US4371630A - Solution of a polyurethane in a polyol and a process for using such a solution in the production of polyurethane plastics - Google Patents
Solution of a polyurethane in a polyol and a process for using such a solution in the production of polyurethane plastics Download PDFInfo
- Publication number
- US4371630A US4371630A US06/236,949 US23694981A US4371630A US 4371630 A US4371630 A US 4371630A US 23694981 A US23694981 A US 23694981A US 4371630 A US4371630 A US 4371630A
- Authority
- US
- United States
- Prior art keywords
- solution
- groups
- diol
- molecular weight
- hydroxyl groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004814 polyurethane Substances 0.000 title claims abstract description 91
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 91
- 229920003023 plastic Polymers 0.000 title claims abstract description 65
- 239000004033 plastic Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 229920005862 polyol Polymers 0.000 title claims abstract description 20
- 150000003077 polyols Chemical class 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 45
- 230000008569 process Effects 0.000 title claims description 29
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 63
- 229920000570 polyether Polymers 0.000 claims abstract description 62
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 48
- 150000002009 diols Chemical class 0.000 claims abstract description 48
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 43
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 43
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 12
- 239000000460 chlorine Substances 0.000 claims abstract description 11
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 11
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 125000001309 chloro group Chemical group Cl* 0.000 claims abstract description 6
- 125000004185 ester group Chemical group 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 150000003254 radicals Chemical group 0.000 claims abstract description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 5
- 125000003368 amide group Chemical group 0.000 claims abstract description 5
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract description 5
- 150000005840 aryl radicals Chemical class 0.000 claims abstract description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 5
- 125000001033 ether group Chemical group 0.000 claims abstract description 5
- 125000002560 nitrile group Chemical group 0.000 claims abstract description 5
- 239000006260 foam Substances 0.000 claims description 46
- 150000001875 compounds Chemical class 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 27
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims description 25
- -1 1,1,1-tris-hydroxymethyl alkane Chemical class 0.000 claims description 21
- 239000003054 catalyst Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000003381 stabilizer Substances 0.000 claims description 11
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical class OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 9
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 5
- SZCWBURCISJFEZ-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) 3-hydroxy-2,2-dimethylpropanoate Chemical compound OCC(C)(C)COC(=O)C(C)(C)CO SZCWBURCISJFEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004604 Blowing Agent Substances 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 101150108015 STR6 gene Proteins 0.000 claims 1
- 150000002605 large molecules Chemical class 0.000 claims 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 claims 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- 239000012948 isocyanate Substances 0.000 description 29
- 150000002513 isocyanates Chemical class 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 20
- 229940117969 neopentyl glycol Drugs 0.000 description 20
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 12
- 239000012190 activator Substances 0.000 description 11
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 10
- 238000005187 foaming Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000007858 starting material Substances 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 125000005442 diisocyanate group Chemical group 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 5
- 125000005474 octanoate group Chemical group 0.000 description 5
- 229920001281 polyalkylene Polymers 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000006082 mold release agent Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000012429 reaction media Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000002763 monocarboxylic acids Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- DYDNPESBYVVLBO-UHFFFAOYSA-N formanilide Chemical compound O=CNC1=CC=CC=C1 DYDNPESBYVVLBO-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical class OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- UXAFLFGXSIWWMY-UHFFFAOYSA-N 1,3-dibromo-2,2-dimethylpropane Chemical compound BrCC(C)(C)CBr UXAFLFGXSIWWMY-UHFFFAOYSA-N 0.000 description 1
- KTWNITKLQPCZSL-UHFFFAOYSA-N 1,3-dichloro-2,2-dimethylpropane Chemical compound ClCC(C)(C)CCl KTWNITKLQPCZSL-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- JRUIYWSZTLWHME-UHFFFAOYSA-N 1-chloro-2,2-dimethylbutane Chemical compound CCC(C)(C)CCl JRUIYWSZTLWHME-UHFFFAOYSA-N 0.000 description 1
- NFDXQGNDWIPXQL-UHFFFAOYSA-N 1-cyclooctyldiazocane Chemical compound C1CCCCCCC1N1NCCCCCC1 NFDXQGNDWIPXQL-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- RKNLRMOXBBYLAB-UHFFFAOYSA-N 2,2-di(propan-2-yl)propane-1,3-diol Chemical compound CC(C)C(CO)(CO)C(C)C RKNLRMOXBBYLAB-UHFFFAOYSA-N 0.000 description 1
- HZPOYPOOMDADPY-UHFFFAOYSA-N 2,2-dichloropropane-1,3-diol Chemical compound OCC(Cl)(Cl)CO HZPOYPOOMDADPY-UHFFFAOYSA-N 0.000 description 1
- CXOWYJMDMMMMJO-UHFFFAOYSA-N 2,2-dimethylpentane Chemical compound CCCC(C)(C)C CXOWYJMDMMMMJO-UHFFFAOYSA-N 0.000 description 1
- XACKQJURAZIUES-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diol Chemical compound OCC(C)CC(C)(C)CCO XACKQJURAZIUES-UHFFFAOYSA-N 0.000 description 1
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NZCWASFCVGLUQM-UHFFFAOYSA-N 2-(chloromethyl)-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)CCl NZCWASFCVGLUQM-UHFFFAOYSA-N 0.000 description 1
- OZOIZHOXUSCSTC-UHFFFAOYSA-N 2-(chloromethyl)-2-methylpropane-1,3-diol Chemical compound OCC(C)(CO)CCl OZOIZHOXUSCSTC-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- DYPJJAAKPQKWTM-UHFFFAOYSA-N 2-chloropropane-1,3-diol Chemical compound OCC(Cl)CO DYPJJAAKPQKWTM-UHFFFAOYSA-N 0.000 description 1
- CMNVSZHIHFLQFS-UHFFFAOYSA-N 2-cyclohexylpropane-1,3-diol Chemical group OCC(CO)C1CCCCC1 CMNVSZHIHFLQFS-UHFFFAOYSA-N 0.000 description 1
- VNAWKNVDKFZFSU-UHFFFAOYSA-N 2-ethyl-2-methylpropane-1,3-diol Chemical compound CCC(C)(CO)CO VNAWKNVDKFZFSU-UHFFFAOYSA-N 0.000 description 1
- NJHQOQAEEYIWOB-UHFFFAOYSA-N 2-methyl-2-propan-2-ylpropane-1,3-diol Chemical compound CC(C)C(C)(CO)CO NJHQOQAEEYIWOB-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- BPBDZXFJDMJLIB-UHFFFAOYSA-N 2-phenylpropane-1,3-diol Chemical compound OCC(CO)C1=CC=CC=C1 BPBDZXFJDMJLIB-UHFFFAOYSA-N 0.000 description 1
- VVOISBSEMFDYNE-UHFFFAOYSA-N 2-propan-2-ylpropane-1,3-diol Chemical group CC(C)C(CO)CO VVOISBSEMFDYNE-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- HHWBUNWYLYZWPX-UHFFFAOYSA-N 3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)C(O)=O.OCC(C)(C)C(O)=O HHWBUNWYLYZWPX-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- NRCBOAXSTQJIOV-UHFFFAOYSA-N 4-chloro-2-(chloromethyl)butane-1,3-diol Chemical compound OCC(CCl)C(O)CCl NRCBOAXSTQJIOV-UHFFFAOYSA-N 0.000 description 1
- CEZWFBJCEWZGHX-UHFFFAOYSA-N 4-isocyanato-n-(oxomethylidene)benzenesulfonamide Chemical class O=C=NC1=CC=C(S(=O)(=O)N=C=O)C=C1 CEZWFBJCEWZGHX-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 229920001247 Reticulated foam Polymers 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001559 benzoic acids Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical group NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- JXCHMDATRWUOAP-UHFFFAOYSA-N diisocyanatomethylbenzene Chemical compound O=C=NC(N=C=O)C1=CC=CC=C1 JXCHMDATRWUOAP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004872 foam stabilizing agent Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- VGNXHRVCGURILB-UHFFFAOYSA-N isocyanic acid;phenol Chemical compound N=C=O.OC1=CC=CC=C1 VGNXHRVCGURILB-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical class O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- XRVCFZPJAHWYTB-UHFFFAOYSA-N prenderol Chemical compound CCC(CC)(CO)CO XRVCFZPJAHWYTB-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/0838—Manufacture of polymers in the presence of non-reactive compounds
- C08G18/0842—Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
- C08G18/0847—Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
- C08G18/0852—Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
- C08G18/0857—Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic the solvent being a polyol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S521/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S521/914—Polyurethane cellular product formed from a polyol which has been derived from at least two 1,2 epoxides as reactants
Definitions
- the present invention relates to a solution of a polyurethane in a high molecular weight polyether having terminal hydroxyl groups. Such a solution may be used as a modified polyol in the production of polyurethane plastics.
- Dispersions of polyisocyanate polyaddition products in polyols are known.
- German Auslegeschrift No. 1,168,075 teaches a process in which diisocyanates are reacted in situ with difunctional, diprimary alcohols in a polyether dispersing medium.
- the polyether used in the disclosed process must have a molecular weight of from 500 to 3,000 and at least two secondary hydroxyl groups in the molecule. Since primary alcohols react more rapidly with isocyanates then do secondary alcohols, only the bifunctional, primary alcohols take part in the polyaddition reaction.
- the higher molecular weight polyether with secondary hydroxyl groups therefore, serves as a virtually inert reaction medium.
- the product polyurethane is in the form of finely dispersed particles and does not deposit sediment, even after a comparatively long standing time.
- German Offenlegungsschriften Nos. 2,550,796 and 2,550,797 teach stable dispersions of polyisocyanate polyaddition products in compounds having hydroxyl groups as the dispersing agent. These dispersions are obtained by an in situ reaction of polyisocyanates with a variety of active hydrogen containing compounds in the presence of specified quantities of water. Among the disclosed reactions is the reaction of diisocyanates with diprimary diols in polyethers having secondary hydroxyl groups to form dispersions of finely divided polyurethane particles.
- a dispersed filler would have a greater effect upon the properties of the product plastic if the higher molecular weight additives mentioned could be incorporated homogeneously into the polyurethane. However, such homogeneous incorporation is generally unattainable because these additives are insoluble in the starting materials used in preparing polyurethanes.
- polyisocyanate polyaddition solutions may be used as starting materials in the production of polyurethane plastics, they are unsuitable for preparing flexible elastomers, flexible coatings and flexible foamed plastics. Flexible products cannot be made with these solutions because addition of the appropriate amount of polyaddition compound results in the presence of comparatively large quantities of the solvent low molecular weight polyhydric alcohol. Such quantities of the solvent alcohol make the product polyurethane plastics undesirably brittle.
- Other compounds which are reactive toward isocyanates, catalysts and additives known to those in the art may also be included in the reaction mixture.
- Another object of this invention is the production of flame-coatable and high frequency bondable flexible foamed polyurethane plastics by reacting polyisocyanates with higher molecular weight compounds having at least two hydroxyl groups. These hydroxy compounds may be in admixture with other higher and/or lower molecular weight compounds which contain hydrogen atoms reactive towards isocyanates. Water, other blowing agents, catalysts, foam stabilizers and other additives may be used in making a foam from a solution of a polyurethane in a polyol, which solution is used either exclusively or in part as the higher molecular weight compound.
- a solution of a polyurethane in a polyol made from (a) the reaction product of a polyisocyanate and a diprimary diol and (b) a polyether having at least two hydroxyl groups, which hydroxyl groups are predominantly secondary.
- the reaction product (a) is present in an amount which is from 3 to 60 wt.% of the solution.
- Diprimary diols which may be used have a molecular weight of from 90 to 800 and have at both hydroxyl groups the structure represented by the formula: ##STR2## wherein R 1 represents chlorine, an alkyl, cycloalkyl, aralkyl or aryl radical having from 1-10 carbon atoms, which carbon atoms may be substituted or interrupted by chlorine, ester groups, ether groups, amide groups, urethane groups and/or nitrile groups, and
- R 2 represents hydrogen or a radical within the definition of R 1 .
- the polyether component of this solution should have an average molecular weight of from 500 to 12,000. Further, at least 80% of the hydroxyl groups present in the ether should be secondary hydroxyl groups.
- polyurethane solutions may be used to produce polyurethane foamed plastics which are particularly suitable for flame-coating and high frequency bonding and which plastics also have improved physical properties.
- polyurethane foamed plastics which are particularly suitable for flame-coating and high frequency bonding and which plastics also have improved physical properties.
- the present invention comprises from 3 to 60% by weight, preferably from 5 to 30% by weight (based on the total solution) of the reaction products of a polyisocyanate with a diprimary diol having a molecular weight of from 90 to 800, preferably from 104 to 500, which has at both hydroxyl groups the following structure: ##STR3## in which R 1 represents chlorine or an alkyl, cycloalkyl, aralkyl or aryl radical having from 1 to 10 carbon atoms, which may be substituted or interrupted by chlorine, ester groups, ether groups, amide groups, urethane groups or nitrile groups, and
- R 2 represents hydrogen or a radical within the definition of R 1 ,
- a polyether having at least two hydroxyl groups with an average molecular weight of from 500 to 12,000, preferably from 1,000 to 8,000. At least 80%, and preferably at least 90%, of the hydroxyl groups of this polyether are secondary.
- Diols having a molecular weight of from 104 to 800 which have the above-described structural unit at only one hydroxyl group may also be included in the polyurethane solution. These diols should not, however, be used in an amount which is greater than 50 mol % of the total diol content. Alcohols which do not have the molecular weight and/or structure of the diols described above may also be included in the polyurethane solution. These alcohols should not, however, be present in amounts greater than 20 mol % of the total diol content.
- the solutions of the present invention may be prepared from aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates.
- Suitable polyisocyanates are described by W. Siefken in Justus Liebig's Annalen der Chemie, 562, pages 75 to 136.
- the polyisocyanates described therein include those of the formula:
- n represents from 2 to 4, preferably 2, and
- Q represents an aliphatic hydrocarbon radical having from 2 to 18, preferably 6 to 10, carbon atoms; a cycloaliphatic hydrocarbon radical having from 4 to 15, preferably 5 to 10, carbon atoms; an aromatic hydrocarbon radical having from 6 to 15, preferably 6 to 13, carbon atoms; or an araliphatic hydrocarbon radical having from 8 to 15, preferably 8 to 13, carbon atoms.
- polyisocyanates are: ethylene diisocyanate; 1,4-tetramethylene diisocyanate; 1,6-hexamethylene diisocyanate; 1,12-dodecane diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3- and -1,4-diisocyanate and any mixture of these isomers; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (see German Auslegeschrift No. 1,202,785 and U.S. Pat. No.
- 2,4- and 2,6-hexahydrotoluylene diisocyanate and any mixture of these isomers 2,4- and 2,6-hexahydrotoluylene diisocyanate and any mixture of these isomers; hexahydro-1,3- and/or -1,4-phenylene diisocyanate; perhydro-2,4'- and/or -4,4'-diphenylmethane diisocyanate; 1,3- and 1,4-phenylene diisocyanate; 2,4- and 2,6-toluylene diisocyanate and any mixtures of these isomers; diphenylmethane-2,4'- and/or 4,4'-diisocyanate or naphthalene-1,5-diisocyanate.
- polyisocyanates may also be used in making the solution of the present invention: triphenylmethane-4,4',4"-triisocyanate; polyphenyl polymethylene polyisocyanates (which can be obtained by aniline-formaldehyde condensation and subsequent phosgenation as described, for example, in British Pat. Nos. 874,430 and 848,671); m- and p-isocyanato phenyl sulfonyl isocyanates (taught in U.S. Pat. No. 3,454,606); perchlorinated aryl polyisocyanates (as described in German Auslegeschrift No. 1,157,601 and U.S. Pat. No.
- polyisocyanates having carbodiimide groups as described, for example, in German Patent 1,092,007 (U.S. Pat. No. 3,152,162) and also in German Offenlegungsschriften Nos. 2,504,400; 2,537,685 and 2,552,350); norboran diisocyanates (according to U.S. Pat. No. 3,492,330); polyisocyanates having allophanate groups (as described, for example, in British Pat. No. 994,890; Belgian Pat. No. 761,626 and Dutch Patent Application 7,102,524); polyisocyanates having isocyanurate groups (as described, for example, in U.S. Pat. No. 3,001,973; German Pat.
- polyisocyanates prepared from telomerization reactions (as described, for example, in U.S. Pat. No. 3,654,106); polyisocyanates having ester groups (as mentioned, for example, in British Pat. Nos. 965,474 and 1,072,956; U.S. Pat. No. 3,567,763 and German Pat. No. 1,231,688); reaction products of the above isocyanates with acetals (according to German Pat. No. 1,072,385) and polyisocyanates containing polymeric fatty acid esters (according to U.S. Pat. No. 3,455,883).
- isocyanates which contain isocyanate groups. Such residues may be dissolved in one or more of the above-mentioned polyisocyanates. It is also possible to use mixtures of any of the above-mentioned polyisocyanates. Monoisocyanates, especially those combined with polyfunctional (for example, tri- and tetrafunctional) isocyanates may also be used in minor quantities.
- Isocyanates which are preferred for the preparation of the solutions of the invention are the isomeric toluylene diisocyanates and diphenylmethane diisocyanates, hexamethylene diisocyanate and 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl cyclohexane or mixtures of these isocyanates. 2,4- and/or 2,6-toluylene diisocyanate are particularly preferred.
- polyisocyanates which may be used in amounts of up to approximately 30 mol % of the total polyisocyanate content (but which are generally less preferred) are the so-called "NCO-prepolymers", i.e. reaction products having terminal isocyanate groups made from higher and/or lower molecular weight compounds having at least two hydrogen atoms which are reactive toward isocyanates and an excess of polyisocyanate.
- NCO-prepolymers i.e. reaction products having terminal isocyanate groups made from higher and/or lower molecular weight compounds having at least two hydrogen atoms which are reactive toward isocyanates and an excess of polyisocyanate.
- the above-mentioned higher molecular weight compounds having at least two hydrogen atoms which are reactive toward isocyanates have a molecular weight of approximately 400 to 2,000.
- Suitable compounds include those having amino groups, thiol groups or carboxyl groups (preferably polyhydroxyl compounds), polyesters having from 2 to 4 hydroxyl groups, polyethers, polythioethers, polyacetals and polycarbonates and polyester amides which are known to those in the art to be suitable for the preparation of homogeneous and cellular polyurethanes.
- Such compounds are described in detail in German Offenlegungsschriften Nos.2,550,796; 2,550,797; 2,638,759; 2,624,527; 2,302,564 (U.S. Pat. No. 3,963,679); 2,402,840 (U.S. Pat. No. 3,984,607); 2,457,387 (U.S. Pat. Nos. 4,035,213); 2,829,670; 2,830,949 and 2,830,953.
- compounds having at least two hydrogen atoms which are reactive toward isocyanates with a molecular weight of from 32 to 400 may also be included.
- These compounds include those containing hydroxyl groups and/or amino groups and/or thiol groups and/or carboxyl groups. It is preferred that these compounds contain hydroxyl groups with known chain-lengthening agents or crosslinking agents being particularly preferred.
- Such low molecular weight compounds are also described in the above listed publications. These compounds usually contain from 2 to 4 (preferably 2 or 3) hydrogen atoms which are reactive toward isocyanates.
- solutions according to the present invention may be prepared directly by reacting a polyisocyanate in a polyether with diprimary diols which have the structural feature defined above at both hydroxyl groups in accordance with a procedure such as that described in German Auslegeschrift No. 1,168,075 or German Offenlegungsschrift No. 2,638,759.
- diols examples include: 1,3-propane diols which are disubstituted in 2-position such as 2,2-dichloro-1,3-propane diol; 2,2-dimethyl-1,3-propane diol (neopentyl glycol); 2-methyl-2-ethyl-1,3-propane diol; 2,2-dimethyl-1,3-propane diol; 2,3-dichloromethyl-1,3-propane diol; 2-methyl-2-isopropyl-1,3-propane diol; 2-methyl-2-chloromethyl-1,3-propane diol; 2-ethyl-2-chloromethyl-1,3-propane diol; 2,2-diisopropyl-1,3-propane diol; and also homologues having higher substituents R 1 and/or R 2 corresponding to the above-given definition.
- 1,3-propane diols which are monosubstituted in the 2-position such as 2-chloro-1,3-propane diol; 2-methyl-, 2-chloromethyl-, 2-ethyl-, 2-isopropyl-, 2-cyclohexyl- or 2-phenyl-1,3-propane diol and homologous compounds may also be used in the present invention.
- Suitable diols are compounds which are derived from 1,1,1-tris-hydroxymethyl alkanes such as trimethylol ethane and trimethylol propane, in which a hydroxyl group is reacted (1) with monoisocyanates and converted into urethanes or (2) with monocarboxylic acids and converted into esters.
- Derivatives of pentaerythritol which have been twice reacted with monoisocyanates or monocarboxylic acids are also useful. In that case it is not necessary to have the pure reaction compounds, but the resulting statistical mixtures out of the 1:1 or 1:2 reaction may be used also.
- Examples of monoisocyanates which may be reacted wih a 1,1,1-tris-hydroxymethyl alkane are: methyl, ethyl, isopropyl, butyl, cyclohexyl, ⁇ -chlorohexyl, isooctyl, stearyl and phenol isocyanate and also phenyl isocyanates which are substituted by chlorine and/or methyl groups.
- Monocarboxylic acids which may be reacted with the 1,1,1-tris-hydroxymethyl alkane include: formic acid, acetic acid, propionic acid, acrylic acid, methacrylic acid, butyric acid, 2-ethyl caproic acid, stearic acid, oleic acid, cyclohexane carboxylic acid and benzoic acid and also substituted benzoic acids.
- Low molecular weight condensates having terminal hydroxyl groups are also diols suitable to the practice of the present invention. More particularly, condensates of the 1,3-propane diol and 1,1,1-tris-hydroxymethyl alkanes described above and mixtures thereof with a dicarboxylic acid may be used.
- Suitable dicarboxylic acids which may be used in forming the condensate include: oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid or 3-hydroxy-2,2-dimethyl-propionic acid (hydroxy pivalic acid) and mixtures thereof.
- Low molecular weight polyadipates of neopentyl glycol and also 3-hydroxy-2,2-dimethylpropionic acid-3-hydroxy-2,2-dimethyl-propyl ester (hydroxy pivalic acid-neopentyl glycol ester) are preferred.
- the preferred diols are 1,3-propane diols which are disubstituted in the 2-position (particularly neopentyl glycol), the low molecular weight condensates described in the preceding paragraph and also the reaction product of trimethylol propane and ⁇ -chlorohexyl isocyanate.
- a diol having the structure: ##STR4## (in which R 1 and R 2 are as defined above) at only one of the hydroxyl groups may also be included.
- Such a diol should not, however, be used in an amount greater than 50 mol % of the total diol content.
- Examples of such diols are: 3-chloro-1,2-propane diol; 2-ethyl-1,3-hexane diol; 2,4-trimethyl-1,3-pentane diol and 2,4- and 2,4,4-trimethyl-1,6-hexane diol.
- Mono-, di- or polyfunctional alcohols which do not have a molecular weight of from 90 to 800 and the structure: ##STR5## (in which R 1 and R 2 are as defined above) may also be included in the polyurethane solution. These alcohols should not, however, be used in an amount which is greater than 20 mol % of the total diol content. Inclusion of these alcohols is not generally desirable because, in some cases, an undesired turbidity in the polyurethane solution results. However, such alcohols may be useful when specific groups, e.g., tertiary amino groups, or branching points are to be introduced into the polyurethane solution.
- the polyurethane solutions according to the invention may be produced directly by reacting an isocyanate of the type described previously with one or more of the above-described diols in a polyether which serves as both reaction medium and solvent.
- Appropriate polyethers have at least two hydroxyl groups, which groups are predominantly secondary hydroxyl groups. These polyethers have an average molecular weight of from 500 to 12,000, preferably from 1,000 to 8,000.
- Polyeters of this type may be prepared by methods known to those in the art. One such method is an alkaline catalyzed polymerization of propylene oxide, in which up to 30 mol % of ethylene oxide (based on starting materials having reactive hydrogen atoms) is used.
- Starting materials which are suitable for the production of polyethers are: water; ethylene glycol; 1,2- or 1,3-propylene glycol; 1,2-, 1,3- or 1,4-butylene glycol; 1,6-hexane diol; 1,8-octane diol; neopentyl glycol; 1,4-bis-hydroxymethyl cyclohexane; 2-methyl-1,3-propane diol; glycerine; trimethylol-ethane and -propane; pentaerythritol; mannitol; sorbitol; formitol; sucrose; resorcin; hydroquinone; 2,2-bis-(4-hydroxyphenyl)-propane; ammonia; methylamine; ethylene diamine; tetra- or hexamethylene diamine; ethanolamine; diethanolamine; triethanolamine; aniline; 2,4- and 2,6-diaminotoluene; and polyphenyl
- the polyether used in making the polyurethane solution of the present invention contains a substantial amount of primary hydroxyl groups, the hydroxyl groups compete with the above-mentioned diols in the polyaddition reaction.
- the presence of such a polyether and a diol leads to a simultaneous reaction of the polyether and the diol with the isocyanate present thereby causing a significant undesirable increase in viscosity. Therefore, only those polyethers which contain at least 80%, and preferably at least 90%, secondary hydroxyl groups should be used in the practice of the present invention.
- the polyether may be prepared by adding propylene oxide to the starting material or in admixture with propylene oxide at the start of polymerization. Then, toward the end of this polymerization, predominantly pure propylene oxide is added.
- the primary hydroxyl compounds may be reacted with the isocyanates in the presence of the higher molecular weight polyethers which contain predominantly secondary hydroxyl groups according to processes known to those in the art. These processes may be carried out at temperatures of from 0° to 180° C., preferably from 30° to 150° C.
- the hydroxyl component may be introduced into the polyether before addition of the isocyanate.
- the isocyanate may then be added all at once or gradually.
- a constant temperature may be maintained during the isocyanate addition by external or internal cooling.
- both reaction components may be introduced to the polyether from separate dosing apparatus with stirring.
- the hydroxy component should preferably be added so that reaction of the polyether with the isocyanate is substantially avoided.
- a solution of the hydroxyl component in the polyether (which may be preheated) may be combined with the isocyanate in a static or dynamic flow mixer.
- the reaction mixture may then be conveyed from the mixer into a stirrer vessel in which the reaction is completed.
- Vessels equipped with stirrers, reactors in series or cell-reactors are also suitable for carrying out the polyaddition reaction in a continuous manner.
- the reaction may be accelerated by using conventional catalysts.
- catalysts include tertiary amines, amidines, metallic hydroxides, metallic alcoholates, metallic phenolates, metallic carboxylates and also carboxylates and chelates of the transition metals.
- the stoichiometric ratio between the isocyanate and the primary hydroxyl compound may be varied within wide limits, e.g., between from 0.20 to 1.2. It should be noted, however, that if the excess of hydroxyl compound is very large, a large amount of that compound remains unreacted and the chain length of the resulting polyurethanes is very short. If isocyanate is used in excess, the isocyanate reacts with the hydroxyl groups of the polyether, thereby causing a considerable increase in the viscosity of the solution. Therefore, NCO/OH ratios of between 0.5 and 1.0 are preferred in the preparation of the solutions according to the invention.
- the polyurethane content of the solution is dependent upon the quantitative ratios chosen for the reaction.
- a polyurethane content of from 3 to 60% by weight (of the total solution) is appropriate in the present invention. Concentrations of from 5 to 30% are preferred, however, because concentrations below 5% effect only insignificant changes in the properties of the polyurethane plastics produced from the solutions and concentrations above 30% frequently result in high viscosities which interfere with processing.
- the solutions of the present invention may be used as modified polyethers in the production of polyurethane plastics having improved mechanical properties. They may be used in the production of polyurethanes where higher molecular weight polyethers (such as those suitable as the reaction medium for the polyurethane solutions according to the invention) had been used.
- Foaming is appropriately obtained with solutions having a content of dissolved polyurethane (A) in the polyethers (B) such that the content of (A) in the mixture of A+B is less than 20% by weight, better less than 15% by weight and preferably between 5 and 10% by weight.
- These polyurethane contents are in general adjusted by mixing appropriate amounts of the polyurethane-containing solutions with other polyether polyols.
- concentration of the polyurethanes (A) in the polyurethane-containing polyether polyol solution have to be adjusted in such a way that these mixtures give a viscosity (25° C.) of less than 20.000 mPa's, better less than 10.000 mPa's which in most cases produces the above concentration limits.
- concentration/viscosity limits result, inter alia, from the molecular weights of the polyurethanes and from possible chain-forming secondary reactions of the isocyanates and can thus be controlled.
- polyurethane solution of the present invention the polyisocyanates which have been described above and other higher molecular weight compounds having groups which are reactive toward isocyanates may be used in making a polyurethane plastic.
- Low molecular weight cross-linkers (usually hydroxy or amino functional compounds) may also be included in the polyurethane plastic. All of these compounds are well known in the art and are described in greater detail in the publications mentioned above.
- Use of the polyurethane solution of the present invention as a starting material is particularly advantageous because it results in a homogeneous polyurethane elastomer, polyurethane lacquer or adhesive. Foamed polyurethane plastics made with the polyurethane solution described herein also have improved physical properties.
- polyurethane solutions according to the invention are suitable for the trouble-free production of flexible foamed polyurethane plastics which are particularly suitable for flame-coating and high frequency bonding.
- Foamed plastics containing urethane groups which are obtained by reacting polyisocyanates with polyether polyols and/or polyester polyols are known and are widely used.
- use of foamed polyurethanes has been limited in some areas because the known plastics were not suitable for high frequency bonding or for flame-coating. These bonding properties are particularly valuable in the production of door panels in cars which require foamed plastic sheets to be bonded together or with other materials. These bonding properties are also beneficial in the production of quilting effects or the production of molded bodies.
- Foamed products made with the polyurethane solution of the present invention may also be used in compound systems with textiles (e.g., padded coverings). Such compound systems are produced by flame-coating and are subsequently profiled and/or shaped by high frequency bonding.
- foamed plastics having urethane groups which are suitable for high frequency bonding from compounds containing active hydrogen atoms, polyisocyanates, water and/or other blowing agents in the presence of emulsifiers, stabilizers, catalysts and other auxiliary agents and additives. Finished foamed plastics may also be rendered suitable for high frequency bonding by means of subsequent treatments known to those in the art. (See, e.g., French Pat. Nos.
- Materials which may be used in such treatments to render foamed plastics suitable for high frequency bonding include: pulverized polyvinyl acetates, polyvinyl chlorides or copolymers (see, e.g., Belgian Pat. No. 719,875), thermoplastic polymers such as ethylene vinyl acetate, polyamides, cellulose derivatives such as ethyl or benzyl cellulose, acrylate polymers, polyethylene (see, e.g., German Offenlegungsschrift No. 1,767,583) and similar substances.
- Polyurethane solutions according to the invention which have been prepared by reacting diols which are condensates of the 1,3-propane diols and 1,1,1-trishydroxymethyl alkanes with a dicarboxylic acid with from 0.2 to 0.7 (preferably from 0.25 to 0.5) equivalents of polyisocyanate in polyethers having predominantly secondary hydroxyl groups are particularly suitable for the direct preparation of completely open-celled, "in situ reticulated" polyurethane flexible foamed plastics.
- the open-celled structure of the polyurethane flexible foams prepared according to conventional processes is inadequate for many purposes.
- the flexible foamed plastic when used as a filter material or as a starting material for impregnated foamed plastics, the flexible foamed plastic must be completely open-celled and membrane-free.
- foams made by these processes have been found unsuitable for many applications.
- One such prior art method requires after-treatment of the foam with a sodium hydroxide solution which dissolves the membrane between the cells. However, this treatment damages the cell bridges and necessitates a careful washing to remove the sodium hydroxide.
- Another known process is an explosion process in which an explosive gas mixture is allowed to penetrate into the foam before igniting the foam to rupture the remaining membranes. This latter process involves an additional working step and cannot be used when making large parts.
- Such flexible foamed plastics may be made from the previously mentioned starting components, water and/or other blowing agents, activators and optionally other auxiliary agents and additives.
- Completely open-celled foamed plastics which have good physical properties are obtained by direct block foaming (without subsequent treatment) when the polyurethane solution of the present invention is used.
- the cell size of the foam may be varied within the conventional limits by varying the pressure in the mixing chamber.
- the reaction components may be reacted in a one-step process which is known to those in the art, a prepolymer process or a semiprepolymer process.
- Mechanical apparatus suitable for such foam production are described in U.S. Pat. No. 2,764,565.
- Other processng apparatus which may be used are described in Kunststoff-Handbuch, Vol. VII, published by Vieweg and Hochtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. on pages 121 to 205.
- foaming is often carried out in molds.
- Metals such as aluminum or plastics such as epoxy resins are examples of suitable mold materials.
- the reaction mixture is charged into a mold where it foams up and forms the molded body.
- the mold foaming may be carried out so that the molded part has a cell structure on its surface but it may also be carried out so that the molded part has a compact skin and a cellular core.
- the foamable reaction mixture may be charged into the mold in an amount such that the molded foamed plastic just fills the mold.
- molding may also be carried out by charging more foamable reaction mixture into the mold than is necessary for filling the interior of the mold. The latter method, known as "overcharging" is described in U.S. Pat. Nos. 3,178,490 and 3,182,104.
- Cold-hardening foamed plastics may also be produced from the solution of the present invention (compare British Pat. No. 1,162,517 and German Offenlegungsschrift No. 2,153,086). Foamed plastics may also be produced by block foaming or by the laminator process which is known to those in the art.
- polyurethane solutions were produced in a substantially analogous manner, varying the polyether, diol, isocyanate, catalyst, NCO/OH ratio, reaction time and reaction temperature.
- the process variables and properties of these solutions are given in Table I.
- Linear polypropylene glycol-polyether hydroxyl number 56.
- Linear polypropylene glycol-polyether hydroxyl number 112.
- Neopentylglycol-polyadipate of hydroxyl number 211 Neopentylglycol-polyadipate of hydroxyl number 211.
- Toluylene diisocyanate (80% of 2,4- and 20% of 2,6-isomers).
- Titanic acid-tetrabutylester Titanic acid-tetrabutylester
- Flexible foamed plastics were produced from the solutions of Examples 1 to 5, varying the basic polyol and the concentration of dissolved polyurethane.
- the flexible foamed blocks were produced on a continuously operating high pressure machine.
- the process variables are summarized in Table II A.
- the foamed plastics thus obtained were then bonded using an electrode of 10 cm 2 surface area at a pressure of 9 kp/cm 2 .
- foamed plastic sheets of the prepared foams (each 10 mm thick) were bonded with a compound system consisting of a polyamide-velvet, an 8 mm foam sheet and a polyamide-charmeuse-fabric.
- the bonding voltage was 650 mV and the current strength was 480 mA.
- the physical properties of the foams are given in Table II B.
- foamed plastics were prepared from the polyurethane solutions in polyether-polyols of Examples 12, 13 and 15.
- the isocyanate component of the polyurethane prepared in situ and the concentration of the solution were varied.
- the foamed plastics were produced according to the hand foaming process (i.e., intimately mixing the components [excluding the isocyanate] in a cardboard beaker, adding the isocyanate, further stirring and the reaction mixture foaming up in a rectangular paper container).
- the high frequency bonding was carried out as described above.
- the foam composition and properties are given in Tables IV A and IV B.
- the foamed plastics thus obtained were open-celled and were easily flame-coated with textile covering layers.
- the quality of the bonding seams was the same as that of Examples 27-35.
- flexible elastic foamed plastics were prepared from the polyurethane solutions in polyether-polyols of Examples 16-25, varying the diol component of the dissolved polyurethane.
- the foaming method used was that described in Examples 42-44.
- the bonding method was that used in Examples 27-35.
- the foam compositions and properties are given in Tables V A and V B.
- the foamed plastics thus obtained were open-celled and were easily flame-coated with textile covering layers.
- the bonding seams were clearly stamped out, free of ruptures and exhibited a strong adhesion.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Polyurethanes Or Polyureas (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803008590 DE3008590A1 (de) | 1980-03-06 | 1980-03-06 | Loesungen von polyurethanen in polyolen und deren verwendung in einem verfahren zur herstellung von polyurethan-kunststoffen |
DE3008590 | 1980-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4371630A true US4371630A (en) | 1983-02-01 |
Family
ID=6096443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/236,949 Expired - Lifetime US4371630A (en) | 1980-03-06 | 1981-02-23 | Solution of a polyurethane in a polyol and a process for using such a solution in the production of polyurethane plastics |
Country Status (9)
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4427798A (en) | 1981-03-19 | 1984-01-24 | Bayer Aktiengesellschaft | Solutions of oligo-urethane ethers in polyether polyols and their use in a process for the production of polyurethane foams |
US4430453A (en) | 1981-11-04 | 1984-02-07 | Bayer Aktiengesellschaft | Polyurethane foams suitable for high frequency welding and process for producing the same |
US5007765A (en) * | 1988-09-16 | 1991-04-16 | Dow Corning Corporation | Sealing method for joints |
GB2312901A (en) * | 1996-05-09 | 1997-11-12 | Caligen Foam Ltd | High frequency weldable polyurethane foams |
US6217841B1 (en) * | 1991-11-21 | 2001-04-17 | Pechiney Recherche | Process for the preparation of metal carbides having a large specific surface from activated carbon foams |
US6632851B2 (en) | 1999-12-17 | 2003-10-14 | Bayer Aktiengesellschaft | Flame-laminable polyurethane foams |
US20070010593A1 (en) * | 2005-07-08 | 2007-01-11 | Bayer Materialscience Ag | Pur-polyester flexible foams based on polyetheresterpolyols |
WO2016164552A1 (en) | 2015-04-10 | 2016-10-13 | Momentive Performance Materials Inc. | Composition and process for making flame laminated polyurethane foams |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE19255T1 (de) * | 1981-10-28 | 1986-05-15 | Ici Plc | Polymer-modifizierte polyole. |
US4435559A (en) * | 1982-08-18 | 1984-03-06 | Ppg Industries, Inc. | β-Hydroxy urethane low temperature curing agents |
GB8416230D0 (en) * | 1984-06-26 | 1984-08-01 | Btr Plc | Polyurethanes |
WO2009017973A1 (en) | 2007-08-01 | 2009-02-05 | Dow Global Technologies Inc. | Heat bonding polyurethane foams |
ES2544886T3 (es) * | 2009-12-11 | 2015-09-04 | Basf Se | Cuerpos moldeados de espuma de poliuretano con estabilidad dimensional |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3360495A (en) * | 1963-02-11 | 1967-12-26 | Bayer Ag | Polyurethanes |
US4093569A (en) * | 1975-11-12 | 1978-06-06 | Bayer Aktiengesellschaft | Polyurethane resins produced from active hydrogen containing material which is a dispersion of polyisocyanate-polyaddition products in hydroxyl containing compounds as dispersing agents |
US4147680A (en) * | 1975-11-12 | 1979-04-03 | Bayer Aktiengesellschaft | Production of polyurethane resins using as active hydrogen material a stable dispersion of ionic polyisocyanate-polyaddition products in hydroxyl containing compounds as a dispersing agent |
GB1553760A (en) | 1977-08-26 | 1979-09-26 | Bayer Ag | Solutions of polyisocyanate polyaddition products |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2638759A1 (de) * | 1976-08-27 | 1978-03-09 | Bayer Ag | Loesungen von polyisocyanat-polyadditionsprodukten |
-
1980
- 1980-03-06 DE DE19803008590 patent/DE3008590A1/de not_active Withdrawn
-
1981
- 1981-02-04 AU AU66898/81A patent/AU6689881A/en not_active Abandoned
- 1981-02-17 CA CA000371050A patent/CA1150886A/en not_active Expired
- 1981-02-23 US US06/236,949 patent/US4371630A/en not_active Expired - Lifetime
- 1981-02-23 DE DE8181101291T patent/DE3164949D1/de not_active Expired
- 1981-02-23 EP EP81101291A patent/EP0035687B1/de not_active Expired
- 1981-03-04 JP JP3000781A patent/JPS56136814A/ja active Granted
- 1981-03-05 ZA ZA00811472A patent/ZA811472B/xx unknown
- 1981-03-05 ES ES500124A patent/ES8201609A1/es not_active Expired
- 1981-03-05 BR BR8101283A patent/BR8101283A/pt unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3360495A (en) * | 1963-02-11 | 1967-12-26 | Bayer Ag | Polyurethanes |
US4093569A (en) * | 1975-11-12 | 1978-06-06 | Bayer Aktiengesellschaft | Polyurethane resins produced from active hydrogen containing material which is a dispersion of polyisocyanate-polyaddition products in hydroxyl containing compounds as dispersing agents |
US4147680A (en) * | 1975-11-12 | 1979-04-03 | Bayer Aktiengesellschaft | Production of polyurethane resins using as active hydrogen material a stable dispersion of ionic polyisocyanate-polyaddition products in hydroxyl containing compounds as a dispersing agent |
GB1553760A (en) | 1977-08-26 | 1979-09-26 | Bayer Ag | Solutions of polyisocyanate polyaddition products |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4427798A (en) | 1981-03-19 | 1984-01-24 | Bayer Aktiengesellschaft | Solutions of oligo-urethane ethers in polyether polyols and their use in a process for the production of polyurethane foams |
US4430453A (en) | 1981-11-04 | 1984-02-07 | Bayer Aktiengesellschaft | Polyurethane foams suitable for high frequency welding and process for producing the same |
US5007765A (en) * | 1988-09-16 | 1991-04-16 | Dow Corning Corporation | Sealing method for joints |
US6217841B1 (en) * | 1991-11-21 | 2001-04-17 | Pechiney Recherche | Process for the preparation of metal carbides having a large specific surface from activated carbon foams |
GB2312901A (en) * | 1996-05-09 | 1997-11-12 | Caligen Foam Ltd | High frequency weldable polyurethane foams |
US6632851B2 (en) | 1999-12-17 | 2003-10-14 | Bayer Aktiengesellschaft | Flame-laminable polyurethane foams |
US20070010593A1 (en) * | 2005-07-08 | 2007-01-11 | Bayer Materialscience Ag | Pur-polyester flexible foams based on polyetheresterpolyols |
WO2016164552A1 (en) | 2015-04-10 | 2016-10-13 | Momentive Performance Materials Inc. | Composition and process for making flame laminated polyurethane foams |
Also Published As
Publication number | Publication date |
---|---|
EP0035687B1 (de) | 1984-07-25 |
DE3164949D1 (en) | 1984-08-30 |
CA1150886A (en) | 1983-07-26 |
ES500124A0 (es) | 1981-12-16 |
ZA811472B (en) | 1982-03-31 |
BR8101283A (pt) | 1981-09-08 |
ES8201609A1 (es) | 1981-12-16 |
JPS6334888B2 (enrdf_load_stackoverflow) | 1988-07-12 |
EP0035687A1 (de) | 1981-09-16 |
AU6689881A (en) | 1981-09-10 |
DE3008590A1 (de) | 1981-09-17 |
JPS56136814A (en) | 1981-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4293456A (en) | Process for the production of polyurethane plastics | |
CA1114989A (en) | Process for the preparation of polyurethane ureas | |
US4093569A (en) | Polyurethane resins produced from active hydrogen containing material which is a dispersion of polyisocyanate-polyaddition products in hydroxyl containing compounds as dispersing agents | |
US3620986A (en) | Synthetic resins comprising reaction products of isocyanates and process for their production | |
US2760953A (en) | Polyesters reacted with tolylene dhsocyanate | |
US4357441A (en) | Aqueous emulsion of thermally reactive polyurethane composition | |
CA1191995A (en) | Heterogeneous systems of polyol/diphenyl methane uret dione diisocyanates and a process for their production | |
US4371630A (en) | Solution of a polyurethane in a polyol and a process for using such a solution in the production of polyurethane plastics | |
US3666726A (en) | Polymers which contain polyamide, urea and/or urethane groups and process for preparing same | |
US4284572A (en) | Blocked isocyanate diols and preparation thereof | |
US4786655A (en) | Process for the preparation of polyurethanes containing uretdione rings formed in the presence of a bismuth salt of an organic carboxylic acid | |
US4251401A (en) | Suspensions of isocyanate distillation residues in polyols | |
US4668734A (en) | Stable dispersions of polyureas and/or polyhydrazo-dicarbonamides in relatively high molecular weight hydroxyl-group containing materials, a process for the production thereof and the use thereof for the production of polyurethane plastics | |
US4824595A (en) | Polyisocyanate compositions containing reversibly blocked catalysts and addition products of sulfonyl isocyanates with catalysts having a tin(II)- or tin(IV)-carboxylate structure | |
DE3112118A1 (de) | Polymerisathaltige polyetherpolyamine, verfahren zur herstellung dieser polyamine und deren verwendung als aufbaukomponente zur herstellung von polyurethanen | |
US4323657A (en) | Dispersions of high melting polyesters in polyhydroxyl compounds, a process for their preparation and their use in the production of polyurethanes | |
GB1596085A (en) | Polyurethane adhesive composition for bonding substrates | |
US4016143A (en) | Polyurethanes based on aromatic polyamines | |
US4390640A (en) | Process for the production of optionally-foamed polyurethanes | |
US3919166A (en) | Fire retardant polyurethanes and polyurea-urethanes having improved processability and color stability | |
US4368278A (en) | Process for the production of polyurethanes using cyclic N-hydroxyalkyl-substituted compounds containing amidine groups as catalysts | |
US3736298A (en) | Polyisocyanurate preparation using double alkoxide catalysts | |
US3723363A (en) | Trimerized crude isocyanate mixtures and polyurethane foams prepared from same | |
US4377644A (en) | Mixed anhydrides of isocyanates and carboxylic acids, mixtures thereof with carboxylic acids, and the use thereof as blowing agents for the production of cellular plastics | |
JPS6348885B2 (enrdf_load_stackoverflow) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAYER AKTIENGESELLSCHAFT, LEVERKUSEN, GERMANY A CO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:KONIG, KLAUS;ILLGER, HANS-WALTER;SEIFERT, PETER;AND OTHERS;REEL/FRAME:003918/0695 Effective date: 19810206 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M185); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |