US4024489A - Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers - Google Patents
Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers Download PDFInfo
- Publication number
- US4024489A US4024489A US05/633,047 US63304775A US4024489A US 4024489 A US4024489 A US 4024489A US 63304775 A US63304775 A US 63304775A US 4024489 A US4024489 A US 4024489A
- Authority
- US
- United States
- Prior art keywords
- layer
- sensor
- biasing
- accordance
- magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/90—Magnetic feature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
- Y10T428/12854—Next to Co-, Fe-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24926—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
Definitions
- This invention relates to dynamic magnetic information storage and retrieval and, ore particularly, to heads which are magnetoresistive, and to sensors of magnetic fields in general.
- Beaulieu et al provides a structure which makes it very difficult to provide contact with the lower magnetoresistive sensor because the conductor requires a discontinuity in the structure, causing Barkhausen noise and potential short circuits.
- the magnetoresistive (MR) film is deposited on a smooth substrate.
- the sequence of deposition is important for smoothness of the surface on which the MR film is deposited, since smoothness determines the quality of the MR film.
- a smooth substrate provides a higher quality film with reduced dispersion and lower coercivity. Both are desirable for reduction of Barkhausen noise.
- An intermediate layer of a thin film of a high resistivity, conductive material, such as titanium, is deposited directly upon the film of magnetoresistive material. The titanium is deposited under low temperature conditions which yield a smooth surface.
- a thin film of magnetic biasing material is deposited directly upon the intermediate layer.
- An object of this invention is to provide a magnetoresistive sensor having a bias layer without spurious electrical breakdowns and with excellent magnetic and electrical characteristics.
- FIG. 1A shows a perspective view of a prior art form of magnetoresistive sensor structure (with a top shield and dielectric omitted) interpreted to show what would seem to be the most favorable specific embodiment.
- FIG. 1B shows a plan view of the head of FIG. 1A.
- FIG. 1C shows a front elevation view of the head of FIG. 1A.
- FIG. 2A shows a perspective view of a magnetoresistive sensor structure in accordance with this invention.
- FIG. 2B shows a plan view of the head of FIG. 2A.
- FIG. 2C shows a front elevational view of the head of FIG. 2A.
- FIG. 3 is a plan view of a modification of FIG. 1A.
- FIG. 4 is a plan view of another modification of FIG. 1A.
- FIG. 5 shows an equivalent electrical circuit for the invention as embodied in FIGS. 2A-2C.
- FIGS. 1A-C a modification of the arrangement shown in FIG. 5 of U.S. Pat. No. 3,864,751 of Beaulieu et al is shown.
- a substrate 20 comprising a magnetic shield is covered with an insulating layer 12.
- a layer of a magnetoresistive element 10 On the layer 12 is vacuum deposited a layer of a magnetoresistive element 10.
- a shunt layer 26 which is nonmagnetic but of comparable resistivity and adapted to carry a comparable current composed of a material such as titanium.
- An insulation layer 27 is deposited upon shunt layer 26, and a layer of a bias film 16 which can be composed of a Permalloy composition (80% Ni, 20% Fe).
- the Beaulieu et al patent does not deal in detail with the issue of location of the conductor leads 28 and 30 which connect the sensor layer 10 and shunt layer 26 to the current source 24.
- such considerations are important. It would appear that the best way to connect layer 10 and 26 to leads 28 and 30 is as shown in FIG. 1, with leads 28 and 30 extending under insulation layer 27 and bias film 16.
- the conductors 28 and 30 In order to provide adequate current to the layers 10 and 26, the conductors 28 and 30 must be on the order of 1000A thick which creates a step over which insulation layer 27 and bias layer 16 must extend.
- FIGS. 2A-C show a similar magnetoresistive sensor to that shown in FIGS. 1A-C modified in accordance with this invention.
- a substrate 60 is coated with dielectric layer 52 composed preferably of glass.
- a magnetoresistive sensor thin film layer 50 such as Permalloy nickel-iron about 200A-600A thick is deposited by evaporation at a substrate temperature near 250° C on the smooth dielectric layer 52 to provide an excellent magnetoresistor.
- a thin film 66 about 100A to 200A thick of a high resistivity conductor such as titanium is deposited upon sensor layer 50 at room temperature to reduce grain size of the titanium.
- a thin film layer 56 about 140A to 425A thick of a hard or soft magnetic biasing material such as Permalloy nickel-iron, or CoCr is deposited upon film 66.
- layer 56 should be about 0.707 of the thickness of magnetoresistive layer 50.
- An inverted U-shaped outline is formed by selective etching of all three layers through use of a single photoresist pattern or the equivalent to provide a sensor stripe plus support for the electrical leads 68 and 70 which are deposited upon the legs of the inverted U-shape formed by etching or the equivalent.
- the shape of the MR sensor sandwich can also be a rectangular one with the leads stepping over it.
- the low temperature technique of depositing the shunt layer 66 results in minimization of the increase in coercivity normally observed in depositing magnetic material over a layer because of the reduced grain size of shunt layer 66.
- layer 56 is selected to be thinner than layer 50 when using Permalloy nickel-iron so that it will be saturated and will not be capable of exhibiting the magnetoresistive effect. Such saturation is imposed by the magnetic field generated by the sensor 50 and the shunt layer 66.
- layer 26 would have to be etched prior to deposition of conductors 28 and 30, insulating layer 27 and bias layer 26.
- layer 26 would have its shape formed separately from layer 26 after several intervening steps.
- the configurations of layers 10 and 16 after etching should be identical and perfectly aligned to avoid substantially increasing Barkhausen noise. Achieving that degree of alignment would impose impossible fabrication problems. From a practical point of view, such alignment is not possible without a procedure whereby the three layers are etched simultaneously as is possible in the arrangements of FIGS. 1A-C and 2A-C.
- the arrangement of FIG. 3 is also unsatisfactory because it would provide a nonuniform magnetic bias since sensor 10 extends beyond bias layer 16.
- FIG. 4 shows another modified arrangement of the Beaulieu et al patent which will eliminate short circuits, but which also suffers the fabrication difficulties of the above-mentioned case.
- a question which is immediately raised by placing the shunt and bias layers electrically in parallel with the magnetoresistor as in FIGS. 2A-C is one of the degree to which the parasitic shunt resistances of those layers degrade the signal output.
- FIG. 5 an equivalent electrical schematic circuit for the sandwich of FIGS. 2A-C is shown.
- a biased magnetoresistor of resistance R without any shunt has an AC output voltage of I ⁇ R where ⁇ R is the change of resistance caused by a magnetic field, and where the sensing current I is limited by power dissipation considerations (I 2 R).
- a biased magnetoresistor of resistance R with a shunt of resistance ⁇ R has an output AC voltage of I' ⁇ R ⁇ /1+ ⁇ .
- I' can be of a larger value than I since the magneto-resistor-shunt combination can withstand a higher current than the magnetoresistor alone at equal power dissipation I' 2 R ⁇ / 1+ ⁇ ).
- the value of ⁇ is near 1 and I' equals about 1.4I. Therefore, the sensor of FIG. 2A-C provides 70% of the maximum output signal of a magnetoresistor without a shunt. This is considered to be a negligible loss of signal amplitude in view of elimination of the unreliability caused by the breakdown of the thin insulating layers which were required by Beaulieu et al.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/633,047 US4024489A (en) | 1975-11-18 | 1975-11-18 | Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers |
IT2758376A IT1075854B (it) | 1975-11-18 | 1976-09-24 | Trasduttore magnetoresistivo per fezionato |
GB4155076A GB1534735A (en) | 1975-11-18 | 1976-10-06 | Thin film magnetoresistive sensor |
FR7631436A FR2332587A1 (fr) | 1975-11-18 | 1976-10-11 | Capteur magnetoresistif d'informations magnetiques et son procede de fabrication |
JP13134776A JPS5262417A (en) | 1975-11-18 | 1976-11-02 | Magnetic head |
DE2650484A DE2650484C2 (de) | 1975-11-18 | 1976-11-04 | Magnetoresistiver Dünnfilm-Abtastkopf und Verfahren zu seiner Herstellung |
NL7612457A NL7612457A (nl) | 1975-11-18 | 1976-11-10 | Magnetoresistieve afleeskop. |
CA265,857A CA1068412A (en) | 1975-11-18 | 1976-11-16 | Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/633,047 US4024489A (en) | 1975-11-18 | 1975-11-18 | Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers |
Publications (1)
Publication Number | Publication Date |
---|---|
US4024489A true US4024489A (en) | 1977-05-17 |
Family
ID=24538069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/633,047 Expired - Lifetime US4024489A (en) | 1975-11-18 | 1975-11-18 | Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers |
Country Status (8)
Country | Link |
---|---|
US (1) | US4024489A (enrdf_load_stackoverflow) |
JP (1) | JPS5262417A (enrdf_load_stackoverflow) |
CA (1) | CA1068412A (enrdf_load_stackoverflow) |
DE (1) | DE2650484C2 (enrdf_load_stackoverflow) |
FR (1) | FR2332587A1 (enrdf_load_stackoverflow) |
GB (1) | GB1534735A (enrdf_load_stackoverflow) |
IT (1) | IT1075854B (enrdf_load_stackoverflow) |
NL (1) | NL7612457A (enrdf_load_stackoverflow) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4210946A (en) * | 1977-09-30 | 1980-07-01 | Sony Corporation | Magnetic recording medium |
US4239835A (en) * | 1976-07-15 | 1980-12-16 | Matsushita Electric Industrial Co., Ltd. | Magnetic recording medium |
US4277808A (en) * | 1978-05-26 | 1981-07-07 | Sony Corporation | Magnetic transducer head |
DE3343035A1 (de) * | 1982-11-30 | 1984-05-30 | Copal Co. Ltd., Tokyo | Verfahren zur herstellung eines magnet(mess)fuehlers mit mindestens zwei elementen mit magnetischer widerstandsaenderung |
US4503394A (en) * | 1981-07-01 | 1985-03-05 | Hitachi, Ltd. | Magnetoresistive sensor having a closed domain structure and electrode biasing |
US4504787A (en) * | 1982-04-05 | 1985-03-12 | Honeywell Inc. | Electronic watthour meter |
US4533872A (en) * | 1982-06-14 | 1985-08-06 | Honeywell Inc. | Magnetic field sensor element capable of measuring magnetic field components in two directions |
US4603091A (en) * | 1983-11-05 | 1986-07-29 | Alps Electric Co., Ltd. | Recording medium for perpendicular magnetization |
US4754431A (en) * | 1987-01-28 | 1988-06-28 | Honeywell Inc. | Vialess shorting bars for magnetoresistive devices |
US4807073A (en) * | 1986-04-18 | 1989-02-21 | Hitachi, Ltd. | Magnetoresistance type magnetic head and method for fabricating same |
US4847584A (en) * | 1988-10-14 | 1989-07-11 | Honeywell Inc. | Magnetoresistive magnetic sensor |
US4897288A (en) * | 1987-01-28 | 1990-01-30 | Honeywell Inc. | Vialess shorting bars for magnetoresistive devices |
US4918655A (en) * | 1988-02-29 | 1990-04-17 | Honeywell Inc. | Magnetic device integrated circuit interconnection system |
US4937521A (en) * | 1987-07-07 | 1990-06-26 | Nippondenso Co., Ltd. | Current detecting device using ferromagnetic magnetoresistance element |
US5018037A (en) * | 1989-10-10 | 1991-05-21 | Krounbi Mohamad T | Magnetoresistive read transducer having hard magnetic bias |
US5084794A (en) * | 1990-03-29 | 1992-01-28 | Eastman Kodak Company | Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification |
US5260652A (en) * | 1992-03-25 | 1993-11-09 | Seagate Technology, Inc. | Magnetoresistive sensor with electrical contacts having variable resistive regions for enhanced sensor sensitivity |
US5262666A (en) * | 1989-05-15 | 1993-11-16 | Nippondenso Co., Ltd. | Semiconductor device with a nickel alloy protective resistor |
EP0613119A3 (en) * | 1993-02-22 | 1996-01-31 | Nec Corp | Magnetoresistive sensor and manufacturing process. |
US5529831A (en) * | 1993-12-09 | 1996-06-25 | Alps Electric Co., Ltd. | Thin film device |
US5530608A (en) * | 1992-12-30 | 1996-06-25 | International Business Machines Corporation | Hard-film stabilized soft-film biased magnetoresistive sensor with an alumina underlayer pattern for improved longitudinal servo-positioning linearity and stability |
US5576908A (en) * | 1994-04-01 | 1996-11-19 | International Business Machines Corporation | Actuator and file level initialization of magnetoresistive transducers |
US5664316A (en) * | 1995-01-17 | 1997-09-09 | International Business Machines Corporation | Method of manufacturing magnetoresistive read transducer having a contiguous longitudinal bias layer |
US5767673A (en) * | 1995-09-14 | 1998-06-16 | Lucent Technologies Inc. | Article comprising a manganite magnetoresistive element and magnetically soft material |
US5774309A (en) * | 1994-09-16 | 1998-06-30 | Tdk Corporation | Magnetic transducer and thin film magnetic head |
US5920980A (en) * | 1997-03-05 | 1999-07-13 | Headway Technologies, Inc. | Method of making a soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US5978181A (en) * | 1997-03-04 | 1999-11-02 | Fujitsu Limited | Magnetic head and magnetic recording/reproducing apparatus |
US5985162A (en) * | 1997-03-05 | 1999-11-16 | Headway Technologies, Inc. | Method for forming soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US6007731A (en) * | 1998-03-23 | 1999-12-28 | Headway Technologies, Inc. | Soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US6040962A (en) * | 1997-05-14 | 2000-03-21 | Tdk Corporation | Magnetoresistive element with conductive films and magnetic domain films overlapping a central active area |
US6160687A (en) * | 1998-05-29 | 2000-12-12 | International Business Machines Corporation | Method of providing improvement in the prevention of shield-to-lead shorts in MR/GMR heads, MR/GMR heads produced thereby and storage devices using MR/GMR heads produced thereby |
US6215301B1 (en) * | 1998-04-24 | 2001-04-10 | U.S. Philips Corporation | Magnetoresistive detector comprising a layer structure and a current directing means |
US6353316B1 (en) | 1998-06-18 | 2002-03-05 | Tdk Corporation | Magneto-resistive element and thin film magnetic head comprising the same |
US6373667B1 (en) * | 1998-03-23 | 2002-04-16 | Headway Technologies, Inc. | Single stripe magnetoresistive (MR) head |
US20040120185A1 (en) * | 2002-12-21 | 2004-06-24 | Kang Hee Bok | Biosensor and sensing cell array using the same |
US20040150397A1 (en) * | 2001-07-19 | 2004-08-05 | Akio Kuroe | Magnetic sensor and method for manufacturing the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169171U (enrdf_load_stackoverflow) * | 1980-05-20 | 1981-12-14 | ||
JPS56165922A (en) * | 1980-05-23 | 1981-12-19 | Matsushita Electric Ind Co Ltd | Production of magnetic head |
EP0048289A1 (de) * | 1980-09-19 | 1982-03-31 | Ibm Deutschland Gmbh | Magnetoresistiver Dünnfilm-Abtastkopf mit Unterdrückung thermisch induzierter Spannungsspitzen |
JPS57211910A (en) * | 1981-06-24 | 1982-12-25 | Tokyo Shibaura Electric Co | Conductor device |
DE3374622D1 (en) * | 1982-04-14 | 1987-12-23 | Matsushita Electric Ind Co Ltd | A playback head for perpendicular magnetic recordings |
JPS5945629A (ja) * | 1982-09-07 | 1984-03-14 | Alps Electric Co Ltd | 薄膜磁気ヘツド |
GB2143071B (en) * | 1983-07-09 | 1987-10-28 | Magnetic Components Limited | Magnetoresistive transducers |
US4639806A (en) * | 1983-09-09 | 1987-01-27 | Sharp Kabushiki Kaisha | Thin film magnetic head having a magnetized ferromagnetic film on the MR element |
JP2980043B2 (ja) * | 1996-12-24 | 1999-11-22 | 日本電気株式会社 | 磁気ヘッド及び磁気記録再生方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3813692A (en) * | 1972-10-11 | 1974-05-28 | Ibm | Internally biased magnetoresistive magnetic transducer |
US3814863A (en) * | 1972-10-11 | 1974-06-04 | Ibm | Internally biased magnetoresistive magnetic transducer |
US3864751A (en) * | 1973-10-04 | 1975-02-04 | Ibm | Induced bias magnetoresistive read transducer |
US3940797A (en) * | 1973-09-20 | 1976-02-24 | International Business Machines Corporation | Shielded magnetoresistive magnetic transducer |
US3945038A (en) * | 1971-12-22 | 1976-03-16 | Compagnie Internationale Pour L'informatique | Read-write magnetoresistive transducer having a plurality of MR elements |
US3947889A (en) * | 1973-10-23 | 1976-03-30 | Compagnie Internationale Pour L'informatique | Electromagnetic transducers |
-
1975
- 1975-11-18 US US05/633,047 patent/US4024489A/en not_active Expired - Lifetime
-
1976
- 1976-09-24 IT IT2758376A patent/IT1075854B/it active
- 1976-10-06 GB GB4155076A patent/GB1534735A/en not_active Expired
- 1976-10-11 FR FR7631436A patent/FR2332587A1/fr active Granted
- 1976-11-02 JP JP13134776A patent/JPS5262417A/ja active Granted
- 1976-11-04 DE DE2650484A patent/DE2650484C2/de not_active Expired
- 1976-11-10 NL NL7612457A patent/NL7612457A/xx not_active Application Discontinuation
- 1976-11-16 CA CA265,857A patent/CA1068412A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945038A (en) * | 1971-12-22 | 1976-03-16 | Compagnie Internationale Pour L'informatique | Read-write magnetoresistive transducer having a plurality of MR elements |
US3813692A (en) * | 1972-10-11 | 1974-05-28 | Ibm | Internally biased magnetoresistive magnetic transducer |
US3814863A (en) * | 1972-10-11 | 1974-06-04 | Ibm | Internally biased magnetoresistive magnetic transducer |
US3940797A (en) * | 1973-09-20 | 1976-02-24 | International Business Machines Corporation | Shielded magnetoresistive magnetic transducer |
US3864751A (en) * | 1973-10-04 | 1975-02-04 | Ibm | Induced bias magnetoresistive read transducer |
US3947889A (en) * | 1973-10-23 | 1976-03-30 | Compagnie Internationale Pour L'informatique | Electromagnetic transducers |
Non-Patent Citations (2)
Title |
---|
Hendel et al., IBM Tech. Dis. Bull., vol. 15, No. 8, p. 2649, Laminated Structure for Bubble Domain Devices (1-1973). * |
Nepela, IBM Tech. Dis. Bull, Resistive Element . . . Head, vol. 17, No. 9, p. 2759-2760, (2-1975). * |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4239835A (en) * | 1976-07-15 | 1980-12-16 | Matsushita Electric Industrial Co., Ltd. | Magnetic recording medium |
US4210946A (en) * | 1977-09-30 | 1980-07-01 | Sony Corporation | Magnetic recording medium |
US4277808A (en) * | 1978-05-26 | 1981-07-07 | Sony Corporation | Magnetic transducer head |
US4503394A (en) * | 1981-07-01 | 1985-03-05 | Hitachi, Ltd. | Magnetoresistive sensor having a closed domain structure and electrode biasing |
US4504787A (en) * | 1982-04-05 | 1985-03-12 | Honeywell Inc. | Electronic watthour meter |
US4533872A (en) * | 1982-06-14 | 1985-08-06 | Honeywell Inc. | Magnetic field sensor element capable of measuring magnetic field components in two directions |
DE3343035A1 (de) * | 1982-11-30 | 1984-05-30 | Copal Co. Ltd., Tokyo | Verfahren zur herstellung eines magnet(mess)fuehlers mit mindestens zwei elementen mit magnetischer widerstandsaenderung |
US4603091A (en) * | 1983-11-05 | 1986-07-29 | Alps Electric Co., Ltd. | Recording medium for perpendicular magnetization |
US4807073A (en) * | 1986-04-18 | 1989-02-21 | Hitachi, Ltd. | Magnetoresistance type magnetic head and method for fabricating same |
US4754431A (en) * | 1987-01-28 | 1988-06-28 | Honeywell Inc. | Vialess shorting bars for magnetoresistive devices |
US4897288A (en) * | 1987-01-28 | 1990-01-30 | Honeywell Inc. | Vialess shorting bars for magnetoresistive devices |
US4937521A (en) * | 1987-07-07 | 1990-06-26 | Nippondenso Co., Ltd. | Current detecting device using ferromagnetic magnetoresistance element |
US4918655A (en) * | 1988-02-29 | 1990-04-17 | Honeywell Inc. | Magnetic device integrated circuit interconnection system |
US4847584A (en) * | 1988-10-14 | 1989-07-11 | Honeywell Inc. | Magnetoresistive magnetic sensor |
US5262666A (en) * | 1989-05-15 | 1993-11-16 | Nippondenso Co., Ltd. | Semiconductor device with a nickel alloy protective resistor |
US5018037A (en) * | 1989-10-10 | 1991-05-21 | Krounbi Mohamad T | Magnetoresistive read transducer having hard magnetic bias |
US5084794A (en) * | 1990-03-29 | 1992-01-28 | Eastman Kodak Company | Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification |
US5193038A (en) * | 1990-03-29 | 1993-03-09 | Eastman Kodak Company | Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification |
US5260652A (en) * | 1992-03-25 | 1993-11-09 | Seagate Technology, Inc. | Magnetoresistive sensor with electrical contacts having variable resistive regions for enhanced sensor sensitivity |
US5713122A (en) * | 1992-12-30 | 1998-02-03 | International Business Machines Corporation | Hard-film stabilized soft-film biased magnetoresistive sensor with an alumina under layer pattern for improved longitudinal servo-positioning linearity and stability |
US5530608A (en) * | 1992-12-30 | 1996-06-25 | International Business Machines Corporation | Hard-film stabilized soft-film biased magnetoresistive sensor with an alumina underlayer pattern for improved longitudinal servo-positioning linearity and stability |
US5745978A (en) * | 1992-12-30 | 1998-05-05 | International Business Machines Corporation | Method of making magnetoresistive sensor with improved microtrack profile for improved servo-positioning precision |
EP0613119A3 (en) * | 1993-02-22 | 1996-01-31 | Nec Corp | Magnetoresistive sensor and manufacturing process. |
US5529831A (en) * | 1993-12-09 | 1996-06-25 | Alps Electric Co., Ltd. | Thin film device |
US5576908A (en) * | 1994-04-01 | 1996-11-19 | International Business Machines Corporation | Actuator and file level initialization of magnetoresistive transducers |
US5774309A (en) * | 1994-09-16 | 1998-06-30 | Tdk Corporation | Magnetic transducer and thin film magnetic head |
US5664316A (en) * | 1995-01-17 | 1997-09-09 | International Business Machines Corporation | Method of manufacturing magnetoresistive read transducer having a contiguous longitudinal bias layer |
US5767673A (en) * | 1995-09-14 | 1998-06-16 | Lucent Technologies Inc. | Article comprising a manganite magnetoresistive element and magnetically soft material |
US5978181A (en) * | 1997-03-04 | 1999-11-02 | Fujitsu Limited | Magnetic head and magnetic recording/reproducing apparatus |
US5920980A (en) * | 1997-03-05 | 1999-07-13 | Headway Technologies, Inc. | Method of making a soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US5985162A (en) * | 1997-03-05 | 1999-11-16 | Headway Technologies, Inc. | Method for forming soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US6091589A (en) * | 1997-03-05 | 2000-07-18 | Headway Technologies, Inc. | Soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US6040962A (en) * | 1997-05-14 | 2000-03-21 | Tdk Corporation | Magnetoresistive element with conductive films and magnetic domain films overlapping a central active area |
US6416636B2 (en) * | 1997-05-14 | 2002-07-09 | Tdk Corporation | Method for manufacturing a magnetoresistive element with conductive films and magnetic domain films overlapping a central active area |
US6007731A (en) * | 1998-03-23 | 1999-12-28 | Headway Technologies, Inc. | Soft adjacent layer (SAL) magnetoresistive (MR) sensor element with electrically insulated soft adjacent layer (SAL) |
US6373667B1 (en) * | 1998-03-23 | 2002-04-16 | Headway Technologies, Inc. | Single stripe magnetoresistive (MR) head |
US6215301B1 (en) * | 1998-04-24 | 2001-04-10 | U.S. Philips Corporation | Magnetoresistive detector comprising a layer structure and a current directing means |
US6160687A (en) * | 1998-05-29 | 2000-12-12 | International Business Machines Corporation | Method of providing improvement in the prevention of shield-to-lead shorts in MR/GMR heads, MR/GMR heads produced thereby and storage devices using MR/GMR heads produced thereby |
US6353316B1 (en) | 1998-06-18 | 2002-03-05 | Tdk Corporation | Magneto-resistive element and thin film magnetic head comprising the same |
US20040150397A1 (en) * | 2001-07-19 | 2004-08-05 | Akio Kuroe | Magnetic sensor and method for manufacturing the same |
US7145331B2 (en) * | 2001-07-19 | 2006-12-05 | Matsushita Electric Industrial Co., Ltd. | Magnetic sensor having a closed magnetic path formed by soft magnetic films |
US20040120185A1 (en) * | 2002-12-21 | 2004-06-24 | Kang Hee Bok | Biosensor and sensing cell array using the same |
US7031186B2 (en) | 2002-12-21 | 2006-04-18 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
US20060139993A1 (en) * | 2002-12-21 | 2006-06-29 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
US7333361B2 (en) | 2002-12-21 | 2008-02-19 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
US20080100971A1 (en) * | 2002-12-21 | 2008-05-01 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
US7609547B2 (en) | 2002-12-21 | 2009-10-27 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
US20100103720A1 (en) * | 2002-12-21 | 2010-04-29 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
US8174879B2 (en) | 2002-12-21 | 2012-05-08 | Hynix Semiconductor Inc. | Biosensor and sensing cell array using the same |
Also Published As
Publication number | Publication date |
---|---|
JPS5640406B2 (enrdf_load_stackoverflow) | 1981-09-21 |
DE2650484C2 (de) | 1981-09-24 |
GB1534735A (en) | 1978-12-06 |
IT1075854B (it) | 1985-04-22 |
JPS5262417A (en) | 1977-05-23 |
FR2332587B1 (enrdf_load_stackoverflow) | 1980-07-25 |
CA1068412A (en) | 1979-12-18 |
NL7612457A (nl) | 1977-05-23 |
DE2650484A1 (de) | 1977-06-08 |
FR2332587A1 (fr) | 1977-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4024489A (en) | Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers | |
US3908194A (en) | Integrated magnetoresistive read, inductive write, batch fabricated magnetic head | |
US5696654A (en) | Dual element magnetoresistive sensor with antiparallel magnetization directions for magnetic state stability | |
US3967368A (en) | Method for manufacturing and using an internally biased magnetoresistive magnetic transducer | |
US6195232B1 (en) | Low-noise toroidal thin film head with solenoidal coil | |
US4100583A (en) | Thin-film magnetic head for reading and writing information | |
EP0064786A2 (en) | Magnetic sensor and magnetically permeable component for a magnetic sensor | |
US6721147B2 (en) | Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus | |
EP0021392B1 (en) | Magnetic transducing head assemblies | |
US3813692A (en) | Internally biased magnetoresistive magnetic transducer | |
JPS6010410A (ja) | 薄膜磁気変換器 | |
US4300177A (en) | Thin-film magnetic head for reading and writing information | |
US4150408A (en) | Thin-film magnetic head for reading and writing information | |
US5072324A (en) | Thin film transducer/transformer assembly | |
US3881191A (en) | Three-gap magnetic recording head having a single flux sensing means | |
US6120920A (en) | Magneto-resistive effect magnetic head | |
KR0152965B1 (ko) | 이중 요소 자기저항 센서 | |
US4471467A (en) | Magnetic domain device | |
JPH1145413A (ja) | 複合型薄膜磁気ヘッド | |
JPH103617A (ja) | 磁気抵抗効果型磁気ヘッド及びその製造方法 | |
JPH11112055A (ja) | 磁気センサ | |
JPS5856223A (ja) | 薄膜磁気ヘツド | |
JP2596010B2 (ja) | 磁気抵抗効果型磁気ヘッド | |
KR100256070B1 (ko) | 자기저항형 헤드 | |
JPS622363B2 (enrdf_load_stackoverflow) |