US4443490A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
US4443490A
US4443490A US06/442,845 US44284582A US4443490A US 4443490 A US4443490 A US 4443490A US 44284582 A US44284582 A US 44284582A US 4443490 A US4443490 A US 4443490A
Authority
US
United States
Prior art keywords
magnetic
magnetic layer
coating layer
binder
acrylic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/442,845
Inventor
Kaoru Nakajima
Kunio Kobayashi
Yoshiaki Hisagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10014579A external-priority patent/JPS5625231A/en
Priority claimed from JP10113379A external-priority patent/JPS5625235A/en
Application filed by Sony Corp filed Critical Sony Corp
Application granted granted Critical
Publication of US4443490A publication Critical patent/US4443490A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • G11B5/7023Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent containing polyesters, polyethers, silicones, polyvinyl resins, polyacrylresins or epoxy resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • G11B5/7026Radiation curable polymers

Definitions

  • the present invention relates to a magnetic recording medium, in which a magnetic recording layer primarily composed of magnetic powder and binder is formed on a non-magnetizable support, and particularly to binder of the magnetic recording layer.
  • the magnetic recording medium generally comprises a magnetic layer primarily composed of magnetic powder and binder formed on a non-magnetizable support such as a polyethylene terephthalate film.
  • the binder is formed by combining various thermoplastic and thermosetting resins.
  • various hardening agents such as polyisocyanate compounds are used together with these resins so that a three-dimensional cross-linked structure may be formed by thermosetting.
  • thermosetting method has demerits, such as an insufficientmechanical strength of coated layer, a difficulty in controlling the degree of hardening, and a shorter pot life of the magnetic paint prepared.
  • a method that hardens the magnetic layer under irradiation has recently been noticed.
  • a method is known wherein to improve the wearproof performance of coated magnetic layer and reduce voids thereof a magnetic paint that uses binder formed by mixing an allyl monomer and liquid thermoplastic high molecular prepolymer is coated on a base and then irradiated for polymerization and hardening of these monomer and prepolymer.
  • the above objects can be achieved only under heavy irradiation since the allyl compound is less reactive. Therefore, as far as an irradiation system of limited dosage capacity is used, the film coating speed is necessarily delayed, which is unfavorable for industrial application. Further, it is still necessary to improve the performance of coated magnetic layer in durability.
  • a magnetic recording medium carrying a magnetic layer thereon, the magnetic layer primarily being composed of a binder and magnetic powder, wherein said binder is composed of an acrylic compound having a plurality of unsaturated bonds in its molecule and a thermoplastic resin in a weight ratio of 80:20 to 20:80, and is hardened under irradiation.
  • the acrylic compound as mentioned above has double bonds between pairs of adjacent carbon atoms that are sensitive to radicals generated under irradiation, so that it undergoes a so-called radical polymerization reaction as its double bonds are attacked by an initiator, which is some dissociation products, primarily free radicals formed either from the acrylic compound itself or from the thermoplastic compound under irradiation, being hardened to form a complicated three-dimensional cross-linked network structure with the latter compound included therein. Therefore, even at a reduced radiation dose, a desirable magnetic layer can be formed that is characterized by a favorable high wearproof performance, low voids and also high durability. Further, the presence of a suitable amount of the thermoplastic resin component will improve the performance of coated magnetic layer in adherence to the base, wearproof property, and resistance to solvents.
  • the acrylic compounds must have at least two double bonds of the above mentioned type in individual molecules. This is because an acrylic compound that has only a single double bond can form only a linear polymer, which means a failure in achieving the desirable objects.
  • the mixing ratio of the acrylic compound and thermoplastic resin must be limited in the range as aforementioned, for use of a superfluous quantity of acrylic compound that exceeds the given range will provide a hard and frangile magnetic layer that adheres less favorably to the base while the use of a superfluous quantity of thermoplastic resin that exceeds the range will cause poor hardening of the layer and therefore lead to an increase in the powder dropping (peeling-off) or, for example, squeaks of the tape because the friction coefficient is not reduced.
  • the flatening or mirror surface treatment namely, the calender treatment of the magnetic layer
  • the magnetic recording medium can be manufactured in a process that comprises a steps of forming a magnetic layer of a mixture primarily composed of both binder sensitive to radiations and magnetic powder, of subjecting this magnetic layer to preliminary irradiation for partial hardening of the binder, of treating the surface of the magnetic layer to finish flat, and of subjecting the flat-surfaced magnetic layer to full irradiation to sufficiently harden the binder component.
  • the magnetic layer of mixture for example, magnetic coating is partially hardened under preliminary irradiation and then treated for flatening, for example, by a calender treatment, so that before the flatening treatment the magnetic layer of mixture has already been hardened to a prescribed hardness adhering to the base.
  • the method is free of such troubles as powder dropping or peeling-off of coated film.
  • the film is fully irradiated for hardening. Therefore, the magnetic layer can be finished in mirror surface and the wearproof performance thereof can be improved.
  • the acrylic compound usable in the present invention is preferably a reactive acrylic oligomer or oligoacrylate that contains a plurality of double bonds, and preferably three or more double bonds.
  • acrylic compound are, for example, polyacrylates and polymethacrylates (here the prefix "poly” refers to dimers or higher polymers) of polyhydric alcohols such as polyethylene glycohol, polypropylene oxide, polybutylene oxide, polycyclohexene oxide, polyethylene oxide, polypropylene oxide, polystyrene oxide, polyoxetane, polytetrahydrofuran, cyclohexanediol, xylylenediol, di-( ⁇ -hydroxyethoxy)benzene, glycerin, diglycerin, neopentylglycol, trimethylolpropane, triethylolpropane, pentaerythritol, dipentaethythritol, sorb
  • acrylic and methacrylic esters are ethylenedimethacrylate, ethyleneglycol diacrylate, diethylengeglycol dimethacrylate, polyethyleneglycol diacrylate, pentaerythritol triacrylate, pentaerythritol dimethacrylate, dipentaerythritol pentaacrylate, glycerin triacrylate, diglycerin dimethacrylate, 1,3-propanediol diacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacrylate, 1,5-pentanediol diacrylate, neopentylglycol diacrylate, triacrylic acid ester of trimethylolpropane with ethylene oxide added, and so on.
  • acrylamides and methacrylamides that are also usable for the acrylic compound are methlenebisacrylamide, and methylenebismethacrylamide, as well as ethylenediamine, diaminopropane, diaminobutane, pentamethylenediamine, hexamethylene, bis(2-aminopropyl)amine, diethylenetriaminediamine, heptamethylenediamine, octamethylenediamine, polyamine having amide bonds interrupted by foreign atoms, polyacrylamides and polymethacrylamides of cyclic polyamines [for example, phenylenediamine, xylyenediamine, ⁇ -(4-aminophenyl)ethylamine, diaminobenzoic acid, diaminotoluene, diaminoanthraquinone, and diaminofluorene], and so on.
  • methlenebisacrylamide and methylenebismethacrylamide
  • ethylenediamine di
  • N- ⁇ -hydroxyethyl- ⁇ -(methacylamide)ethyl acrylate N,N-bis( ⁇ -methacryloxyethyl)acrylamide, allyl methacrylate, and other compounds having two or more unsaturated bonds that can undergo addition polymerization can also be preferably used for the acrylic compound used in this invention.
  • polyester copolymers of various degrees of polymerization that can be produced by reacting trimethylolpropane monoacrylate, hexanediol, and adipic acid.
  • diacrylate of an aliphatic polyol such as pentaerthritol, or diacrylate of an alicyclic compound diglycidyl ether, or the like can be used instead of trimethylolpropane monoacrylate while hexanediol can be replaced with ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, 1,4-cyclohexanedimethanol, ethylene oxide added product and propylene oxide added product of bisphenol A, ethylene oxide added product and
  • Triols and tetraols such as trimethylolethane, trimethylolpropane, glycerin, and pentaerythritol may also be added in small quantities.
  • adipic acids can be replaced with aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid and 1,5-naphthalic acid; aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and p-(hydroxyethoxy)-benzoic acid; aliphatic dicarboxylic acids such as succinic acid, azelaic acid, sebacic acid and dodecane-dicarboxylic acids.
  • aromatic and aliphatic carboxylic acids are used in combination, their molar ratio is preferably between 50/50 and 100/0 and use of terephthalic acid in a quantity that accounts for 30% or more of the carboxylic acids used on molar basis is preferred.
  • Tri- and tetracarboxylic acids such as trimellitic acid, trimethinic acid and pyromellitic acid can be added in a small quantity.
  • the acid component such as adipic acid can be replaced with an aromatic or aliphatic diisocyanate such as tolylene diisocyanate, when the copolymerization product thereof is polyurethane.
  • a preferable blend ratio of the acrylates and polyols as heretobefore cited is between 80/20 and 10/90, and between 40/60 and 5/95 when the acrylate is monoacrylate and diacrylate, respectively.
  • thermoplastic resin used in this invention is not limited to special types, thermoplastic polyurethane such as Estane 5702 (supplied by B. F. Goodrich Co.), thermoplastic linear polyester such as Vylon (supplied by Toyobo Co., Ltd.), and the like being applicable.
  • the magnetic layer can be formed by coating the base in conformity to a conventional method of prior art.
  • an ionizing radiation such as electron beam, neutron beam or ⁇ -rays is used preferably at a dose between 1 and 10 Mrad, and more preferably at a dose between 2 and 7 Mrad, with the radiation energy thereof being preferably set at 100 KeV or higher.
  • the above radiation dose will be enough to start the aforementioned radical reaction for polymerization.
  • the preferable radiation dose is between 0.1 and 3 Mrad while preferably 1 to 10 Mrad and more preferably 2 to 7 Mrad is used for full irradiation after the calender treatment.
  • ⁇ -Fe 2 O 3 mixed crystal of ⁇ -Fe 2 O 3 and Fe 3 O 4 , cobalt-doped ⁇ -Fe 2 O 3 or Fe 3 O 4 , CrO 2 , barium ferrite, ferrimagnetic alloys (for example, Fe-Co, Co-Ni, Fe-Co-Ni, Fe-Co-B, Fe-Co-Cr-B, Mn-Bi, Mn-Al, and Fe-Co-V), iron nitride, and the like may be cited.
  • ferrimagnetic alloys for example, Fe-Co, Co-Ni, Fe-Co-Ni, Fe-Co-B, Fe-Co-Cr-B, Mn-Bi, Mn-Al, and Fe-Co-V
  • the magnetic layer may contain aluminum oxide, chromium oxide or silicon oxide as a reinforcing agent, squalane as a lubricant, carbon black as an antistatic agent, and lecithin as a dispersing agent.
  • aluminum oxide, chromium oxide or silicon oxide as a reinforcing agent
  • squalane as a lubricant
  • carbon black as an antistatic agent
  • lecithin as a dispersing agent.
  • To form the magnetic layer its constituent materials are dissolved in an organic solvent to prepare a magnetic paint with which the base is coated.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; alcohols such as methanol, ethanol, propanol and butanol; esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate and glycol acetate; monoethyl ether; glycol ethers such as ethylene glycol dimethyl ether and ethylene glycol monoethyl ether; dioxane; aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane and heptane; nitropropane; and so on may be cited.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • alcohols such as methanol, ethanol, propanol
  • the base to coat the magnetic paint thus prepared therein is made of a non-magnetizable material, such as a polyester (for example, polyethylene terephthalate); polyolefin (for example, polypropylene), cellulose derivative (for example, cellulose, triacetate or cellulose diacetate), polycarbonate, polyvinyl chloride, polyimide, polyamide, polyhydrazide, metal (for example, aluminum or copper) or paper.
  • a non-magnetizable material such as a polyester (for example, polyethylene terephthalate); polyolefin (for example, polypropylene), cellulose derivative (for example, cellulose, triacetate or cellulose diacetate), polycarbonate, polyvinyl chloride, polyimide, polyamide, polyhydrazide, metal (for example, aluminum or copper) or paper.
  • a polyester for example, polyethylene terephthalate
  • polyolefin for example, polypropylene
  • cellulose derivative for example, cellulose, triacetate
  • a magnetic paint was prepared in the following composition:
  • a piece of polyethylene terephthalate base film 16 ⁇ thick was coated with this magnetic paint so that the coated paint may be 4 ⁇ thick after drying.
  • the dried paint coating was calender-treated and then irradiated with 3 Mrad of electron beam under an acceleration voltage of 200 kV.
  • a magnetic paint was prepared in the following formulation:
  • a piece of polyethylene terephthalate base film 16 ⁇ thick was coated with this paint so that the coated paint may be 4 ⁇ thick after an orientation of magnetic powder and then drying.
  • the dried coating was subjected to a preliminary irradiation with 1 Mrad of electron beam under an acceleration voltage of 200 kV to partially harden the binder component in the coated layer.
  • the film was passed between an elastic roll and steel roll, with the magnetic layer in contact with the latter roll, for a calender treatment at a temperature of 80° C. and under a line pressure of 140 kg/cm (pressure per unit width).
  • a film that had a magnetic layer whose surface was favorably finished flat was obtained, which showed neither powder dropping nor peeling-off when it was calender treated.
  • the coated layer was fully irradiated with 5 to 8 Mrad of electron beam under an acceleration voltage of 200 kV.
  • the tape obtained was slit in a certain width and the color noise ratio (C/N) was measured with it, which proved that the surface of magnetic layer was at a very favorable state. Further, the magnetic layer was found to have a desirable hardness and exhibit an excellent wearproof performance.
  • Another magnetic paint was prepared in a formulation that was the same as in the example 2 but for use of a copolymer of acrylonitrile and 1,2-butadiene instead of thermoplastic polyurethane.
  • the above paint was coated, dried, subjected to a preliminary irradiation with an electron beam (200 kV, 1 Mrad), calender treated (80° C., 40 kg/cm, a metal roll and fiber roll used in a pair), and then subjected to a full irradiation with an electron beam (200 kV, 5 to 8 Mrad).
  • the magnetic tape thus obtained was slit 1 inch wide and the color noise ratio (C/N) was measured with it, which proved a favorable state of the surface of magnetic layer.
  • a piece of polyethylene terephthalate base film 16 ⁇ thick was coated with a magnetic paint having the same formulation as used in the example 2 so that the coated layer may be 4 ⁇ thick after drying. After an orientation of the magnetic powder, the paint was dried to form a magnetic layer.
  • the magnetic layer was irradiated with 5 to 8 Mrad of electron beam under an acceleration voltage of 200 kV and then calender treated at a temperature of 80° C. and under a line pressure of 40 kg/cm.
  • the magnetic tape thus obtained was compared to those in examples 1 to 3 in C/N in the following table:
  • the table shows that the magnetic layer that was irradiated with an electron beam after a calender treatment or the one that was subjected to a preliminary irradiation and full irradiation with an electron beam before and after a calender treatment, respectively, had a substantially higher C/N estimate and, therefore, a more excellent surface state compared to the magnetic layer that was calender treated after a full irradiation with an electron beam.

Landscapes

  • Paints Or Removers (AREA)

Abstract

A magnetic recording medium carrying a magnetic layer thereon, the magnetic layer primarily composed of binder and magnetic powder, wherein the binder is composed of an acrylic compound having a plurality of unsaturated bonds in its molecule and a thermoplastic resin in a weight ratio of 80:20 to 20:80, and is hardened under irradiation.

Description

This is a division of application Ser. No. 174,871, filed Aug. 4, 1980, now abandoned.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a magnetic recording medium, in which a magnetic recording layer primarily composed of magnetic powder and binder is formed on a non-magnetizable support, and particularly to binder of the magnetic recording layer.
2. Description of the Prior Art
The magnetic recording medium generally comprises a magnetic layer primarily composed of magnetic powder and binder formed on a non-magnetizable support such as a polyethylene terephthalate film. In the prior art, the binder is formed by combining various thermoplastic and thermosetting resins. Further, to improve the mechanical strength of coated layer, various hardening agents such as polyisocyanate compounds are used together with these resins so that a three-dimensional cross-linked structure may be formed by thermosetting. However, such thermosetting method has demerits, such as an insufficientmechanical strength of coated layer, a difficulty in controlling the degree of hardening, and a shorter pot life of the magnetic paint prepared.
A method that hardens the magnetic layer under irradiation has recently been noticed. For example, as disclosed in the Japanese Patent Publication No. 28649/1972, a method is known wherein to improve the wearproof performance of coated magnetic layer and reduce voids thereof a magnetic paint that uses binder formed by mixing an allyl monomer and liquid thermoplastic high molecular prepolymer is coated on a base and then irradiated for polymerization and hardening of these monomer and prepolymer. However, it is noted that in this method the above objects can be achieved only under heavy irradiation since the allyl compound is less reactive. Therefore, as far as an irradiation system of limited dosage capacity is used, the film coating speed is necessarily delayed, which is unfavorable for industrial application. Further, it is still necessary to improve the performance of coated magnetic layer in durability.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an improved magnetic recording medium.
It is another object of the present invention to provide a magnetic recording medium that shows a favorable wearproof performance.
It is another object of the present invention to provide a magnetic recording medium carrying a magnetic layer thereon that is characterized by high adherence to the base.
It is still another object of the present invention to provide a magnetic recording medium that is free of any peeling off of the magnetic layer coated thereon.
It is a further object of the present invention to provide a magnetic recording medium wherein the coated magnetic layer provides a highly flat surface.
According to one aspect of the present invention, there is provided a magnetic recording medium carrying a magnetic layer thereon, the magnetic layer primarily being composed of a binder and magnetic powder, wherein said binder is composed of an acrylic compound having a plurality of unsaturated bonds in its molecule and a thermoplastic resin in a weight ratio of 80:20 to 20:80, and is hardened under irradiation.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
According to the present invention, the acrylic compound as mentioned above has double bonds between pairs of adjacent carbon atoms that are sensitive to radicals generated under irradiation, so that it undergoes a so-called radical polymerization reaction as its double bonds are attacked by an initiator, which is some dissociation products, primarily free radicals formed either from the acrylic compound itself or from the thermoplastic compound under irradiation, being hardened to form a complicated three-dimensional cross-linked network structure with the latter compound included therein. Therefore, even at a reduced radiation dose, a desirable magnetic layer can be formed that is characterized by a favorable high wearproof performance, low voids and also high durability. Further, the presence of a suitable amount of the thermoplastic resin component will improve the performance of coated magnetic layer in adherence to the base, wearproof property, and resistance to solvents.
To achieve these remarkable performance effects, the acrylic compounds must have at least two double bonds of the above mentioned type in individual molecules. This is because an acrylic compound that has only a single double bond can form only a linear polymer, which means a failure in achieving the desirable objects. The mixing ratio of the acrylic compound and thermoplastic resin must be limited in the range as aforementioned, for use of a superfluous quantity of acrylic compound that exceeds the given range will provide a hard and frangile magnetic layer that adheres less favorably to the base while the use of a superfluous quantity of thermoplastic resin that exceeds the range will cause poor hardening of the layer and therefore lead to an increase in the powder dropping (peeling-off) or, for example, squeaks of the tape because the friction coefficient is not reduced.
In the present invention, the flatening or mirror surface treatment, namely, the calender treatment of the magnetic layer can be made after the binder has been partially cross-linked. Namely, the magnetic recording medium can be manufactured in a process that comprises a steps of forming a magnetic layer of a mixture primarily composed of both binder sensitive to radiations and magnetic powder, of subjecting this magnetic layer to preliminary irradiation for partial hardening of the binder, of treating the surface of the magnetic layer to finish flat, and of subjecting the flat-surfaced magnetic layer to full irradiation to sufficiently harden the binder component.
According to this method, the magnetic layer of mixture, for example, magnetic coating is partially hardened under preliminary irradiation and then treated for flatening, for example, by a calender treatment, so that before the flatening treatment the magnetic layer of mixture has already been hardened to a prescribed hardness adhering to the base. As a result, the method is free of such troubles as powder dropping or peeling-off of coated film. Further, after flatening treatment, the film is fully irradiated for hardening. Therefore, the magnetic layer can be finished in mirror surface and the wearproof performance thereof can be improved.
The acrylic compound usable in the present invention is preferably a reactive acrylic oligomer or oligoacrylate that contains a plurality of double bonds, and preferably three or more double bonds. Actual examples of such acrylic compound are, for example, polyacrylates and polymethacrylates (here the prefix "poly" refers to dimers or higher polymers) of polyhydric alcohols such as polyethylene glycohol, polypropylene oxide, polybutylene oxide, polycyclohexene oxide, polyethylene oxide, polypropylene oxide, polystyrene oxide, polyoxetane, polytetrahydrofuran, cyclohexanediol, xylylenediol, di-(β-hydroxyethoxy)benzene, glycerin, diglycerin, neopentylglycol, trimethylolpropane, triethylolpropane, pentaerythritol, dipentaethythritol, sorbitan, sorbitol, butanediol, butanetriol, 2-butene-1,4-diol, 2-n-butyl-2-ethyl-propanediol, 2-butyn-1,4-diol, 3-chloro-1,2-propanediol, 1,4-cyclohexanedimethanol, 3-cyclohexane-1,1-dimethanol, decalindiol, 2,3-dibromo-2-butene-1,4-diol, 2,2-diethyl-1,3-propanediol, 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene, 2,5-dimethyl-2,5-hexanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diphenyl-1,3-propanediol, dodecanediol, mesoerythritol, 2-ethyl-1,3-hexanediol, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, 2-ethyl-2-methyl-1,3-propanediol, heptanediol, hexanediol, 3-hexene-2,5-diol, hydroxybenzyl alcohol, hydroxyethylresorcinol, 2-methyl-1,4-butanediol, 2-methyl-2,4-pentanediol, nonanediol, octanediol, pentanediol, 1-phenyl-1,2-ethanediol, propanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 2,3,5,6-tetramethyl-p-xylene-α,α'-diol, 1,1,4,4-tetraphenyl-1,4-butanediol, 1,1,4,4-tetraphenyl-2-butyn-1,4-diol, 1,2,6-trihydroxyhexane, 1,1'-bi-2-naphthol, dihydroxynaphthalene, 1,1'-methylene-di-2-naphthol, 1,2,4-benzenetriol, biphenol, 2,2'-bis(4-hydroxyphenyl)butane, 1,1-bis(4-hydroxyphenyl)-cyclohexane, bis(hydroxyphenyl)methane, catechol, 4-chlororesorcinol, 3,4-dihydroxyhydrocinnamic acid, hydroquinone, hydroxybenzyl alcohol, methylhydroquinone, methyl-2,4,6-trihydroxybenzoate, phloroglucinol, pyrogallol, resorcinol, glucose, α-(1-aminoethyl)-p-hydroxybenzyl alcohol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 3-amino-1,2-propanediol, N-(3-aminopropyl)-diethanolamine, N,N'-bis-(2-hydroxyethyl)piperazine, 2,2-bis(hydroxymethyl), 2,2',2"-nitrilotriethanol, 2,2-bis(hydroxymethyl)propionic acid, 1,3-bis(hydroxymethyl)-urea, 1,2-bis(4-pyridyl)-1,2-ethanediol, N-n-butyldiethanolamine, diethanolamine, N-ethyldiethanolamine, 3-mercapto-1,2-propanediol, 3-piperidino-1,2-propanediol, 2-(2-pyridyl)-1,3-propanediol, triethanolamine, α-(1-aminoethyl)-p-hydroxybenzyl alcohol, 3-amino-4-hydroxyphenyl, and sulfones. In view of the availability, the more preferred of these acrylic and methacrylic esters are ethylenedimethacrylate, ethyleneglycol diacrylate, diethylengeglycol dimethacrylate, polyethyleneglycol diacrylate, pentaerythritol triacrylate, pentaerythritol dimethacrylate, dipentaerythritol pentaacrylate, glycerin triacrylate, diglycerin dimethacrylate, 1,3-propanediol diacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacrylate, 1,5-pentanediol diacrylate, neopentylglycol diacrylate, triacrylic acid ester of trimethylolpropane with ethylene oxide added, and so on.
Further acrylamides and methacrylamides that are also usable for the acrylic compound are methlenebisacrylamide, and methylenebismethacrylamide, as well as ethylenediamine, diaminopropane, diaminobutane, pentamethylenediamine, hexamethylene, bis(2-aminopropyl)amine, diethylenetriaminediamine, heptamethylenediamine, octamethylenediamine, polyamine having amide bonds interrupted by foreign atoms, polyacrylamides and polymethacrylamides of cyclic polyamines [for example, phenylenediamine, xylyenediamine, β-(4-aminophenyl)ethylamine, diaminobenzoic acid, diaminotoluene, diaminoanthraquinone, and diaminofluorene], and so on.
Further, N-β-hydroxyethyl-β-(methacylamide)ethyl acrylate, N,N-bis(β-methacryloxyethyl)acrylamide, allyl methacrylate, and other compounds having two or more unsaturated bonds that can undergo addition polymerization can also be preferably used for the acrylic compound used in this invention.
Another acrylic compounds that are usable are polyester copolymers of various degrees of polymerization that can be produced by reacting trimethylolpropane monoacrylate, hexanediol, and adipic acid. In this reaction, diacrylate of an aliphatic polyol such as pentaerthritol, or diacrylate of an alicyclic compound diglycidyl ether, or the like can be used instead of trimethylolpropane monoacrylate while hexanediol can be replaced with ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, 1,4-cyclohexanedimethanol, ethylene oxide added product and propylene oxide added product of bisphenol A, ethylene oxide added product and propylene oxide added product of hydrogenated bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and so on. Triols and tetraols such as trimethylolethane, trimethylolpropane, glycerin, and pentaerythritol may also be added in small quantities. Further, adipic acids can be replaced with aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid and 1,5-naphthalic acid; aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and p-(hydroxyethoxy)-benzoic acid; aliphatic dicarboxylic acids such as succinic acid, azelaic acid, sebacic acid and dodecane-dicarboxylic acids. In this case, if aromatic and aliphatic carboxylic acids are used in combination, their molar ratio is preferably between 50/50 and 100/0 and use of terephthalic acid in a quantity that accounts for 30% or more of the carboxylic acids used on molar basis is preferred. Tri- and tetracarboxylic acids such as trimellitic acid, trimethinic acid and pyromellitic acid can be added in a small quantity. Further, the acid component such as adipic acid can be replaced with an aromatic or aliphatic diisocyanate such as tolylene diisocyanate, when the copolymerization product thereof is polyurethane. A preferable blend ratio of the acrylates and polyols as heretobefore cited is between 80/20 and 10/90, and between 40/60 and 5/95 when the acrylate is monoacrylate and diacrylate, respectively.
The thermoplastic resin used in this invention is not limited to special types, thermoplastic polyurethane such as Estane 5702 (supplied by B. F. Goodrich Co.), thermoplastic linear polyester such as Vylon (supplied by Toyobo Co., Ltd.), and the like being applicable.
In the present invention, the magnetic layer can be formed by coating the base in conformity to a conventional method of prior art. To irradiate the magnetic layer formed by coating, an ionizing radiation such as electron beam, neutron beam or γ-rays is used preferably at a dose between 1 and 10 Mrad, and more preferably at a dose between 2 and 7 Mrad, with the radiation energy thereof being preferably set at 100 KeV or higher. The above radiation dose will be enough to start the aforementioned radical reaction for polymerization.
In case the coated magnetic layer is subjected to a preliminary irradiation, the preferable radiation dose is between 0.1 and 3 Mrad while preferably 1 to 10 Mrad and more preferably 2 to 7 Mrad is used for full irradiation after the calender treatment.
For the magnetic powder that can be used to form the magnetic layer according to the present invention, γ-Fe2 O3, mixed crystal of γ-Fe2 O3 and Fe3 O4, cobalt-doped γ-Fe2 O3 or Fe3 O4, CrO2, barium ferrite, ferrimagnetic alloys (for example, Fe-Co, Co-Ni, Fe-Co-Ni, Fe-Co-B, Fe-Co-Cr-B, Mn-Bi, Mn-Al, and Fe-Co-V), iron nitride, and the like may be cited. Further, the magnetic layer may contain aluminum oxide, chromium oxide or silicon oxide as a reinforcing agent, squalane as a lubricant, carbon black as an antistatic agent, and lecithin as a dispersing agent. To form the magnetic layer, its constituent materials are dissolved in an organic solvent to prepare a magnetic paint with which the base is coated. For the solvent of magnetic paint, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; alcohols such as methanol, ethanol, propanol and butanol; esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate and glycol acetate; monoethyl ether; glycol ethers such as ethylene glycol dimethyl ether and ethylene glycol monoethyl ether; dioxane; aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane and heptane; nitropropane; and so on may be cited. The base to coat the magnetic paint thus prepared therein is made of a non-magnetizable material, such as a polyester (for example, polyethylene terephthalate); polyolefin (for example, polypropylene), cellulose derivative (for example, cellulose, triacetate or cellulose diacetate), polycarbonate, polyvinyl chloride, polyimide, polyamide, polyhydrazide, metal (for example, aluminum or copper) or paper.
The invention will be described further, by way of example.
EXAMPLE 1
First, a magnetic paint was prepared in the following composition:
______________________________________                                    
Fe.sub.2 O.sub.3      400 parts by weight                                 
Oligoacrylate (M-8030 from                                                
                      50 parts by weight                                  
Toa Gosei Kagaku Co., 3 double                                            
bonds, M.W. 2000)                                                         
Estane 5702 (thermoplastic                                                
                      50 parts by weight                                  
polyurethane from B. F. Goodrich                                          
Co.)                                                                      
Squalane (lubricant)  3 parts by weight                                   
Lecithin (dispersing  1 part by weight                                    
agent)                                                                    
Methyl ethyl ketone   600 parts by weight                                 
(solvent)                                                                 
Methyl isobutyl ketone                                                    
                      600 parts by weight                                 
(solvent)                                                                 
______________________________________                                    
A piece of polyethylene terephthalate base film 16μ thick was coated with this magnetic paint so that the coated paint may be 4μ thick after drying. The dried paint coating was calender-treated and then irradiated with 3 Mrad of electron beam under an acceleration voltage of 200 kV.
Some characteristic performances of the magnetic tape obtained by the present example were compared to those of conventional examples in the following table:
______________________________________                                    
             Rectangular                                                  
             ratio Rs Wear***                                             
______________________________________                                    
Example 1 of   85%        0.6 mg                                          
this invention                                                            
Conventional   77%        1.2 mg                                          
example 1*                                                                
Conventional   83%        0.8 mg                                          
example 2**                                                               
______________________________________                                    
 *For the conventional example 1, the base was coated with a paint whose  
 formulation was the same as the one used in example 1 but for an addition
 of 20 PHR of an isocyanate compound (Desmodure L). An irradiation with an
 electron beam was omitted.                                               
 **The conventional example 2 was the same as the example 1 but for use of
 an allyl monomer instead of an acrylate.                                 
 ***The wear was measured as a quantity of dust that dropped after the    
 magnetic tape was run 10 times over a lapping tape.                      
The above results show that in the present example since the acryl oligomer and thermoplastic resin are blended in proper quantities the filling percentage of magnetic powder is improved to increase the value of Rs enough and further even a low dose of electron beam irradiation hardens the magnetic layer favorably improving the wearproof property of coated layer. Further, in the present example, a low dose of electron beam is enough for irradiation, so that the line speed of process may be increased, which is another merit beside the improved wearproof property as aforementioned for industrial application.
EXAMPLE 2
First, a magnetic paint was prepared in the following formulation:
______________________________________                                    
γ-Fe.sub.2 O.sub.3                                                  
                      400 parts by weight                                 
Oligoacrylate (M-8030 from                                                
                      50 parts by weight                                  
Toa Gosei Kagaku Co., 3 double                                            
bonds, M.W. 2000)                                                         
Estane 5702 (thermoplastic                                                
                      50 parts by weight                                  
polyurethane from B. F. Goodrich                                          
Co.)                                                                      
Squalane (lubricant)  3 parts by weight                                   
Lecithin (dispersing  1 part by weight                                    
agent)                                                                    
Methyl ethyl ketone   600 parts by weight                                 
(solvent)                                                                 
Methyl isobutyl ketone                                                    
                      600 parts by weight                                 
(solvent)                                                                 
______________________________________                                    
A piece of polyethylene terephthalate base film 16μ thick was coated with this paint so that the coated paint may be 4μ thick after an orientation of magnetic powder and then drying. The dried coating was subjected to a preliminary irradiation with 1 Mrad of electron beam under an acceleration voltage of 200 kV to partially harden the binder component in the coated layer. The film was passed between an elastic roll and steel roll, with the magnetic layer in contact with the latter roll, for a calender treatment at a temperature of 80° C. and under a line pressure of 140 kg/cm (pressure per unit width). Thus, a film that had a magnetic layer whose surface was favorably finished flat was obtained, which showed neither powder dropping nor peeling-off when it was calender treated. Next, the coated layer was fully irradiated with 5 to 8 Mrad of electron beam under an acceleration voltage of 200 kV.
The tape obtained was slit in a certain width and the color noise ratio (C/N) was measured with it, which proved that the surface of magnetic layer was at a very favorable state. Further, the magnetic layer was found to have a desirable hardness and exhibit an excellent wearproof performance.
EXAMPLE 3
Another magnetic paint was prepared in a formulation that was the same as in the example 2 but for use of a copolymer of acrylonitrile and 1,2-butadiene instead of thermoplastic polyurethane. In the same procedure as in the example 2, the above paint was coated, dried, subjected to a preliminary irradiation with an electron beam (200 kV, 1 Mrad), calender treated (80° C., 40 kg/cm, a metal roll and fiber roll used in a pair), and then subjected to a full irradiation with an electron beam (200 kV, 5 to 8 Mrad).
The magnetic tape thus obtained was slit 1 inch wide and the color noise ratio (C/N) was measured with it, which proved a favorable state of the surface of magnetic layer.
REFERENCE EXAMPLE 1
A piece of polyethylene terephthalate base film 16μ thick was coated with a magnetic paint having the same formulation as used in the example 2 so that the coated layer may be 4μ thick after drying. After an orientation of the magnetic powder, the paint was dried to form a magnetic layer. The magnetic layer was irradiated with 5 to 8 Mrad of electron beam under an acceleration voltage of 200 kV and then calender treated at a temperature of 80° C. and under a line pressure of 40 kg/cm. The magnetic tape thus obtained was compared to those in examples 1 to 3 in C/N in the following table:
______________________________________                                    
            C/N*                                                          
______________________________________                                    
Sample 1      +3 to 5 dB                                                  
Sample 2      +3 to 5 dB                                                  
Sample 3      +3 to 5 dB                                                  
Reference     0 dB                                                        
example 1                                                                 
______________________________________                                    
 *The C/N values for the examples 1 to 3 were estimated with the one for  
 the reference example 1 set to 0 dB.                                     
The table shows that the magnetic layer that was irradiated with an electron beam after a calender treatment or the one that was subjected to a preliminary irradiation and full irradiation with an electron beam before and after a calender treatment, respectively, had a substantially higher C/N estimate and, therefore, a more excellent surface state compared to the magnetic layer that was calender treated after a full irradiation with an electron beam.

Claims (6)

What is claimed is:
1. A method of manufacturing a magnetic recording medium which comprises:
coating a magnetic paint composed of magnetic powder and a binder on a non-magnetic substrate to form a coating layer, said binder containing an acrylic compound having at least two unsaturated bonds per molecule and a thermoplastic resin in a weight ratio of 80:20 to 20:80,
preliminarily irradiating the coating layer with an ionizing radiation at a dose amount of 0.1 to 3 Mrad;
subjecting the coating layer to a calender treatment; and
irradiating the calendered coating layer with an ionizing radiation at a dose amount of from 1 to 10 Mrad to fully cure the coating layer.
2. A method according to claim 1 wherein: the molecular weight of said acrylic compound is 100 to 10,000 per double bond.
3. A method according to claim 1 wherein: the molecular weight of said acrylic compound is 200 to 2,000 per double bond.
4. A method according to claim 1 wherein: said thermoplastic resin is a thermoplastic polyurethane or a thermoplastic polyester.
5. A method according to claim 1 in which: the irradiating is carried out by means of an electron beam.
6. A method according to claim 1 in which: the irradiating is carried out with a radiation energy of at least 100 keV.
US06/442,845 1979-08-06 1982-11-18 Magnetic recording medium Expired - Fee Related US4443490A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10014579A JPS5625231A (en) 1979-08-06 1979-08-06 Magnetic recording medium
JP54-100145 1979-08-06
JP54-101133 1979-08-08
JP10113379A JPS5625235A (en) 1979-08-08 1979-08-08 Manufacture of magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06174871 Division 1980-08-04

Publications (1)

Publication Number Publication Date
US4443490A true US4443490A (en) 1984-04-17

Family

ID=26441230

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/442,845 Expired - Fee Related US4443490A (en) 1979-08-06 1982-11-18 Magnetic recording medium

Country Status (5)

Country Link
US (1) US4443490A (en)
DE (1) DE3029819C2 (en)
FR (1) FR2463477B1 (en)
GB (1) GB2055877B (en)
NL (1) NL8004483A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2146269A (en) * 1983-08-29 1985-04-17 Tdk Corp Magnetic recording disc and process for its production
US4548833A (en) * 1982-01-28 1985-10-22 Fuji Photo Film Co., Ltd. Method for preparing a magnetic recording medium
US4560616A (en) * 1982-08-10 1985-12-24 Fuji Photo Film Co., Ltd. Magnetic recording medium having binder cured by electron beam radiation
US4619868A (en) * 1982-08-10 1986-10-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5028683A (en) * 1988-04-22 1991-07-02 Minnesota Mining And Manufacturing Company Electron-beam curable polyurethane compositions; and method
US5281482A (en) * 1988-04-22 1994-01-25 Minnesota Mining And Manufacturing Company Magnetic recording medium comprising magnetic particles and an electron beam curable polyurethane binder having segments derived from a specified unsaturated diol
US5840822A (en) * 1997-09-02 1998-11-24 National Starch And Chemical Investment Holding Corporation Mono(hydroxyalkyl)urea and oxazolidone crosslinking agents
US5858549A (en) * 1997-01-07 1999-01-12 National Starch And Chemical Investment Holding Corporation (Hydroxyalkyl)urea crosslinking agents
US6472478B1 (en) 1998-02-21 2002-10-29 Basf Aktiengesellschaft Process for crosslinking hydrogels with bis- and poly-2- oxazolidinones
US20030096139A1 (en) * 2001-10-31 2003-05-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20070106019A1 (en) * 1999-11-05 2007-05-10 Basf Coatings Aktiengesellschaft Method for multilayer coatings with self- crosslinking graft polyurethane copolymers, self-crosslinking polyurethanes and graft copolymers thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122802A (en) * 1980-03-03 1981-09-26 Toyo Ink Mfg Co Ltd Radiation-curable resin composition
CA1167408A (en) * 1980-09-22 1984-05-15 Hao-Jan Chang Electron beam curing of magnetic media
JPS57169929A (en) * 1981-04-13 1982-10-19 Tdk Corp Magnetic recording medium and its manufacture
JPS57200937A (en) * 1981-06-05 1982-12-09 Tdk Corp Magnetic recording medium
JPS5815573A (en) * 1981-07-22 1983-01-28 Toyo Ink Mfg Co Ltd Radiation-curing magnetic paint and magnetic recording medium obtained therefrom
EP0123081A3 (en) * 1983-03-09 1986-11-26 DeSOTO, INC. Coatings for magnetic recording structures and production thereof
JPS59175022A (en) * 1983-03-25 1984-10-03 Fuji Photo Film Co Ltd Magnetic recording medium
DE3332504A1 (en) * 1983-09-09 1985-03-28 Basf Ag, 6700 Ludwigshafen MAGNETIC RECORDING CARRIERS
DE3332503A1 (en) * 1983-09-09 1985-03-28 Basf Ag, 6700 Ludwigshafen MAGNETIC RECORDING CARRIERS
DE3332564A1 (en) * 1983-09-09 1985-03-28 Basf Ag, 6700 Ludwigshafen MAGNETIC RECORDING CARRIERS
US4594262A (en) * 1984-07-05 1986-06-10 Minnesota Mining And Manufacturing Company Electron beam adhesion-promoting treatment of polyester film base
US4543268A (en) * 1984-07-05 1985-09-24 Minnesota Mining And Manufacturing Company Electron-beam adhesion-promoting treatment of polyester film base for magnetic recording media
JPH0610856B2 (en) * 1984-08-04 1994-02-09 ティーディーケイ株式会社 Magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104983A (en) * 1959-08-26 1963-09-24 Ibm Method of curing magnetic tape binder comprising butadiene-acrylonitrile and phenolicresin with subatomic radiation
US3216846A (en) * 1963-01-21 1965-11-09 Gevaert Photo Prod Nv Process for producing a magnetic recording material
US3749592A (en) * 1971-03-25 1973-07-31 Desoto Inc Radiation curing lacquers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE672461A (en) * 1964-12-17 1966-03-16
DE1240934B (en) * 1965-09-15 1967-05-24 Basf Ag Binder for ferromagnetic powder in the manufacture of magnetogram carriers
DE2100037C3 (en) * 1971-01-02 1980-06-19 Hartmann, Job-Werner, Dr., 6700 Ludwigshafen Process for the production of magnetic recording media
US4017649A (en) * 1973-02-05 1977-04-12 Ppg Industries, Inc. Radiation-sensitive compounds and methods of using same
JPS5921909B2 (en) * 1974-10-31 1984-05-23 東レ株式会社 Radiation curable coating composition
ZA774349B (en) * 1976-07-23 1978-06-28 Lord Corp Radiation curable coatings compositions
DE2753694C3 (en) * 1977-12-02 1982-05-13 Basf Ag, 6700 Ludwigshafen Magnetic recording media with polyurethane elastomer binders in the magnetic layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104983A (en) * 1959-08-26 1963-09-24 Ibm Method of curing magnetic tape binder comprising butadiene-acrylonitrile and phenolicresin with subatomic radiation
US3216846A (en) * 1963-01-21 1965-11-09 Gevaert Photo Prod Nv Process for producing a magnetic recording material
US3749592A (en) * 1971-03-25 1973-07-31 Desoto Inc Radiation curing lacquers

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548833A (en) * 1982-01-28 1985-10-22 Fuji Photo Film Co., Ltd. Method for preparing a magnetic recording medium
US4560616A (en) * 1982-08-10 1985-12-24 Fuji Photo Film Co., Ltd. Magnetic recording medium having binder cured by electron beam radiation
US4619868A (en) * 1982-08-10 1986-10-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
GB2146269A (en) * 1983-08-29 1985-04-17 Tdk Corp Magnetic recording disc and process for its production
US5028683A (en) * 1988-04-22 1991-07-02 Minnesota Mining And Manufacturing Company Electron-beam curable polyurethane compositions; and method
US5281482A (en) * 1988-04-22 1994-01-25 Minnesota Mining And Manufacturing Company Magnetic recording medium comprising magnetic particles and an electron beam curable polyurethane binder having segments derived from a specified unsaturated diol
US6051646A (en) * 1997-01-07 2000-04-18 National Starch And Chemical Investment Holding Corporation Thermosetting binder prepared with (hydroxyalkyl)urea crosslinking agent for abrasive articles
US5858549A (en) * 1997-01-07 1999-01-12 National Starch And Chemical Investment Holding Corporation (Hydroxyalkyl)urea crosslinking agents
US5840822A (en) * 1997-09-02 1998-11-24 National Starch And Chemical Investment Holding Corporation Mono(hydroxyalkyl)urea and oxazolidone crosslinking agents
US6472478B1 (en) 1998-02-21 2002-10-29 Basf Aktiengesellschaft Process for crosslinking hydrogels with bis- and poly-2- oxazolidinones
US20070106019A1 (en) * 1999-11-05 2007-05-10 Basf Coatings Aktiengesellschaft Method for multilayer coatings with self- crosslinking graft polyurethane copolymers, self-crosslinking polyurethanes and graft copolymers thereof
US7855266B2 (en) * 1999-11-05 2010-12-21 Basf Coatings Ag Method for multilayer coatings with self-crosslinking graft polyurethane copolymers, self-crosslinking polyurethanes and graft copolymers thereof
US20030096139A1 (en) * 2001-10-31 2003-05-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6773789B2 (en) * 2001-10-31 2004-08-10 Fuji Photo Film Co., Ltd. Magnetic recording medium

Also Published As

Publication number Publication date
GB2055877B (en) 1983-07-20
DE3029819C2 (en) 1989-08-10
DE3029819C3 (en) 1992-08-27
NL8004483A (en) 1981-02-10
FR2463477A1 (en) 1981-02-20
GB2055877A (en) 1981-03-11
FR2463477B1 (en) 1988-04-08
DE3029819A1 (en) 1981-02-26

Similar Documents

Publication Publication Date Title
US4443490A (en) Magnetic recording medium
US4415630A (en) Process of making magnetic recording medium
JPS6366846B2 (en)
GB2057471A (en) Magnetic Recording Media
US4560616A (en) Magnetic recording medium having binder cured by electron beam radiation
JPS6038723A (en) Magnetic recording medium
JPS6142729A (en) Magnetic recording medium
JPS6043224A (en) Magnetic recording medium
JPS59177727A (en) Magnetic recording medium
JPS613320A (en) Magnetic recording medium
JPS6346493B2 (en)
JPS5924436A (en) Magnetic recording medium
JPS6214887B2 (en)
JPS59127225A (en) Magnetic recording medium
JPS59207027A (en) Magnetic recording medium
JPH0673172B2 (en) Magnetic recording medium
JPS5965929A (en) Magnetic recording medium and its manufacture
KR850001005B1 (en) Magnetic recording medium
GB2081277A (en) Magnetic Recording Layers
JPH0546016B2 (en)
JPH0576092B2 (en)
JPH0125141B2 (en)
JPS61110340A (en) Production of magnetic recording medium
JPS5992429A (en) Magnetic recording medium and its production
JPS61110338A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19960417

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362