US4048200A - 1,1,2-Tris-(o/p-hydroxyphenyl)-1-phenyl-ethanes - Google Patents
1,1,2-Tris-(o/p-hydroxyphenyl)-1-phenyl-ethanes Download PDFInfo
- Publication number
- US4048200A US4048200A US05/660,850 US66085076A US4048200A US 4048200 A US4048200 A US 4048200A US 66085076 A US66085076 A US 66085076A US 4048200 A US4048200 A US 4048200A
- Authority
- US
- United States
- Prior art keywords
- acid
- phenol
- tris
- hydroxyphenyl
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
- C08G64/06—Aromatic polycarbonates not containing aliphatic unsaturation
- C08G64/14—Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/13—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
- C07C205/20—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/20—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/12—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
- C07C39/15—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/24—Halogenated derivatives
- C07C39/367—Halogenated derivatives polycyclic non-condensed, containing only six-membered aromatic rings as cyclic parts, e.g. halogenated poly-hydroxyphenylalkanes
Definitions
- This invention relates to new 1,1,2-tris-(o/p-hydroxyphenyl)-1-phenyl-ethanes.
- the present invention therefore relates to trisphenols [1,1,2-tris-(o/p-hydroxyphenyl)-1-phenyl-ethanes] of the general formula (I): ##STR1## wherein:
- R 1 and R 2 which may be the same or different, represent hydrogen, an alkyl group containing from 1 to 18 preferably from 1 to 4 C atoms, most preferably methyl a cyclohexyl group or an optionally substituted aryl group containing from 6 to 15 C atoms, preferably phenyl, or a halogen atom or a nitro group, and
- the invention also relates to a process for the preparation of the new trisphenols wherein ⁇ -substituted acetophenones of the general formula (II) ##STR2## wherein:
- X denotes a halogen atom, preferably chlorine or bromine, or a hydroxyl group
- R 1 and n have the meanings indicated above, are reacted with an at least three times and preferably five to 15 times equivalent quantity of a phenol of the general formula (III) ##STR3## wherein:
- R 2 has the meaning indicated above; at temperatures between -20° and 200° C, preferably between 15° and 120° C, optionally in the presence of an acid catalyst.
- substituted ⁇ -acetophenones which are suitable for the process according to the invention: ⁇ -Chloroacetophenone, 4-fluoro- ⁇ -chloroacetophenone, 4, ⁇ -dichloroacetophenone, 3,4, ⁇ -trichloroacetophenone, phenacyl alcohol, 4-chloro- ⁇ -hydroxyacetophenone, ⁇ -bromoacetophenone, 3,5-dichloro- ⁇ -bromoacetophenone, ⁇ -chloro-2,4,6-tribromoacetophenone, ⁇ -chloro-2-nitroacetophenone, ⁇ -chloro-3-nitroacetophenone, ⁇ -chloro-4-nitroacetophenone, 4, ⁇ -dichloro-3-nitroacetophenone, ⁇ -bromo-4-methyl-acetophenone, 4,5-dichloro- ⁇ -bromo-2-nitroacetophenone, ⁇ -chloro-2-methylacetophenone and ⁇ -
- the compounds can be easily prepared from the corresponding acetophenones by conventional methods, for example phenacyl chlorides are obtained by slowly introducing the stoichiometric quantity of chlorine into a solution of the corresponding acetophenone in glacial acetic acid at temperatures between 0° and 15° C. When no discoloration due to chlorine can be seen in the reaction solution, the solvent is evaporated off in a water jet vacuum and the residue is purified by distillation or crystallisation.
- Phenols which have the structure of the formula (III) already indicated above are suitable starting compounds for the process according to the invention are reactants for the above mentioned ⁇ -substituted acetophenones.
- reactants for the above mentioned ⁇ -substituted acetophenones are reactants for the above mentioned ⁇ -substituted acetophenones. The following are examples:
- Phenol o-methylphenol, o-ethylphenol, o-isopropylphenol, o-tert.-butylphenol, o-fluorophenol, o-chlorophenol, o-bromophenol, o-cyclohexylphenol and o-phenylphenol.
- the reaction of the substituted acetophenones with phenols may be carried out in the presence of acid catalysts.
- Any acid may be used for this purpose, for example mineral acids such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, polyphosphoric acids, boric acid or tetrafluoroboric acid; aromatic and aliphatic carboxylic acids, particularly halogenated carboxylic acids such as fluorinated or chlorinated acetic or propionic acids; aliphatic or aromatic sulphonic acids such as methanesulphonic acid, hexanesulphonic acid, dodecanesulphonic acid, cyclohexanesulphonic acid, benzenesulphonic acid, toluenesulphonic acid, parachlorobenzenesulphonic acid, benzene-1,3-disulphonic acid, naphthalenesulphonic acid and naphthalene disulphonic acids; and aliphatic and
- Lewis acids may also be used, for example zinc-(II) chloride, tin-(II) chloride, boron trifluoride, aluminum chloride, iron chloride and titanium tetrachloride.
- Acid activated silicas and Fuller's earths such as montmorrillonite, silicoaluminates and silica gel may also be used as acid catalysts.
- Silicas are finely divided materials which contain silicic acid and/or aluminium oxide. These silicas and Fuller's earths can be activated in known manner by acid treatment (Chemie fur Labor und strig strig, 1956, page 422, Ullmann, 3rd Edition, Volume 9, page 271 et seq; Volume 8 pages 801 to 804). This activation may be carried out using mineral acids such as sulphuric acid, phosphoric acid, hydrochloric acid, perchloric acid or hydrofluoric acid.
- Natural or synthetic acid ion exchangers such as zeolites or exchanger resins may also be used.
- exchanger resins are meant insoluble resins consisting of inert, two-dimensionally or three-dimensionally cross-linked polymers which are substituted with reactive groups such as phosphoric, phosphonic, sulphuric or sulphonic acid groups.
- Acid activated molecular sieves may also be used. It is also possible to use mixtures of the above mentioned acids and/or acid activated silicas and Fuller's earths and/or acid ion exchangers.
- the quantity of acid catalyst used may vary within wide limits although generally only catalytic quantities are required for carrying out the process according to the invention, particularly since acids are formed during the reaction of phenacyl chlorides and bromides. It has been found that when these compounds are used, an additional acid catalyst merely accelerates the onset of the reaction but is not essential since the reaction can frequently be started simply by mild heating. Optimal results are obtained using quantities of catalyst between 0.05 and 2 mol per mol of acetophenyl compound.
- the reaction time is very variable. It may be vary between a few minutes and 24 hours, depending on whether the reaction is carried out batchwise in a reaction vessel or pressure vessel, or continuously, for example in a reaction tube. Suitable procedures and apparatus for carrying out the process according to the invention on a technical scale can be selected from those already known in the art.
- the process may be carried out at temperatures of between -20° and 200° C, preferably between 15° and 120° C. It may be carried out at normal pressure, reduced pressure or excess pressure.
- the process according to the invention may be carried out in suitable solvents and/or diluents.
- aromatic hydrocarbons which may be halogenated, preferably with bromine or chlorine or substituted with NO 2 groups, such as benzene, toluene, xylenes, chlorobenzene, dichlorobenzenes, nitrobenzene and aliphatic, optionally halogenated hydrocarbons such as n-hexane, carbon tetrachloride or 1,2-dicloroethane.
- the phenol used in excess constitutes the reaction medium so that no additional solvent and/or diluent is required.
- the phenacyl compound e.g. phenacyl chloride
- the phenacyl compound is mixed with 15 times the molar quantity of the phenol, e.g. phenol itself, and hydrogen chloride is introduced at 60° C until the mixture is saturated with it. Stirring is then continued for a further 5 to 6 hours at 60° C and the hydrochloric acid formed in the reaction and excess phenol are distilled off in a water jet vacuum and the residue is digested with methylene chloride.
- the product can be recrystallised, for example from methanol/water.
- the process may be illustrated by the following reaction scheme for the preparation of 1,1,2-tris-(p-hydroxyphenyl)-1-phenyl-ethane: ##STR4##
- phenacyl chlorides for example, can be easily prepared by chlorinating a solution of acetophenone in glacial acetic acid.
- acetophenone is therefore used as starting material and chlorinated with about 80% of the stoichiometrically required quantity of chlorine.
- Glacial acetic acid and unreacted acetophenone are removed by distillation at reduced pressure. The residue consists of practically pure phenacyl chloride and can be directly reacted with phenol without further treatment.
- trisphenols in particular tris-1,1,2-(o/p-hydroxyphenyl)-phenyl-ethanes, are well known to be suitable for the preparation of branched polycarbonates, which, in the molten state, have increased stability under load and pronounced non-Newtonian flow characteristics.
- Polycarbonates which have been branched with the new trisphenols therefore have important advantages over unbranched polycarbonates under processing conditions.
- polycarbonates which have been branched with the compounds according to the invention do not have the tendency to drip in when burning as have unbranched compounds.
- the new trisphenols are also suitable for producing other materials such as epoxide resins and phenol formaldehyde resins, and after they have been reacted with a cyanogen halide they can also be used for the production of cyanate resins.
- 92 g of unreacted phenacyl chloride can be isolated from the methylene chloride extracts by distillation at 91° - 95° C/3 Torr. This corresponds to a trisphenol yield of 77%, based on the degree of conversion.
- Hydrogen chloride gas is introduced to saturation point into a mixture of 76 g of 4 ⁇ -dichloroacetophenone and 600 g of phenol at 60° C. The mixture is then heated to 80° C while the introduction of hydrogen chloride is continued. After 5 hours at 80° C, the reaction mixture is worked up by distilling off the phenol under vacuum and digesting the residue with methylene chloride. The product is recrystallised from methanol/water with the addition of active charcoal. 92 g of colourless crystals which melt at 268° to 269° C with decomposition are obtained. 19 g of unreacted 4, ⁇ -dichloroacetophenone can be isolated from the combined methylene chloride phases. This corresponds to a conversion of 74%, based on the yield.
- Gaseous hydrogen chloride is introduced into a mixture of 154.6 g of phenacyl chloride and 1000 g of o-cresol at 50° C until saturation point is reached. The mixture is then heated while the introduction of hydrogen chloride is continued and after 5 hours reaction at 90° to 100° C the mixture is distilled under vacuum. The residue is digested with cold toluene and recrystallised from toluene. 296 g of colourless crystals melting at 216°-226° C are obtained. 24 g of unreacted chloroacetophenone can be isolated from the toluene phase after digestion. This corresponds to a trisphenol yield of 83%, based on the degree of conversion.
- the branched structure and hence incorporation of the branching agent is quite clearly recognizable from the difference between the molecular weight determinations.
- the properties of the polycarbonate are set forth in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyesters Or Polycarbonates (AREA)
- Adhesives Or Adhesive Processes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19752508710 DE2508710A1 (de) | 1975-02-28 | 1975-02-28 | 1,1,2-tris-(p-hydroxyphenyl)-1- phenyl-aethane sowie ein verfahren zu ihrer herstellung |
| DT2508710 | 1975-02-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4048200A true US4048200A (en) | 1977-09-13 |
Family
ID=5940063
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/660,850 Expired - Lifetime US4048200A (en) | 1975-02-28 | 1976-02-24 | 1,1,2-Tris-(o/p-hydroxyphenyl)-1-phenyl-ethanes |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US4048200A (show.php) |
| JP (1) | JPS51110549A (show.php) |
| BE (1) | BE838961A (show.php) |
| CA (1) | CA1073928A (show.php) |
| DE (1) | DE2508710A1 (show.php) |
| FR (1) | FR2302292A1 (show.php) |
| GB (1) | GB1532276A (show.php) |
| IT (1) | IT1056192B (show.php) |
| NL (1) | NL7602064A (show.php) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4680370A (en) * | 1985-09-30 | 1987-07-14 | The Dow Chemical Company | Branched polycarbonate composition from tris(hydroxyaryl)phosphorus compound |
| US4695408A (en) * | 1985-07-02 | 1987-09-22 | The Dow Chemical Company | Preparation of trisphenol methanes |
| US5110994A (en) * | 1989-04-17 | 1992-05-05 | Isonova Technische Innovationen G.M.B.H | Process for synthesizing 9,9-bis-(hydroxyphenyl)fluorene |
| US5283314A (en) * | 1989-08-03 | 1994-02-01 | Idemitsu Petrochemical Co., Ltd. | Process for the production of a branched polycarbonate with emulsion having interfacial area |
| US5382710A (en) * | 1990-01-29 | 1995-01-17 | The Dow Chemical Company | Aromatic polyhydroxy compounds and process for the preparation thereof |
| US20090076314A1 (en) * | 2005-09-27 | 2009-03-19 | Council Of Scientific And Industrial Research | Bisphenol compound and process for preparation thereof |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE24709T1 (de) * | 1981-05-07 | 1987-01-15 | Isovolta | Verfahren zur herstellung von phenol-ketonkondensationsprodukten, insbesondere von diphenolen. |
| DE3662188D1 (en) * | 1985-10-08 | 1989-04-06 | Mitsui Petrochemical Ind | Triphenol and polycarbonate polymer prepared therefrom |
| JPS62169683A (ja) * | 1986-01-21 | 1987-07-25 | Adeka Argus Chem Co Ltd | 感熱記録体 |
| IT1222649B (it) * | 1987-09-11 | 1990-09-05 | Enichem Tecnoresine | Policarbonati resistenti alla fiamma,contenenti nella catena polimerica unita' derivanti da composti tetrafenilici monoalogenati |
| US5104964A (en) * | 1989-08-03 | 1992-04-14 | Idemitsu Petrochemical Co., Ltd. | Branched polycarbonate having branching parameter and degree of branching |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3057928A (en) * | 1959-10-30 | 1962-10-09 | Pennsalt Chemicals Corp | Bis(2-hydroxy-meta-alkyl-phenol) alkanes |
| US3123586A (en) * | 1964-03-03 | Glycidyl ethers of mononuclear poly- | ||
| US3378525A (en) * | 1964-12-03 | 1968-04-16 | Union Carbide Corp | Epoxy resins from polyhydric phenolterpene addition products |
| GB1184289A (en) * | 1967-12-07 | 1970-03-11 | Dynamit Nobel Ag | Process for the Production of 4,4'-Dihydroxytetraphenyl Methane |
| US3787451A (en) * | 1971-08-19 | 1974-01-22 | Dow Chemical Co | Epoxides of alkoxy-substituted tri(hydroxyphenyl)alkanes |
| US3957832A (en) * | 1970-03-16 | 1976-05-18 | The Dow Chemical Company | Epoxy resins prepared from polyhydroxy-containing compounds |
-
1975
- 1975-02-28 DE DE19752508710 patent/DE2508710A1/de not_active Withdrawn
-
1976
- 1976-02-24 GB GB7196/76A patent/GB1532276A/en not_active Expired
- 1976-02-24 US US05/660,850 patent/US4048200A/en not_active Expired - Lifetime
- 1976-02-26 JP JP51019485A patent/JPS51110549A/ja active Pending
- 1976-02-26 CA CA246,608A patent/CA1073928A/en not_active Expired
- 1976-02-26 BE BE164664A patent/BE838961A/xx unknown
- 1976-02-26 IT IT48289/76A patent/IT1056192B/it active
- 1976-02-27 NL NL7602064A patent/NL7602064A/xx not_active Application Discontinuation
- 1976-02-27 FR FR7605673A patent/FR2302292A1/fr active Granted
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3123586A (en) * | 1964-03-03 | Glycidyl ethers of mononuclear poly- | ||
| US3057928A (en) * | 1959-10-30 | 1962-10-09 | Pennsalt Chemicals Corp | Bis(2-hydroxy-meta-alkyl-phenol) alkanes |
| US3378525A (en) * | 1964-12-03 | 1968-04-16 | Union Carbide Corp | Epoxy resins from polyhydric phenolterpene addition products |
| GB1184289A (en) * | 1967-12-07 | 1970-03-11 | Dynamit Nobel Ag | Process for the Production of 4,4'-Dihydroxytetraphenyl Methane |
| US3957832A (en) * | 1970-03-16 | 1976-05-18 | The Dow Chemical Company | Epoxy resins prepared from polyhydroxy-containing compounds |
| US3787451A (en) * | 1971-08-19 | 1974-01-22 | Dow Chemical Co | Epoxides of alkoxy-substituted tri(hydroxyphenyl)alkanes |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4695408A (en) * | 1985-07-02 | 1987-09-22 | The Dow Chemical Company | Preparation of trisphenol methanes |
| US4680370A (en) * | 1985-09-30 | 1987-07-14 | The Dow Chemical Company | Branched polycarbonate composition from tris(hydroxyaryl)phosphorus compound |
| US5110994A (en) * | 1989-04-17 | 1992-05-05 | Isonova Technische Innovationen G.M.B.H | Process for synthesizing 9,9-bis-(hydroxyphenyl)fluorene |
| US5283314A (en) * | 1989-08-03 | 1994-02-01 | Idemitsu Petrochemical Co., Ltd. | Process for the production of a branched polycarbonate with emulsion having interfacial area |
| US5382710A (en) * | 1990-01-29 | 1995-01-17 | The Dow Chemical Company | Aromatic polyhydroxy compounds and process for the preparation thereof |
| EP0440390B1 (en) * | 1990-01-29 | 1995-05-24 | The Dow Chemical Company | Process for the preparation of bisphenols |
| US5541282A (en) * | 1990-01-29 | 1996-07-30 | The Dow Chemical Company | Aromatic polyhydroxy compounds and process for the preparation thereof |
| US20090076314A1 (en) * | 2005-09-27 | 2009-03-19 | Council Of Scientific And Industrial Research | Bisphenol compound and process for preparation thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2508710A1 (de) | 1976-09-09 |
| GB1532276A (en) | 1978-11-15 |
| IT1056192B (it) | 1982-01-30 |
| BE838961A (fr) | 1976-08-26 |
| CA1073928A (en) | 1980-03-18 |
| FR2302292B1 (show.php) | 1979-05-18 |
| NL7602064A (nl) | 1976-08-31 |
| FR2302292A1 (fr) | 1976-09-24 |
| JPS51110549A (en) | 1976-09-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0219294B1 (en) | Triphenol and polycarbonate polymer prepared therefrom | |
| US4261922A (en) | Process for alkoxylation of phenols | |
| US5037919A (en) | Reactive compounds containing perfluorovinyl groups | |
| US5198513A (en) | Reactive compounds containing perfluorovinyl groups | |
| US4048200A (en) | 1,1,2-Tris-(o/p-hydroxyphenyl)-1-phenyl-ethanes | |
| US4348542A (en) | Process for the production of mixtures of alkylated aromatic hydroxy compounds | |
| US4358624A (en) | Fluorinated monophenols and diphenols and method for their preparation | |
| US4855484A (en) | Process for the preparation of 4-hydroxyphenyl 4-hydroxybenzoate and the use thereof | |
| US3211774A (en) | Process for preparing aromatic esters of chloroformic acid | |
| US4044060A (en) | Process for preparing geminal dihalides | |
| US4717776A (en) | Bromination process | |
| US4365098A (en) | Fluorinated diphenols and method for their preparation | |
| US4366328A (en) | Indene compound and novel process for producing indene compounds | |
| US5744653A (en) | Method for preparing 1,3-dihydroxy-4,6-bis(α-methyl-α(4'-hydroxyphenyl)ethyl)benzene | |
| US5698717A (en) | Process for preparing hydroxyflavan compounds | |
| JPH0564935B2 (show.php) | ||
| US4070392A (en) | Process for the production of O-derivatives of p-isopropenyl phenol | |
| US3947443A (en) | Process for preparing 1,3-bis(halomethyl)phenobarbitals | |
| US5567850A (en) | Method for making acyl substituted resorcinols | |
| JPH0417170B2 (show.php) | ||
| JPH08295646A (ja) | ビス(ヒドロキシエトキシフェニル)化合物の製造方法 | |
| JPH0825935B2 (ja) | 1,3−ジヒドロキシ−4,6−ビス〔α−メチル−α−(4’−ヒドロキシフェニル)エチル〕ベンゼンおよびその製造方法 | |
| CA1062281A (en) | PROCESS FOR THE PRODUCTION OF .alpha.,.alpha.,.alpha.,.alpha.',.alpha.',.alpha.'-HEXAKISARYL-1,3-AND-1,4-DIMETHYL BENZENES | |
| US4080371A (en) | Process for the production of α, α, α, α', α',α'-hexakisaryl-1,3- and -1,4-dimethyl benzenes | |
| US4467121A (en) | Fluorinated diphenols and method for their preparation |