then placed against the self-draining member and secured (e.g. bolted or bonded) thereto.
  • the member may be held in place by the hydraulic pressure of a liquid electrolyte present in an operating cell.
  • a particularly convenient method for applying an asbestos diaphragm to a self-draining member is by drawing or aspirating a substantially even layer of asbestos fibers onto the member to a desired thickness. This may be done using a tank containing an asbestos slurry. One face of the self-draining member (whether attached to the electrode or not) is positioned to contact the slurry and a vacuum is then applied to the opposite face of the member. The vacuum draws the fibrous asbestos onto the member.
  • a fine mesh screen or cloth may optionally be placed on the surface of the self-draining member contacting the slurry to enhance the deposition of asbestos onto the member as the slurry is pulled therethrough.
  • Another convenient method for forming an asbestos diaphragm is by remotely forming the fibers into a paper-like web or non-woven mat. It is then securely mounted on the self-draining member using adhesives, mechanical fasteners, or other desired means. Another method which may be used is by spraying or painting an asbestos slurry onto the support member and allowing it to dry.
  • ion exchange membrane materials Preparation of ion exchange membrane materials is described in many U.S. patents including U.S. Pat. No. 3,282,875. These ion exchange membranes are available under the trade designation "Nafion” from E. I. duPont de Nemours and Company Inc. They, as well as other ion exchange membranes, are well-suited for the indicated purpose.
  • the separator-gas electrode combination has a thickness of from about 0.1 to about 0.6 inch (about 0.03 to about 0.25 inch for the self-draining member; about 0.06 to about 0.25 inch for the separator; and about 0.01 to about 0.1 inch for the electrode).
  • the separator-gas electrode combination is illustrated in an electrochemical cell 300.
  • it is shown as a separator-cathode combination.
  • separator-anode combination it could also be used as a separator-anode combination.
  • a liquid electrolyte is flowed into anode chamber 310 through conduit 311.
  • the electrolyte is then flowed through the separator 101, through the self-draining member 102 and into at least a portion of the passageways of the gas electrode 103.
  • a gas is flowed into the gas chamber 105 through inlet port 104. Excess gas and gaseous products produced at the electrode are removed through gas outlet port 106.
  • Power is supplied to the anode 309 through lead 313 and to the cathode 103 through lead 315. Electrochemical reactions occur between the gas and the liquid within the passageways of the cathode 103 and anodic reactions occur at anode 309.
  • Gaseous products produced in the passageways of the gas cathode 103 diffuse into the gas chamber 105 where they are removed through outlet port 106.
  • Nonvolatile products produced within the passageways of the gas electrode 103 diffuse into the passageways of the self-draining member where they blend with reactants and flow by gravity into a lower portion of the self-draining member. They are then removed through outlet port 107.
  • Gaseous products produced at the anode 309 are removed through conduit 312, i.e., excess electrolyte and nonvolatile products are removed from the anode compartment 310 through conduit 316.
  • the separator is an ion exchange membrane, only ions will pass through the separator 101 into the self-draining member 102. In this case, it is necessary to flow a liquid into the self-draining member or into the electrode to dissolve the ions. Water is commonly used for this purpose.
  • the electrochemical cell has been found to be particularly useful for the production of chlorine and caustic from a sodium chloride brine solution.
  • the brine solution is fed into the anode compartment 310 through conduit 311. A portion of the brine is flowed through the separator 101, through the self-draining member 102, and into the passageways of the gas electrode 103.
  • An oxygen-containing gas is flowed into the gas electrode 103 from gas chamber 105.
  • Electrical energy at a current density of about 0.5 to about 3.0 amps per square inch at a voltage of about 1.8 to about 2.9, is applied to the anode 309 and to the cathode 103 to cause reactions to occur between the oxygen gas, the NaCl and the H 2 O.
  • Chlorine gas is produced at the anode and removed through conduit 312.
  • Sodium hydroxide produced at the cathode 103 mixes with the aqueous NaCl solution in the electrode and diffuses out of the passageways of the cathode 103 and into the passageways of the self-draining member 102. The mixture then flows by gravity to a lower portion of the self-draining member 102 and is removed through outlet port 107.
  • the NaOH concentration of the product is controlled by increasing or decreasing the rate at which material is removed from the self-draining member. Rapid removal rates yield generally weaker NaOH solutions, while slow removal rates yield generally stronger NaOH solutions. Passage of electrical current through the electrolyte frequently raises the operating temperature of the electrolyte to 80°-99° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention is a separator-gas electrode combination comprising a separator having a first and a second face adapted to permit the flow of fluids or ions therethrough; a gas electrode adapted to permit a liquid and a gas to enter and exit the electrode and having at least a first and a second face; and a non-conductive self-draining member having a fluid outlet. The self-draining member has at least two faces; at least a portion of a first face contiguous to at least a portion of one face of the separator and at least a portion of a second face contiguous to at least a portion of one face of the gas electrode. The self-draining member has a plurality of interconnected passageways which are in fluid transferring communication with the separator, the gas electrode, and the fluid outlet and provide the major conduit therebetween.

Description

This application is a continuation of Ser. No. 404,690, filed 8-3-82, now abandoned.
BACKGROUND OF THE INVENTION
This invention relates to electrolytic cells, and particularly to electrolytic cells having a separator and a gas electrode.
Most electrolytic cells have two electrodes spaced apart by a separator. The separator is a member designed to impede the flow of liquids between the two electrodes. Separators are often composed of a mat of fibrous material or an ion exchange membrane sheet supported by a screen-like support member. It is important that the separator be held firmly in place to minimize excessive flexing, which causes cracks or breaks in the separator and defeats its purpose. Corrosion problems make it difficult to supply a support member that will provide the necessary rigidity over a long period of time.
To provide the necessary rigidity, it would be desirable to support the separator on an electrode. However, it is impossible to support separators on some recently-developed gas electrodes of the type described in U.S. Pat. Nos. 4,179,350; 4,187,350; 4,197,367; 4,213,833; 4,256,545; 4,260,469; and 4,269,691.
These gas electrodes have a plurality of passageways traversing the electrode which provide a pathway for liquids and gases to enter and exit the electrode. In the operation of these electrodes, a gas-liquid interface is formed by flowing a gas reactant into the passageways from one face of the electrode and flowing a liquid reactant into the passageways from another face of the electrode. Electrochemical reactions are caused to occur at this interface to produce a nonvolatile product.
If the separator were supported on a face of this type electrode, there would be no suitable exit from the electrode for the nonvolatile product. The only possible exits would be:
(1) through the gas side of the electrode; which would prevent additional gas from entering and cause the electrochemical reactions to cease; or
(2) through the separator and back into the adjoining electrode chamber where the product might be reconverted into reactants.
It would be desirable to rigidly support a separator on this type of gas electrode to minimize flexing while simultaneously providing a pathway for the removal of nonvolatile products.
SUMMARY OF THE INVENTION
The invention provides a simple method whereby a separator may be rigidly supported on a gas electrode of the type described above. The invention is separator-gas electrode combination which comprises (a) a separator adapted to permit the flow of fluids or ions therethrough and having at least a first and a second face; and (b) a hydraulically permeable gas electrode adapted to permit a liquid and a gas to enter and exit and having at least a first face and a second face; and (c) an electrically non-conductive self-draining member having a fluid outlet and at least two faces. At least a portion of a first face of the self-draining member is contiguous to at least a portion of one face of the separator and at least a portion of a second face of the self-draining member is contiguous to at least a portion of one face of the gas electrode. The self-draining member has a plurality of interconnected passageways which are in fluid-transferring communication with the separator, the gas electrode, and the fluid outlet and provide the major conduit therebetween.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 illustrates one embodiment of the invention. It shows a separator-gas electrode combination which is planar.
FIG. 2 illustrates another embodiment of the invention. It shows a cylindrical shaped separator-gas electrode combination.
FIG. 3 illustrates the separator-gas electrode combination in an electrochemical cell.
DETAILED DESCRIPTION OF THE DRAWING
FIG. 1 shows the separator-gas electrode combination 100. The combination comprises a separator 101, a gas electrode 103, and a self-draining member 102 which has a fluid outlet 107. One face of the self-draining member 102 is contiguous to at least a portion of one face of the separator 101 and a second face of the self-draining member is contiguous to at least a portion of one face of the gas electrode 103. A second face of the gas electrode is contiguous to a gas chamber 105 which has a gas inlet port 104 and an optional gas outlet port 106.
In FIG. 2, the separator-gas electrode combination 200 is illustrated in a cylindrical shape. The combination comprises a separator 101 and a self-draining member 102 having a fluid outlet 107. A first face of the self-draining member is contiguous to at least a portion of one face of the separator 101. A second face of the self-draining member 102 is contiguous to at least a portion of one face of a gas electrode 103. The gas electrode 103 encloses a gas chamber 105 which has a gas inlet port 104 and an optional gas outlet port 106.
FIG. 3 illustrates the separator-electrode combination in place in an electrochemical cell 300. The cell comprises an anode 309 in an anode chamber 310. The anode chamber has an inlet port through conduit 311 and an outlet port through conduit 316. Conduit 312 provides another outlet port from the anode chamber 310. The separator-gas electrode combination comprises a separator 101, a gas electrode 103 and a self-draining member 102, which has a fluid outlet 107. Contiguous to one face of the gas electrode 103 is a gas chamber 105. The chamber has a gas inlet port 104 and an optional gas outlet port 106. Electrical power is supplied to the anode and the cathode by power source 314 through electrical leads 313 and 315.
The separator 101 (FIGS. 1-3) is a diaphragm or an ion exchange membrane.
A diaphragm is a hydraulically permeable separator most commonly composed of asbestos fibers, although many other materials may be used, such as: (1) mixtures of fibrous asbestos and polytetrafluoroethylene (sold under the trade name "Teflon"); (2) fibers of other polymers; and (3) fibrous copolymers of fluorinated ethylenes, propylenes, and the like. The diaphragm must be thin enough to be substantially permeable to liquid flow and should not become easily plugged. Conversely, it should be thick enough to hold well to the self-draining member and not rupture or have large openings. Suitable asbestos diaphragm thicknesses have been found to be from about 0.06 of an inch to about 0.25 of an inch for most applications.
Optionally, the separator may be a substantially completely hydraulically impermeable ion exchange membrane. Membranes are usually comprised of a sheet of resinous material which contains fixed anion or cation exchange groups that permit intrusion and exchange of some ions, while excluding other ions. Commonly used cation selective membranes comprise polymers having one or more negatively charged radicals such as: --SO3 - ; --COO- ; --PO3 -- ; --HPO2 - ; --AsO3 -- ; and --SeO3 -. Vinyl addition polymers and condensation polymers are well suited for use as ion exchange membrane.
The gas electrode 103 (FIGS. 1-3) is an electrically conductive, hydraulically permeable member having a plurality of interconnecting passageways traversing the member. The passageways have diameters sufficiently large to allow gases and liquids to enter and flow at least partially through the electrode. Such electrodes are usually from about 0.01 to about 0.10 inch thick and are most commonly from about 0.03 to about 0.04 inch thick. The electrode must be constructed of a material which is thermally and chemically suitable to the conditions present in a cell. Materials such as nickel, iron, steel, titanium, carbon particles or carbon particles bonded together with a plastic- or wax-like material have been found to be suitable for most electrochemical processes. Other suitable gas electrodes and methods for preparing them are taught in the following patents: U.S. Pat. No. 4,179,350, Catalytically Innate Electrodes, G. A. Deborski, Dec. 18, 1979; U.S. Pat. No. 4,187,350, J. A. McIntyre and R. F. Phillips, Feb. 5, 1980; U.S. Pat. No. 4,197,367, G. A. Deborski, Apr. 8, 1980; U.S. Pat. No. 4,213,833, J. D. Lefevre, July 22, 1980; U.S. Pat. No. 4,256,545, G. A. Deborski, Mar. 17, 1981; U.S. Pat. No. 4,260,469, J. A. McIntyre, R. F. Phillips and J. D. Lefevre, Apr. 7, 1981; and U.S. Pat. No. 4,269,691, G. A. Deborski, May 16, 1981. The teachings of these patents are herein incorporated by reference.
The self-draining member 102 (FIGS. 1-3) is positioned between the separator and the gas electrode. A plurality of interconnecting passageways traverse the member. These passageways have average diameters sufficiently large to make the member self-draining, i.e., the effects of gravity are greater than the effects of capillary pressure on a liquid present within the passageways. The actual required diameter depends on the surface tension, the viscosity and other physical characteristics of a liquid present within the passageways of the member 102. In most commonly encountered processes, the passageways should have minimum diameters of about 30 to 50 microns. The maximum diameter is not critical but it should not be so large as to not be supportive.
The thickness of the self-draining member should be minimized. If the member is too thick, the distance between the electrodes is increased and the resistance losses of the cell become excessive. Conversely, if the member is too thin, there is insufficient space to allow nonvolatile products to drain into the fluid outlet. Suitable thicknesses for the self-draining member have been found to be from about 0.03 inch to about 0.25 inch. However, for most applications, thicknesses of from about 0.06 inch to about 0.20 inch have been determined to be most suitable.
The self-draining member 102 must be electrically non-conductive, otherwise, undesirable electrochemical reactions will occur in the self-draining member where no gas is present. Suitable non-conductive materials include glass, plastic and various ceramics. The components of the member may be individual particles supported by a screen-type or other suitable support, or they may be particles sintered or bonded together.
It is not critical that an entire face of the self-draining member 102 be contiguous with an entire of the separator 101, nor is it critical that an entire face of the member be contiguous with an entire face of the electrode. There should, however, be sufficient contact to allow an operable amount of liquid to pass from the separator 101 to the electrode 103.
Methods for constructing the electrode are taught in the above-described patents (which have been incorporated by reference). Following those teachings, the electrode is either a rigid, self-supporting member or an accumulation of loose particles held rigidly together by a screen-like container.
The self-draining member may be assembled by bonding or fusing together a plurality of individual particles. Optionally, the member may be composed of loose particles held rigidly together by a screen-like container. The assembled, self-draining member is then pressed against the electrode and secured (e.g. bolted, bonded, sintered or fused) thereto. The so-formed combination with then be self-supporting and substantially rigid.
The separator is then placed against the self-draining member and secured (e.g. bolted or bonded) thereto. Optionally, the member may be held in place by the hydraulic pressure of a liquid electrolyte present in an operating cell.
A particularly convenient method for applying an asbestos diaphragm to a self-draining member is by drawing or aspirating a substantially even layer of asbestos fibers onto the member to a desired thickness. This may be done using a tank containing an asbestos slurry. One face of the self-draining member (whether attached to the electrode or not) is positioned to contact the slurry and a vacuum is then applied to the opposite face of the member. The vacuum draws the fibrous asbestos onto the member. A fine mesh screen or cloth may optionally be placed on the surface of the self-draining member contacting the slurry to enhance the deposition of asbestos onto the member as the slurry is pulled therethrough. Another convenient method for forming an asbestos diaphragm is by remotely forming the fibers into a paper-like web or non-woven mat. It is then securely mounted on the self-draining member using adhesives, mechanical fasteners, or other desired means. Another method which may be used is by spraying or painting an asbestos slurry onto the support member and allowing it to dry.
Preparation of ion exchange membrane materials is described in many U.S. patents including U.S. Pat. No. 3,282,875. These ion exchange membranes are available under the trade designation "Nafion" from E. I. duPont de Nemours and Company Inc. They, as well as other ion exchange membranes, are well-suited for the indicated purpose.
After assembly, the separator-gas electrode combination has a thickness of from about 0.1 to about 0.6 inch (about 0.03 to about 0.25 inch for the self-draining member; about 0.06 to about 0.25 inch for the separator; and about 0.01 to about 0.1 inch for the electrode).
Referring now to FIG. 3, the separator-gas electrode combination is illustrated in an electrochemical cell 300. For the purposes of illustration, it is shown as a separator-cathode combination. However, it could also be used as a separator-anode combination.
In operation, a liquid electrolyte is flowed into anode chamber 310 through conduit 311. The electrolyte is then flowed through the separator 101, through the self-draining member 102 and into at least a portion of the passageways of the gas electrode 103. A gas is flowed into the gas chamber 105 through inlet port 104. Excess gas and gaseous products produced at the electrode are removed through gas outlet port 106. Power is supplied to the anode 309 through lead 313 and to the cathode 103 through lead 315. Electrochemical reactions occur between the gas and the liquid within the passageways of the cathode 103 and anodic reactions occur at anode 309. Gaseous products produced in the passageways of the gas cathode 103 diffuse into the gas chamber 105 where they are removed through outlet port 106. Nonvolatile products produced within the passageways of the gas electrode 103 diffuse into the passageways of the self-draining member where they blend with reactants and flow by gravity into a lower portion of the self-draining member. They are then removed through outlet port 107. Gaseous products produced at the anode 309 are removed through conduit 312, i.e., excess electrolyte and nonvolatile products are removed from the anode compartment 310 through conduit 316.
If the separator is an ion exchange membrane, only ions will pass through the separator 101 into the self-draining member 102. In this case, it is necessary to flow a liquid into the self-draining member or into the electrode to dissolve the ions. Water is commonly used for this purpose.
The electrochemical cell has been found to be particularly useful for the production of chlorine and caustic from a sodium chloride brine solution. The brine solution is fed into the anode compartment 310 through conduit 311. A portion of the brine is flowed through the separator 101, through the self-draining member 102, and into the passageways of the gas electrode 103. An oxygen-containing gas is flowed into the gas electrode 103 from gas chamber 105. Electrical energy, at a current density of about 0.5 to about 3.0 amps per square inch at a voltage of about 1.8 to about 2.9, is applied to the anode 309 and to the cathode 103 to cause reactions to occur between the oxygen gas, the NaCl and the H2 O. Chlorine gas is produced at the anode and removed through conduit 312. Sodium hydroxide produced at the cathode 103 mixes with the aqueous NaCl solution in the electrode and diffuses out of the passageways of the cathode 103 and into the passageways of the self-draining member 102. The mixture then flows by gravity to a lower portion of the self-draining member 102 and is removed through outlet port 107. The NaOH concentration of the product is controlled by increasing or decreasing the rate at which material is removed from the self-draining member. Rapid removal rates yield generally weaker NaOH solutions, while slow removal rates yield generally stronger NaOH solutions. Passage of electrical current through the electrolyte frequently raises the operating temperature of the electrolyte to 80°-99° C.

Claims (13)

What is claimed is:
1. A separator-gas electrode combination comprising:
(a) a separator adapted to permit the flow of fluids or ions therethrough and having at least a first and a second face; and
(b) a hydraulically permeable gas electrode adapted to permit a liquid and gas to enter and exit the electrode and having at least a first and second face; and
(c) a gas chamber contiguous to at least a portion of the second face of the gas electrode; and
(d) a means to introduce an oxygen-containing gas into said gas chamber; and
(e) an electrically non-conductive self-draining member having a fluid outlet opening external to the separator-gas electrode combination and at least two faces, at least a portion of a first face being contiguous to at least a portion of one face of the separator, and at least a portion of a second face being contiguous to at least a portion of the first face of the gas electrode; said member having a plurality of interconnected passageways in fluid-transferring communication with the separator, the gas electrode and the fluid outlet and providing the major conduit therebetween.
2. The combination of claim 1 wherein the separator is a hydraulically permeable diaphragm.
3. The combination of claim 2 wherein the diaphragm is asbestos fibers.
4. The combination of claim 1 wherein the separator is a substantially hydraulically impermeable ion exchange membrane.
5. The combination of claim 4 wherein the membrane is a cation selective membrane.
6. The combination of claim 3 wherein the diaphragm is from about 0.05 inch to about 0.25 inch thick.
7. The combination of claim 1 wherein the combination is substantially planar.
8. The combination of claim 1 wherein the separator, the gas electrode, and the self-draining member are cylindrical in shape.
9. The combination of claim 1 wherein the plurality of interconnected passageways of the self-draining member have an average diameter of at least about 30 microns.
10. The combination of claim 1 wherein the passageways of the self-draining member have an average diameter of at least about 50 microns.
11. The combination of claim 1 wherein the gas electrode is from about 0.01 inch to about 0.1 inch thick.
12. The combination of claim 1 wherein the self-draining member is from about 0.03 inch to about 0.25 inch thick.
13. The combination of claim 1 wherein the overall thickness of the combination is from about 0.1 inch to about 0.6 inch.
US06/637,456 1982-08-03 1984-08-03 Separator-gas electrode combination Expired - Lifetime US4534845A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US06/637,456 US4534845A (en) 1982-08-03 1984-08-03 Separator-gas electrode combination
CA000481760A CA1258822A (en) 1984-08-03 1985-05-17 Separator-gas electrode combination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40469082A 1982-08-03 1982-08-03
US06/637,456 US4534845A (en) 1982-08-03 1984-08-03 Separator-gas electrode combination

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US40469082A Continuation 1982-08-03 1982-08-03

Publications (1)

Publication Number Publication Date
US4534845A true US4534845A (en) 1985-08-13

Family

ID=27018726

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/637,456 Expired - Lifetime US4534845A (en) 1982-08-03 1984-08-03 Separator-gas electrode combination

Country Status (1)

Country Link
US (1) US4534845A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216428A1 (en) * 1985-09-19 1987-04-01 H-D Tech Incorporated Porous diaphragm for electrochemical cell
US4732660A (en) * 1985-09-09 1988-03-22 The Dow Chemical Company Membrane electrolyzer
US4753718A (en) * 1986-11-20 1988-06-28 Fmc Corporation Hydrogen peroxide electrolytic cell
US4921587A (en) * 1985-09-19 1990-05-01 H-D Tech, Inc. Porous diaphragm for electrochemical cell
EP0371965A4 (en) * 1987-03-02 1990-05-14 Gould Inc Ionomer membranes in pressure tolerant gas diffusion electrodes.
US5092976A (en) * 1987-03-02 1992-03-03 Westinghouse Electric Corp. Hydrogel loaded active layer in pressure tolerant gas diffusion electrodes
US5126031A (en) * 1987-03-02 1992-06-30 Gordon Arnold Z Coprecipitated hydrogels in pressure tolerant gas diffusion electrodes
WO1998027606A1 (en) * 1996-12-18 1998-06-25 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
US6039853A (en) * 1997-04-14 2000-03-21 Bayer Aktiengesellschaft Electrochemical half-cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017338A (en) * 1958-03-03 1962-01-16 Diamond Alkali Co Electrolytic process and apparatus
US3300398A (en) * 1962-10-12 1967-01-24 Standard Oil Co Process for the production of cyanogen halide and apparatus for use therewith
US3926769A (en) * 1973-05-18 1975-12-16 Dow Chemical Co Diaphragm cell chlorine production
US4040938A (en) * 1971-04-01 1977-08-09 Peter Murday Robertson Electrode arrangement for electrochemical cells
US4066519A (en) * 1977-03-28 1978-01-03 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous metal separator
US4140615A (en) * 1977-03-28 1979-02-20 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous anode separator
US4312720A (en) * 1978-09-05 1982-01-26 The Dow Chemical Co. Electrolytic cell and process for electrolytic oxidation
US4332662A (en) * 1980-07-07 1982-06-01 Hooker Chemicals & Plastics Corp. Electrolytic cell having a depolarized cathode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017338A (en) * 1958-03-03 1962-01-16 Diamond Alkali Co Electrolytic process and apparatus
US3300398A (en) * 1962-10-12 1967-01-24 Standard Oil Co Process for the production of cyanogen halide and apparatus for use therewith
US4040938A (en) * 1971-04-01 1977-08-09 Peter Murday Robertson Electrode arrangement for electrochemical cells
US3926769A (en) * 1973-05-18 1975-12-16 Dow Chemical Co Diaphragm cell chlorine production
US4066519A (en) * 1977-03-28 1978-01-03 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous metal separator
US4140615A (en) * 1977-03-28 1979-02-20 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous anode separator
US4312720A (en) * 1978-09-05 1982-01-26 The Dow Chemical Co. Electrolytic cell and process for electrolytic oxidation
US4332662A (en) * 1980-07-07 1982-06-01 Hooker Chemicals & Plastics Corp. Electrolytic cell having a depolarized cathode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732660A (en) * 1985-09-09 1988-03-22 The Dow Chemical Company Membrane electrolyzer
EP0216428A1 (en) * 1985-09-19 1987-04-01 H-D Tech Incorporated Porous diaphragm for electrochemical cell
US4891107A (en) * 1985-09-19 1990-01-02 H-D Tech Inc. Porous diaphragm for electrochemical cell
US4921587A (en) * 1985-09-19 1990-05-01 H-D Tech, Inc. Porous diaphragm for electrochemical cell
US4753718A (en) * 1986-11-20 1988-06-28 Fmc Corporation Hydrogen peroxide electrolytic cell
EP0371965A1 (en) * 1987-03-02 1990-06-13 Westinghouse Electric Corporation Ionomer membranes in pressure tolerant gas diffusion electrodes
EP0371965A4 (en) * 1987-03-02 1990-05-14 Gould Inc Ionomer membranes in pressure tolerant gas diffusion electrodes.
US5092976A (en) * 1987-03-02 1992-03-03 Westinghouse Electric Corp. Hydrogel loaded active layer in pressure tolerant gas diffusion electrodes
US5126031A (en) * 1987-03-02 1992-06-30 Gordon Arnold Z Coprecipitated hydrogels in pressure tolerant gas diffusion electrodes
US5863673A (en) * 1995-12-18 1999-01-26 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
US6060190A (en) * 1995-12-18 2000-05-09 Ballard Power Systems Inc. Electrochemical fuel cell membrane electrode assembly with porous electrode substrate
WO1998027606A1 (en) * 1996-12-18 1998-06-25 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
US6039853A (en) * 1997-04-14 2000-03-21 Bayer Aktiengesellschaft Electrochemical half-cell

Similar Documents

Publication Publication Date Title
US4569739A (en) Electrofilter using an improved electrode assembly
US4445986A (en) Electrochemical cell having a separator-gas electrode combination
US4737257A (en) Electrode for electrochemical cell
US4312720A (en) Electrolytic cell and process for electrolytic oxidation
US4124458A (en) Mass-transfer membrane and processes using same
CA1295284C (en) Electrolytic cell for alkali metal hydrosulfite solutions
US4210511A (en) Electrolyzer apparatus and electrode structure therefor
CA1190511A (en) Method of operating a liquid-gas electrochemical cell
US4172774A (en) Method and apparatus for lessening ionic diffusion
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
US4534845A (en) Separator-gas electrode combination
US4213833A (en) Electrolytic oxidation in a cell having a separator support
US4755272A (en) Bipolar electrochemical cell having novel means for electrically connecting anode and cathode of adjacent cell units
JPS629674B2 (en)
US4224129A (en) Novel oxygen electrode
JP3344828B2 (en) Saltwater electrolysis method
WO2021045614A1 (en) Compact electrochemical stack using corrugated electrodes
US4511441A (en) Method of operating a liquid-gas electrochemical cell
US4969981A (en) Cell and method of operating a liquid-gas electrochemical cell
US4608144A (en) Electrode and electrolytic cell
FI87937B (en) ELEKTROLYTISK CELL
FI89281B (en) ELEKTROKEMISK CELL MED DUBBELVERKANDE ELEKTROD
US9045837B2 (en) Electrolyser with coiled inlet hose
JPS62263989A (en) Porous diaphragm for electrochemical tank
JPH0569916B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW CHEMICAL COMPANY, THE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MCINTYRE, JAMES A.;PHILLIPS, ROBERT F.;REEL/FRAME:004399/0700

Effective date: 19820730

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: FIRST UNION NATIONAL BANK OF FLORIDA, FLORIDA

Free format text: SUPPLEMENTAL INTELLECTUAL PROPERTY PLEDGE AGREEMENT;ASSIGNORS:HURON TECH CORP.;442 CORPORATION;REEL/FRAME:008104/0651

Effective date: 19950512

FPAY Fee payment

Year of fee payment: 12