US4031487A - Reciprocal microwave junction device - Google Patents
Reciprocal microwave junction device Download PDFInfo
- Publication number
- US4031487A US4031487A US05/653,022 US65302276A US4031487A US 4031487 A US4031487 A US 4031487A US 65302276 A US65302276 A US 65302276A US 4031487 A US4031487 A US 4031487A
- Authority
- US
- United States
- Prior art keywords
- line
- coaxial
- lines
- coaxial line
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000750 progressive effect Effects 0.000 claims abstract description 13
- 230000007704 transition Effects 0.000 claims abstract description 10
- 239000004020 conductor Substances 0.000 claims description 40
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/06—Movable joints, e.g. rotating joints
- H01P1/062—Movable joints, e.g. rotating joints the relative movement being a rotation
- H01P1/066—Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
- H01P1/069—Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around an axial transmission line; Concentric coaxial systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
Definitions
- the present invention relates to junction devices between a system of independent coaxial lines and a system of concentric coaxial lines.
- the system of two or more concentric coaxial lines is widely used in microwave systems containing rotating joints. It makes it possible to transmit two or more independent transmission channels between a fixed component and a component rotating about the axis of the system of concentric coaxial lines.
- concentric coaxial lines of this kind involves difficulties where the design of the junctions between concentric coaxial lines and independent coaxial lines, and vice versa, is concerned.
- the devices most widely used to effect these junctions employ either junctions between coaxial lines and circular-section or rectangular-section waveguides, or sets of coaxial lines in a Tee arrangement, one of the branches of which picks off the signals transmitted through the two external conductors, and the other those transmitted through the internal conductors.
- One object of the present invention is to provide a wideband junction device.
- a reciprocal microwave junction device between a system of independent coaxial lines and a system of concentric coaxial lines, comprising as many elementary junctions as there are independent lines, less one, each of said junctions comprising a first part in which two independent lines are joined in parallel with one another, their external conductors being connected together, a second part for establishing a progressive transition from the assembly of two parallel lines to a two-wire line having a first conductor constituted by one of the lines and the other by the internal conductor of the other line, and a third part for establishing a progressive transition from said two-wire line to the system of concentric coaxial lines whose internal conductor is constituted by said first conductors of the two-wire line, and whose external conductor is connected to the other conductor of the two-wire line.
- FIG. 1 is an example of a junction between two independent coaxial lines and two concentric lines, in accordance with the invention.
- FIGS. 2, 3 and 4 illustrate variant embodiments of the invention.
- FIG. 1 illustrates an example of a junction device in accordance with the invention, between two independent coaxial lines and a system of concentric lines carrying two channels.
- the two independent coaxial lines respectively carry the references 1 and 2, and the concentric line the reference 3.
- the device is divided into five separate parts respectively marked A, B, C, D and E.
- the part A is constituted by the two independent coaxial lines 1 and 2.
- the coaxial lines merge and are then connected.
- the line 1 comprises an external conductor 10 and an internal conductor 11.
- the line 2 also comprises an external conductor 20 and an internal conductor 21.
- Part E at the other end of the device, comprises the system of concentric coaxial lines 3. This incorporates an external conductor 30 connected to the internal conductor 11 of the line 1, an intermediate conductor 31 which is the extension of the external conductor 20 of the line 2, and an internal conductor 32 which is the extension of the internal conductor 21 of the line 2.
- the line 2 remains intact from one end of the device to the other.
- the part B constitutes a progressive transition from the coaxial lines to a two-wire line, which makes it possible to expose the central conductor 11 of the coaxial line 1.
- the line 1 is cut on the slant and only its internal conductor extends onwards into the parts C and D.
- the external conductor 20 of the line 2 is then soldered to the external conductor 10.
- the line 2 constitutes one of the conductors and the conductor 11 the other, of the two-wire line corresponding to part C.
- the part D is once again a progressive transition from two-wire line to coaxial line, but in this case the coaxial line 2 becomes the central conductor 31 of the coaxial line 3, and the internal conductor 11 of the coaxial line 1 is soldered to the external conductor 30 of the coaxial line 3.
- the part E is a "triax" line. An identical but reciprocal device connected to the part E, makes it possible to change back to the system of independent coaxial lines.
- the coaxial line 2 passes unbroken from A to E so that there is no limitation on pass-band.
- the pass-band is limited only by the efficiencies of the progressive transitions B and D, and of the two-wire line C.
- this kind of progressive transition has a wide-band characteristic if its length is sufficiently long compared with the wave length.
- the two-wire zone C is constituted by sufficiently fine and closely spaced lines to prevent any radiation from them.
- zone B, C, D in a cylindrical metal screening of diameter greater than that of the coaxial line 1.
- the ends of the screened zone will preferably be filled with an absorbent material to prevent the development of any resonance condition.
- FIGS. 2, 3 and 4 are variant embodiments of FIG. 1.
- the two-wire section is shortened to the maximum extent.
- the two progressive junctions are spaced apart by an interval d the adjustment of which enables correct operation to be achieved.
- a screening 40 encloses the device and the screen, at its ends, contains an absorber 41.
- junction devices between 3, 4 or a large number of lines and a system of concentric lines are possible and will be constituted by a series of successive junctions of the kind shown in FIGS. 1 to 4.
- the preceding concentric line becomes the internal conductor of a new line which has an extra external conductor.
- the diameter of the concentric line increases as the number of lines increases.
- the device in accordance with the invention is a reciprocal device. It makes it possible to effect junctions from independent coaxial lines to concentric coaxial lines and vice versa.
- the invention applies equally to surveillance radar systems where the need to transmit and receive signals simultaneously in several frequency bands, is translated by a need for the provision of concentric coaxial transmission lines.
Landscapes
- Waveguide Connection Structure (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguides (AREA)
- Near-Field Transmission Systems (AREA)
- Selective Calling Equipment (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7503101A FR2299735A1 (fr) | 1975-01-31 | 1975-01-31 | Dispositif de transition entre un systeme de lignes coaxiales independantes et un |
FR75.03101 | 1975-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4031487A true US4031487A (en) | 1977-06-21 |
Family
ID=9150575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/653,022 Expired - Lifetime US4031487A (en) | 1975-01-31 | 1976-01-28 | Reciprocal microwave junction device |
Country Status (6)
Country | Link |
---|---|
US (1) | US4031487A (enrdf_load_stackoverflow) |
DE (1) | DE2603348C3 (enrdf_load_stackoverflow) |
FR (1) | FR2299735A1 (enrdf_load_stackoverflow) |
GB (1) | GB1499951A (enrdf_load_stackoverflow) |
IT (1) | IT1053467B (enrdf_load_stackoverflow) |
NO (1) | NO141288C (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8922445B2 (en) | 2009-04-24 | 2014-12-30 | Thales | Low-profile broadband multiple antenna |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU185977A1 (ru) * | Э. А. Дудковский , | А. а. длинное | ||
US3827001A (en) * | 1973-06-25 | 1974-07-30 | Us Navy | Wide band series-connected equal amplitude power divider |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1971901A (en) * | 1931-12-15 | 1934-08-28 | Int Communications Lab Inc | Microray transmission line |
US3656071A (en) * | 1970-06-25 | 1972-04-11 | Rca Corp | Wide band balun |
US3757253A (en) * | 1972-09-29 | 1973-09-04 | Marco V De | Multichannel transmission line structure |
DE2330585C3 (de) * | 1973-06-15 | 1979-11-22 | Georg Dipl.-Ing. Dr.-Ing. 8152 Feldkirchen-Westerham Spinner | Koaxiale HF-Mehrfachdrehkupplung |
-
1975
- 1975-01-31 FR FR7503101A patent/FR2299735A1/fr active Granted
-
1976
- 1976-01-28 US US05/653,022 patent/US4031487A/en not_active Expired - Lifetime
- 1976-01-28 GB GB3409/76A patent/GB1499951A/en not_active Expired
- 1976-01-29 DE DE2603348A patent/DE2603348C3/de not_active Expired
- 1976-01-29 IT IT47856/76A patent/IT1053467B/it active
- 1976-01-30 NO NO760320A patent/NO141288C/no unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU185977A1 (ru) * | Э. А. Дудковский , | А. а. длинное | ||
US3827001A (en) * | 1973-06-25 | 1974-07-30 | Us Navy | Wide band series-connected equal amplitude power divider |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8922445B2 (en) | 2009-04-24 | 2014-12-30 | Thales | Low-profile broadband multiple antenna |
Also Published As
Publication number | Publication date |
---|---|
DE2603348A1 (de) | 1976-08-05 |
NO760320L (enrdf_load_stackoverflow) | 1976-08-03 |
DE2603348B2 (de) | 1978-09-14 |
IT1053467B (it) | 1981-08-31 |
NO141288C (no) | 1980-02-06 |
GB1499951A (en) | 1978-02-01 |
FR2299735A1 (fr) | 1976-08-27 |
FR2299735B1 (enrdf_load_stackoverflow) | 1978-06-23 |
DE2603348C3 (de) | 1979-05-10 |
NO141288B (no) | 1979-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4375622A (en) | Multiport radio frequency signal combiner | |
US4236127A (en) | Electrical frequency responsive structure | |
US4489292A (en) | Stub type bandpass filter | |
US2196272A (en) | Transmission network | |
US2531777A (en) | Variable directive coupler | |
US2321521A (en) | Frequency band filter | |
US4443805A (en) | Plate-type antenna with double circular loops | |
US2453759A (en) | Tapered union for concentric conductor lines | |
US3827001A (en) | Wide band series-connected equal amplitude power divider | |
US4031487A (en) | Reciprocal microwave junction device | |
US2774944A (en) | Spacer disk arrangement for coaxial cables or the like | |
US3950703A (en) | Microcircuit reverse-phased hybrid ring mixer | |
US2533239A (en) | Impedance transformer for coaxial lines | |
GB1577822A (en) | Radio frequency power combiner | |
US2523348A (en) | Radio frequency rotating joint for multiple feeds | |
US2808573A (en) | Electrical filter | |
US2661424A (en) | Diplexer arrangement | |
US2796586A (en) | Impedance matched coupling device | |
US2243136A (en) | Wide band antenna system | |
US2421137A (en) | Transmission line | |
US2693582A (en) | Variable coupling device | |
US4262266A (en) | Coaxial stub tuner | |
US3056933A (en) | Band pass-band reject filter | |
US2736866A (en) | Filter for transmission line | |
US3219950A (en) | Low-loss continuously variable delay line |