US4119930A - Coupling modulation in travelling wave resonator - Google Patents

Coupling modulation in travelling wave resonator Download PDF

Info

Publication number
US4119930A
US4119930A US05/726,337 US72633776A US4119930A US 4119930 A US4119930 A US 4119930A US 72633776 A US72633776 A US 72633776A US 4119930 A US4119930 A US 4119930A
Authority
US
United States
Prior art keywords
ring resonator
optical energy
optical
electro
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/726,337
Other languages
English (en)
Inventor
Richard L. Abrams
David M. Henderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Priority to US05/726,337 priority Critical patent/US4119930A/en
Priority to IL52601A priority patent/IL52601A/xx
Priority to GB32547/77A priority patent/GB1562158A/en
Priority to DE2736985A priority patent/DE2736985C2/de
Priority to FR7728408A priority patent/FR2365900A1/fr
Priority to JP11342277A priority patent/JPS5340296A/ja
Application granted granted Critical
Publication of US4119930A publication Critical patent/US4119930A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0344Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect controlled by a high-frequency electromagnetic wave component in an electric waveguide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/17Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity

Definitions

  • This invention relates to optical modulation techniques and, more specifically, to methods and apparatus for achieving ultra-wideband modulation in an infrared laser transmitter.
  • the electro-optic modulator is constructed utilizing larger bulk crystals of electro-optic material rather than thin-film.
  • the usual limiting propagation length in bulk modulators caused by diffraction is avoided by propagating the optical signal in a waveguide mode in the modulator rod.
  • the above-mentioned copending application contemplates the placement of the travelling wave electro-optic light pipe modulator outside of the laser cavity, its low-loss characteristics make it attractive for intra-cavity coupling modulation as well.
  • the laser cavity takes the form of a resonant ring structure.
  • an optical isolator is required in one leg of the ring.
  • the advantage of an intra-cavity modulator is that much greater power densities are achievable than is the case with a straightforward external travelling wave modulator of the type illustrated in the above-mentioned copending application.
  • the above objects are achieved by utilizing a conventional laser oscillator and by coupling the output therefrom into a separate ring resonator which contains the modulator element or elements.
  • the modulator elements themselves are preferably of the type disclosed in the above-mentioned copending application, Ser. No. 589,285.
  • the invention contemplates the use of other travelling wave electro-optic modulators such as the thin-film or bulk crystal types.
  • the modulating signal is coupled to the electro-optic modulating element by means of an unbalanced, or preferably balanced, TEM transmission line so that the propagation velocity of the optical signal through the modulator element and the velocity of the rf modulating signal are substantially identical.
  • Enhancement of the circulating power in the ring cavity on the order of ten times the incident power from the laser oscillator can be achieved with state-of-the-art components.
  • Fig. 1 is a simplified block diagram of a laser oscillator and modulator in accordance with the present invention
  • FIG. 2 is a block diagram of another laser oscillator and modulator in accordance with the present invention.
  • FIG. 3 is a broken away plan view of a preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional elevation view of the embodiment of FIG. 3 taken through section lines 4--4;
  • FIG. 4a is a broken away cross-sectional view of an enlarged region of FIG. 4.
  • FIG. 5 is a broken away view of another embodiment of the present invention.
  • FIG. 1 a simplified block diagram of a laser oscillator and modulator in accordance with a preferred embodiment of the present invention.
  • a laser oscillator 10 comprises a laser discharge tube 11 containing an active laser medium such as carbon dioxide and a pair of axially aligned reflecting end members or mirrors 12 and 13.
  • mirror 12 is made totally reflecting and mirror 13 is made partially transmissive to facilitate coupling of optical wave energy from the laser oscillator.
  • a modulator/ring resonator structure 14 comprising optically aligned partially transmissive mirror 15, polarizer 16, mirror 17 and electro-optic crystal 18.
  • Mirrors 15 and 17 and polarizer 16 are arranged in a geometric ring configuration with respect to the optical wave energy, with electro-optic crystal 18 being disposed in the optical path between mirrors 15 and polarizer 16.
  • Mirror 15 is partially transmissive to allow the optical wave energy to enter the modulator structure.
  • suitable lenses can be employed to focus and direct the optical output of laser oscillator 10 into modulator 14.
  • the modulating input signal is applied through modulator driver amplifier 19 through a strip transmission line section 20 which is electromagnetically coupled to electro-optic crystal 18.
  • a matched impedance 21 is provided at the output end of transmission line 20 to present a reflectionless termination therefor.
  • the modulated output is obtained through reflective polarizer 16.
  • suitable lenses not shown, may be employed to recollimate the output wave energy.
  • the means by which the optical path length of the ring resonator may be varied or stabilized is not shown.
  • Such means can take the form of an electro-mechanical transducer such as a PZT crystal to which mirror 17 is attached. Such an arrangement is shown in FIG. 2, below.
  • the optical wavelength of the output of oscillator 10 is in the region of 10.6 microns. This corresponds, of course, to a preferred transition of the CO 2 laser which is commonly employed in modern optical communication systems. It is to be understood, however, that the choice of such an operating wavelength is merely exemplary and that other lasers operating on other wavelengths can be used with suitable modifications to the components of the embodiments to be described.
  • the optical wave energy generated by laser oscillator 10 is coupled through partially transmissive mirror 13 into the modulator/ring resonator structure by means of partially transmissive mirror 15.
  • this optical wave energy propagates unidirectionally in a counterclockwise direction as shown in FIG. 1.
  • the circulating optical wave energy transits electro-optic crystal 18, its polarization is varied in accordance with the modulating potential coupled to the crystal by means of strip transmission line section 20.
  • electro-optic crystal 18 can conveniently comprise an elongated rod of cadmium telluride which is essentially transparent and electro-optically active in the region of 2-23 microns.
  • the modulating signal is applied as a synchronous or substantially synchronous travelling wave to the crystal by virtue of the geometry and therefore impedance of strip transmission line section 20.
  • the modulating rf propagating in the preferred TEM mode, thereby acts upon the optical wave energy throughout the length of crystal 18.
  • the ring resonator structure of modulator 14 provides a degree of power enhancement not to be found in conventional external travelling wave coupling modulators. This power enhancement may be calculated with the aid of FIG. 1.
  • the power enhancement of the modulator of FIG. 1 may be found by summing the electric fields of the light components which have passed through the cavity repeated times. After n transits the electric field in the cavity is:
  • is the phase shift undergone by the optical wave energy during a single pass of the ring cavity.
  • Equation [1] becomes:
  • the ratio of the circulating power to the incident power is: ##EQU1## while the power absorbed in the ring cavity is:
  • Equation [6] shows an enhancement of 10 is achieved with a 90% reflecting mirror 15.
  • FIG. 2 there is shown a simplified block diagram of another embodiment of the present invention. Where appropriate, like reference numerals have been carried over from FIG. 1 to designate like structural elements. Insofar as the laser oscillator portion of the embodiment is concerned, it is identical to the one shown in FIG. 1.
  • the resonant travelling wave modulator is characterized by differences which make it attractive in some applications.
  • polarizer 16 has been replaced by totally reflecting mirror 22.
  • Output coupling is provided by means of a transmissive polarizer 24 disposed in the optical path between mirrors 22 and 17.
  • a second strip transmission line section 20' together with its associated modulator driver amplifier 19' and matched load impedance 21' are also provided.
  • mirror 17 is mounted to an electro-mechanical transducer 23.
  • Transducer 23 which can for example, comprise PZT crystal is driven electronically through a driver amplifier 25.
  • the output of laser oscillator 10 is coupled into the travelling wave modulator structure as before through partially transparent mirror 15. Again, because of the geometry of the ring resonator structure, only the optical wave propagating in the counterclockwise sense will result.
  • the propagating optical wave energy is modulated by means of electro-optic crystal 18 driven by the push-pull modulation input supplied to modulator driver amplifiers 19 and 19'.
  • the circulating modulated optical wave energy is extracted from the modulator/ring resonator structure by means of transmissive polarizer 24 which is oriented with its preferred or transmissive direction favoring the unmodulated optical wave energy.
  • mirror 17 is mounted to a rigid frame by means of piezoelectric transducer 23.
  • Transducer 23 is, in turn, driven by driver amplifier 25 which may be coupled by appropriate feedback means, not shown, to auxiliary circuitry to insure the resonant condition. This may be conveniently accomplished by sensing the incident energy reflected from input mirror 15, since the reflected energy is minimum at the resonant condition of the ring cavity modulator.
  • FIG. 3 is a plan view of the modulator structure with the top body portion partially broken away.
  • FIG. 4 is a cross-sectional plan view of the complete body, both top and bottom, taken through the section lines 4--4 shown in the drawing of FIG. 3.
  • Slab-like lower and upper body portions 30 and 31 are maintained in spaced-apart relationship by rod retainers and channel defining spacers 32, 33 and 34.
  • These latter elements together with triangularly shaped member 35 define three narrow triangularly disposed grooves, two of which are substantially occupied by elongated electro-optic crystal rods 36 and 37.
  • the third groove 38 serves in the embodiment of FIG. 3 as an optical channel and is not occupied by a rod of electro-optic material.
  • the three triangularly disposed grooves terminate at their respective apexes in partially transmissive mirror 39, totally reflecting mirror 40 and reflective polarizer 41.
  • Mirrors 39, 40 and polarizer 41 are mounted in adjustable mounting structures 42, 43 and 44, the respective details of which are not shown.
  • the structure can also include the electro-mechanical transducer used to tune and maintain the ring modulator at resonance.
  • the lower strip transmission line 45 is shown in FIG. 3 as extending from an input coaxial connector 46.
  • This strip transmission line extends under electro-optic crystal rod 36 along its length and thence along the length of electro-optic crystal rod 37 and exits the modulator structure by means of coaxial connector 49.
  • the upper strip transmission line sections are disposed in a similar manner on the upper body housing 31 and are not shown in FIG. 3.
  • Coaxial connectors 50 and 51 are shown.
  • the impedance of the microstrip transmission line is selected such that the velocity of the TEM modulating wave is substantially the same as the optical wave velocity through the rods.
  • FIG. 4a depicts electro-optic crystal rod 37 and the surrounding detail.
  • Rod 37 is provided with conductive films 59 and 59' on its bottom and top surfaces, respectively.
  • a second pair of somewhat narrower conductive films 45 and 45' are deposited on the surfaces of blocks 30 and 31 adjacent films 59 and 59'.
  • the length of the rod was 5 centimeters.
  • the rod was of substantially square cross section 1.5 millimeters on a side.
  • the impedance for synchronous travelling wave operation was computed as approximately 100 ohms or in case of the dual stripline configuration, 50 ohms.
  • FIG. 5 there is shown a cross-sectional plan view of a modulator similar to that depicted in FIG. 2 wherein the output coupling means comprises a transmissive polarizer 54.
  • the output coupling means comprises a transmissive polarizer 54.
  • a slot is provided in triangular element 35 to accommodate the polarizer and a portion of spacer 34 has been cut out to facilitate transmission of the output beam.
  • the remaining structural elements of the embodiment of FIG. 5 are substantially identical to those shown in FIGS. 3, 4 and 4a.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
US05/726,337 1976-09-24 1976-09-24 Coupling modulation in travelling wave resonator Expired - Lifetime US4119930A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US05/726,337 US4119930A (en) 1976-09-24 1976-09-24 Coupling modulation in travelling wave resonator
IL52601A IL52601A (en) 1976-09-24 1977-07-26 Wideband optical ring modulator
GB32547/77A GB1562158A (en) 1976-09-24 1977-08-03 Coupling modulation in travelling wave resonator
DE2736985A DE2736985C2 (de) 1976-09-24 1977-08-17 Optischer Breitbandmodulator
FR7728408A FR2365900A1 (fr) 1976-09-24 1977-09-21 Modulateur optique a large bande pour communications
JP11342277A JPS5340296A (en) 1976-09-24 1977-09-22 Wide range optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/726,337 US4119930A (en) 1976-09-24 1976-09-24 Coupling modulation in travelling wave resonator

Publications (1)

Publication Number Publication Date
US4119930A true US4119930A (en) 1978-10-10

Family

ID=24918188

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/726,337 Expired - Lifetime US4119930A (en) 1976-09-24 1976-09-24 Coupling modulation in travelling wave resonator

Country Status (6)

Country Link
US (1) US4119930A (da)
JP (1) JPS5340296A (da)
DE (1) DE2736985C2 (da)
FR (1) FR2365900A1 (da)
GB (1) GB1562158A (da)
IL (1) IL52601A (da)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937833A (en) * 1985-03-25 1990-06-26 The United States Of America As Represented By The Secretary Of The Navy Analog frequency modulated laser using magnetostriction
US20030215170A1 (en) * 2002-03-13 2003-11-20 Telecommunications Research Laboratories Electro-optic modulator with resonator
US20120285934A1 (en) * 2009-11-19 2012-11-15 Forschungsverbund Berlin E.V. Device and method for generating a plasma by means of a traveling wave resonator
US11960156B2 (en) * 2018-09-18 2024-04-16 Eagle Technology, Llc Multi-channel laser system including an acousto-optic modulator (AOM) with beam polarization switching and related methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8325720D0 (en) * 1983-09-26 1983-11-16 Plessey Co Plc Electro-optic modulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550039A (en) * 1967-12-19 1970-12-22 Bell Telephone Labor Inc Optical delay system
US3617129A (en) * 1969-11-10 1971-11-02 United Aircraft Corp Interferometric optical isolator
US3625590A (en) * 1969-11-05 1971-12-07 Ibm Optical circulator and energy converter
US3841758A (en) * 1972-09-28 1974-10-15 J Gievers Rotation sensitive retarder
US3885874A (en) * 1974-01-11 1975-05-27 Us Energy Laser plasma diagnostic using ring resonators
US3994566A (en) * 1975-06-23 1976-11-30 Hughes Aircraft Company Synchronous traveling wave electro-optic light pipe modulator
US4053763A (en) * 1976-05-25 1977-10-11 The United States Of America As Represented By The United States Energy Research And Development Administration Method and apparatus for pulse stacking

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277392A (en) * 1962-09-04 1966-10-04 Van O Nicolai Adjustable feedback laser modulator
DE1514579A1 (de) * 1965-09-22 1969-05-14 Siemens Ag Molekularverstaerker
US3614451A (en) * 1968-08-19 1971-10-19 Ibm Sampling system utilizing electrooptic techniques
FR1590543A (da) * 1968-11-04 1970-04-13
US3632187A (en) * 1969-11-05 1972-01-04 Ibm Light deflector and scanner
US3638024A (en) * 1970-02-25 1972-01-25 Bell Telephone Labor Inc Optical pulse interval modulation system
USB374362I5 (da) * 1971-08-05
US3869210A (en) * 1973-11-02 1975-03-04 Nasa Laser system with an antiresonant optical ring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550039A (en) * 1967-12-19 1970-12-22 Bell Telephone Labor Inc Optical delay system
US3625590A (en) * 1969-11-05 1971-12-07 Ibm Optical circulator and energy converter
US3617129A (en) * 1969-11-10 1971-11-02 United Aircraft Corp Interferometric optical isolator
US3841758A (en) * 1972-09-28 1974-10-15 J Gievers Rotation sensitive retarder
US3885874A (en) * 1974-01-11 1975-05-27 Us Energy Laser plasma diagnostic using ring resonators
US3994566A (en) * 1975-06-23 1976-11-30 Hughes Aircraft Company Synchronous traveling wave electro-optic light pipe modulator
US4053763A (en) * 1976-05-25 1977-10-11 The United States Of America As Represented By The United States Energy Research And Development Administration Method and apparatus for pulse stacking

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Henderson et al., "Multi-Gigahertz Modulation Concepts for CO.sub.2 Laser Communications," 9/26/76, pp. 150-151, EASCON 176 record, IEEE. *
Henderson et al., "Multi-Gigahertz Modulation Concepts for CO2 Laser Communications," 9/26/76, pp. 150-151, EASCON 176 record, IEEE.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937833A (en) * 1985-03-25 1990-06-26 The United States Of America As Represented By The Secretary Of The Navy Analog frequency modulated laser using magnetostriction
US20030215170A1 (en) * 2002-03-13 2003-11-20 Telecommunications Research Laboratories Electro-optic modulator with resonator
US6873750B2 (en) * 2002-03-13 2005-03-29 Telecommunications Research Laboratories Electro-optic modulator with resonator
US20120285934A1 (en) * 2009-11-19 2012-11-15 Forschungsverbund Berlin E.V. Device and method for generating a plasma by means of a traveling wave resonator
US9210789B2 (en) * 2009-11-19 2015-12-08 Forschungsverbund Berlin E.V. Device and method for generating a plasma by means of a traveling wave resonator
US11960156B2 (en) * 2018-09-18 2024-04-16 Eagle Technology, Llc Multi-channel laser system including an acousto-optic modulator (AOM) with beam polarization switching and related methods

Also Published As

Publication number Publication date
JPS5424277B2 (da) 1979-08-20
IL52601A (en) 1979-09-30
IL52601A0 (en) 1977-10-31
JPS5340296A (en) 1978-04-12
DE2736985A1 (de) 1978-03-30
FR2365900A1 (fr) 1978-04-21
GB1562158A (en) 1980-03-05
DE2736985C2 (de) 1981-09-24
FR2365900B1 (da) 1984-06-29

Similar Documents

Publication Publication Date Title
US3898585A (en) Leaky corrugated optical waveguide device
US3584230A (en) Light wave coupling into thin films
US4068191A (en) Acoustooptic modulator for optical fiber waveguides
US5037169A (en) High speed low loss optical switch for optical communication systems
US4847851A (en) Butt-coupled single transverse mode diode pumped laser
US8369367B1 (en) Tunable laser system
US3874782A (en) Light-guiding switch, modulator and deflector employing antisotropic substrate
US4429393A (en) Double phase-conjugate ring resonator
US4763019A (en) Apparatus comprising harmonic generation means
US5463647A (en) Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator
US4312562A (en) Optical control device
US5617435A (en) Lasing system with wavelength-conversion waveguide
US3466565A (en) Laser mode selection
US4492425A (en) Device for deflecting light through 180 degrees
CA2264753A1 (en) Laser
JPS60163482A (ja) 光電子デバイス
US3546622A (en) Laser having controlled frequency translation
US3530301A (en) Nonlinear optical devices employing optimized focusing
US3622911A (en) Laser oscillator with mode selector
JPS6290618A (ja) 光変調装置
US4119930A (en) Coupling modulation in travelling wave resonator
US3849740A (en) Integrated optical and/or gate
US3602724A (en) Optical nonlinear devices
US3267385A (en) Optical parametric amplifier, oscillator, and limiter using non-phase matchable interaction
US4974923A (en) Gap tuned optical waveguide device