US4013229A - Injection nozzle for liquids, particularly for fuels - Google Patents
Injection nozzle for liquids, particularly for fuels Download PDFInfo
- Publication number
- US4013229A US4013229A US05/551,132 US55113275A US4013229A US 4013229 A US4013229 A US 4013229A US 55113275 A US55113275 A US 55113275A US 4013229 A US4013229 A US 4013229A
- Authority
- US
- United States
- Prior art keywords
- core
- cover plate
- exhaust orifice
- end surface
- spinning chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002347 injection Methods 0.000 title claims abstract description 47
- 239000007924 injection Substances 0.000 title claims abstract description 47
- 239000007788 liquid Substances 0.000 title claims abstract description 16
- 239000000446 fuel Substances 0.000 title claims description 7
- 238000009987 spinning Methods 0.000 claims abstract description 28
- 239000012530 fluid Substances 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 1
- 238000000889 atomisation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/02—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 of valveless type
Definitions
- This invention relates in general to new and useful improvements in injection nozzles for liquids, and more particularly to an injection nozzle particularly adapted for the injection of fuels.
- This invention specifically relates to an injection nozzle for liquids, especially fuels, which includes a nozzle body having an inlet channel, a spinning chamber connected to the inlet channel by spin channels which open tangentially into the spinning chamber, and an exhaust channel.
- injection ratio the ratio of the smallest amount of injection to the largest amount of injection, that is the so-called injection ratio, is on the order of 1 : 15.
- This invention is directed to the problem of creating an injection nozzle of an appreciably larger injection ratio range, for example, on the order of 1 : 100, so that the nozzle may be adapted to wide differences in load, and so that it is feasible to operate internal combustion engines with various fuels utilizing the same injection nozzle.
- the higher injection ratio goal may be achieved by forming the spinning chamber essentially as an annular recess in the nozzle body in association with a cover plate for the end of the nozzle body, the cover plate forming a disc-like gap with an end surface of a core defined on the end of the nozzle body by the spinning chamber, and the exhaust channel being in the form of an exhaust orifice located in the cover plate in communication with the spinning chamber via the gap, and the cross section of the exhaust orifice being materially greater than the cross section of the gap.
- the most restricted portion of the nozzle was the injection bore or exhaust channel or exhaust orifice.
- the most restricted portion of the nozzle is located ahead of the exhaust orifice or injection bore. In this manner, one obtains an injection ratio or spray ratio which heretofore was considered to be unfeasible by experts in the art.
- the nozzle body is provided with a bore opening through the core thereof with this bore being aligned with the exhaust orifice and directly opened theretowards and which bore is located with respect to liquid flow behind the gap between the cover plate and the end of the core and ahead of the exhaust orifice.
- the sharp edge formed by the bore contributes to better atomization of the liquid being injected.
- the bore in the nozzle body prefferably be a through bore and thus form a return channel.
- FIG. 1 is a longitudinal sectional view through an injection nozzle formed in accordance with this invention and mounted in a nozzle holder.
- FIG. 2 is an enlarged fragmentary longitudinal sectional view through the discharge end of a modified form of nozzle construction.
- FIG. 3 is an enlarged longitudinal sectional view through the discharge portion of still another form of injection nozzle.
- FIG. 4 is another longitudinal fragmentary vertical sectional view of an embodiment of the injection nozzle.
- FIG. 5 is an enlarged transverse sectional view taken along the line V -- V of FIG. 4 and shows further the specific constructional details of the nozzle.
- FIG. 6 is an enlarged fragmentary longitudinal sectional view of still another embodiment of nozzle construction.
- FIG. 1 wherein there is illustrated a conventional nozzle holder 1 having a recess in the lower end thereof in which an injection nozzle 2 is positioned.
- the nozzle holder 1 is provided with a supply conduit 3 for supplying the injection substance to the nozzle 2, and a central return channel 4.
- the injection nozzle 2A includes a nozzle body 5 which is of a size to snugly fit within the lower part of the nozzle holder 1.
- the nozzle body 5 has an end thereof which faces outwardly through an opening 20 formed in the dischange end of the nozzle holder 1.
- a cover plate 8 Seated in the end of the holder 1 and generally closing the opening 20 is a cover plate 8 which bears against the discharge end of the nozzle body 5.
- the nozzle body 5 has an inlet bore 10 extending axially therethrough and being placed in communication with the supply line 3 of the nozzle holder 1 by way of an annular channel, as is best shown in FIG. 1.
- the supply passage 10 is in communication with an inlet chamber 11 which is defined in part by an annular channel 6 formed in the end face of the nozzle body 5 and in part by the cover plate 8.
- the channel 6 Disposed radially inwardly of the channel 6 is another annular channel 7 which defines a core 14.
- the spinning chamber 12 is placed into communication with the inlet chamber 11 by means of spinning channels 13 which open inwardly from the inlet chamber 11 substantially tangentially into the spinning chamber 12.
- the end surface of the core 14 opposes, but is spaced from the cover plate 8 so as to define a gap 15. It is also to be noted that opposing the end surface of the core 14 is a bore defining an exhaust orifice 9. Thus, all material to be injected by way of the injection nozzle 2A must pass through the very narrow gap 15 from the spinning chamber 12 to the exhaust orifice 9.
- the cross section of the exhaust orifice 9 is materially greater than that of the gap 15, and therefore, the gap 15 forms a controlling narrow passage with respect to the injection of a liquid by the injection nozzle.
- the nozzle body 5 is provided with a through bore generally identified by the number 17 which is aligned with the exhaust orifice 9.
- the bore 17 includes a portion 18 of reduced diameter opening through the end surface of the core 14 and a further portion 19 of a larger diameter which is adapted to be placed into communication with the return channel 4.
- the bore 18 is of a smaller cross section than the exhaust orifice 9. The bore 18 opening through the end surface of the core 14 provides a sharp edge over which the injected material must pass as it flows along the end surface of the core 14 and this sharp edge provides for a better atomization of the injected liquid in the area of the exhaust orifice 9.
- the nozzle body 2 is identical with the nozzle body 2A except that the through bore 17 thereof is of a constant diameter, which diameter is greater than that of the exhaust orifice 9 and less than that of the return passage 4.
- FIG. 2 wherein still another form of injection nozzle 2B is illustrated.
- the nozzle body 5 is provided with a bore 16 in the core 14 in alignment with the exhaust orifice 9 so as to provide the desired sharp edge for better atomization.
- the bore 16 is a blind bore and there is no return of the liquid through the nozzle body 5.
- FIG. 3 there is illustrated an embodiment of the invention wherein there is no bore for the purpose of providing a sharp edge for a better atomization in the region of the exhaust orifice 9.
- the embodiment of this Figure still employs the gap 15 which is the principal feature of this invention.
- the injection nozzle of FIG. 3 is identified by the reference number 2C.
- the cover plate 8 may be so constructed so as to normally resiliently engage the end surface of the core 14 so as to make the gap substantially non-existent when there is no pressure within the spinning chamber 12.
- the resilient engagement of the cover plate 8 with the end surface of the core 14 may be accomplished in various manner and merely for the purpose of illustration, the cover plate 8 is shown in FIG. 6 as including an upwardly bowed central portion 21 which is in resilient engagement with the core 14. It is to be understood that the cover plate 18 will deflect downwardly under pressure of material to be injected disposed within the spinning chamber 12 so as to produce the necessary gap 15 for the proper injection of the material through the injection nozzle and out through the exhaust orifice 9.
- the nozzle body is identical to the nozzle body 2A but it is to be understood that the nozzle body associated with a cover plate which is resiliently engaged with the core 14 may be any one of the other nozzle bodies 2,2B and 2C.
- Nozzles in accordance with this disclosure have been constructed and experiments have shown that injection ratios on the order of 1 : 100 are feasible, which injection ratios are far beyond those which were previously considered feasible. It will, therefore, be readily apparent that injection nozzles constructed in accordance with this invention will be especially suited for combustion engines operated with different fuels, i.e. the so-callel all-fuel engines.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Nozzles (AREA)
- Fuel-Injection Apparatus (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2407856A DE2407856C3 (de) | 1974-02-19 | 1974-02-19 | Einspritzdüse für flüssige Medien, insbesondere Kraftstoff |
DT2407856 | 1974-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4013229A true US4013229A (en) | 1977-03-22 |
Family
ID=5907803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/551,132 Expired - Lifetime US4013229A (en) | 1974-02-19 | 1975-02-19 | Injection nozzle for liquids, particularly for fuels |
Country Status (3)
Country | Link |
---|---|
US (1) | US4013229A (enrdf_load_stackoverflow) |
JP (1) | JPS5934865B2 (enrdf_load_stackoverflow) |
DE (1) | DE2407856C3 (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4161288A (en) * | 1976-10-05 | 1979-07-17 | Creative Dispensing Systems, Inc. | Fluid dispenser method and apparatus |
US4227650A (en) * | 1978-11-17 | 1980-10-14 | Ethyl Products Company | Fluid dispenser and nozzle structure |
US4628576A (en) * | 1985-02-21 | 1986-12-16 | Ford Motor Company | Method for fabricating a silicon valve |
US4647013A (en) * | 1985-02-21 | 1987-03-03 | Ford Motor Company | Silicon valve |
US4756508A (en) * | 1985-02-21 | 1988-07-12 | Ford Motor Company | Silicon valve |
US5320290A (en) * | 1992-05-08 | 1994-06-14 | Calsim Gesellschaft Fur Simulationstechnik Mbh | Injection nozzle for liquid media |
US5419297A (en) * | 1994-06-28 | 1995-05-30 | Siemens Automotive L.P. | Extended tip gasoline port fuel injector |
US5492277A (en) * | 1993-02-17 | 1996-02-20 | Nippondenso Co., Ltd. | Fluid injection nozzle |
US5788161A (en) * | 1994-04-15 | 1998-08-04 | Robert Bosch Gmbh | Fuel injection nozzle for internal combustion engines |
US6517012B1 (en) * | 1998-03-18 | 2003-02-11 | Slowik Guenter | Method for varying the swirling movement of a fluid in the swirl chamber of a nozzle, and a nozzle system |
US20050271993A1 (en) * | 2002-02-28 | 2005-12-08 | Rudiger Galtz | Systems for reacting fuel and air to a reformate |
US10054093B2 (en) | 2016-01-05 | 2018-08-21 | Solar Turbines Incorporated | Fuel injector with a center body assembly for liquid prefilm injection |
RU234103U1 (ru) * | 2025-01-21 | 2025-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования Воронежский государственный аграрный университет имени императора Петра I (ФГБОУ ВО Воронежский ГАУ) | Электромеханическая форсунка для топливной системы дизеля |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3417657C2 (de) * | 1984-05-12 | 1987-01-22 | Ulrich Dr.-Ing. 5160 Düren Rohs | Einspritzdüse für flüssige Medien, insbesondere Kraftstoff |
US5050799A (en) * | 1985-08-15 | 1991-09-24 | Ulrich Rohs | Injection nozzle for liquid media |
JPS6267280A (ja) * | 1985-09-18 | 1987-03-26 | ウルリツヒ ロ−ス | 液体媒体特に燃料のための噴射ノズル |
US4828184A (en) * | 1988-08-12 | 1989-05-09 | Ford Motor Company | Silicon micromachined compound nozzle |
DE102005037972A1 (de) * | 2005-08-11 | 2007-02-22 | Krauss-Maffei Kunststofftechnik Gmbh | Düse für Sprühkopf |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US501178A (en) * | 1893-07-11 | Feangois fernand-bourdil | ||
US1439320A (en) * | 1919-12-17 | 1922-12-19 | Albert W Morse | Nebulizer of liquids |
US1440705A (en) * | 1919-08-09 | 1923-01-02 | Henry W Sumner | Spray nozzle |
US2052560A (en) * | 1935-09-20 | 1936-09-01 | Louis O French | Spray nozzle |
US2805891A (en) * | 1954-04-05 | 1957-09-10 | Mcculloch Motors Corp | Fluid spray nozzle |
US2965311A (en) * | 1958-07-09 | 1960-12-20 | Lucas Industries Ltd | Liquid fuel spraying nozzles |
US3545682A (en) * | 1968-10-09 | 1970-12-08 | Walter C Beard | Dispensing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS489819U (enrdf_load_stackoverflow) * | 1971-06-15 | 1973-02-03 |
-
1974
- 1974-02-19 DE DE2407856A patent/DE2407856C3/de not_active Expired
-
1975
- 1975-02-18 JP JP50019503A patent/JPS5934865B2/ja not_active Expired
- 1975-02-19 US US05/551,132 patent/US4013229A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US501178A (en) * | 1893-07-11 | Feangois fernand-bourdil | ||
US1440705A (en) * | 1919-08-09 | 1923-01-02 | Henry W Sumner | Spray nozzle |
US1439320A (en) * | 1919-12-17 | 1922-12-19 | Albert W Morse | Nebulizer of liquids |
US2052560A (en) * | 1935-09-20 | 1936-09-01 | Louis O French | Spray nozzle |
US2805891A (en) * | 1954-04-05 | 1957-09-10 | Mcculloch Motors Corp | Fluid spray nozzle |
US2965311A (en) * | 1958-07-09 | 1960-12-20 | Lucas Industries Ltd | Liquid fuel spraying nozzles |
US3545682A (en) * | 1968-10-09 | 1970-12-08 | Walter C Beard | Dispensing device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4161288A (en) * | 1976-10-05 | 1979-07-17 | Creative Dispensing Systems, Inc. | Fluid dispenser method and apparatus |
US4227650A (en) * | 1978-11-17 | 1980-10-14 | Ethyl Products Company | Fluid dispenser and nozzle structure |
US4628576A (en) * | 1985-02-21 | 1986-12-16 | Ford Motor Company | Method for fabricating a silicon valve |
US4647013A (en) * | 1985-02-21 | 1987-03-03 | Ford Motor Company | Silicon valve |
US4756508A (en) * | 1985-02-21 | 1988-07-12 | Ford Motor Company | Silicon valve |
US5320290A (en) * | 1992-05-08 | 1994-06-14 | Calsim Gesellschaft Fur Simulationstechnik Mbh | Injection nozzle for liquid media |
US5492277A (en) * | 1993-02-17 | 1996-02-20 | Nippondenso Co., Ltd. | Fluid injection nozzle |
US5788161A (en) * | 1994-04-15 | 1998-08-04 | Robert Bosch Gmbh | Fuel injection nozzle for internal combustion engines |
US5419297A (en) * | 1994-06-28 | 1995-05-30 | Siemens Automotive L.P. | Extended tip gasoline port fuel injector |
US6517012B1 (en) * | 1998-03-18 | 2003-02-11 | Slowik Guenter | Method for varying the swirling movement of a fluid in the swirl chamber of a nozzle, and a nozzle system |
US20050271993A1 (en) * | 2002-02-28 | 2005-12-08 | Rudiger Galtz | Systems for reacting fuel and air to a reformate |
US10054093B2 (en) | 2016-01-05 | 2018-08-21 | Solar Turbines Incorporated | Fuel injector with a center body assembly for liquid prefilm injection |
RU234103U1 (ru) * | 2025-01-21 | 2025-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования Воронежский государственный аграрный университет имени императора Петра I (ФГБОУ ВО Воронежский ГАУ) | Электромеханическая форсунка для топливной системы дизеля |
Also Published As
Publication number | Publication date |
---|---|
JPS5934865B2 (ja) | 1984-08-24 |
JPS50118121A (enrdf_load_stackoverflow) | 1975-09-16 |
DE2407856C3 (de) | 1978-09-14 |
DE2407856B2 (de) | 1978-01-12 |
DE2407856A1 (de) | 1975-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4013229A (en) | Injection nozzle for liquids, particularly for fuels | |
US4365746A (en) | Swirl injection valve | |
KR960003696B1 (ko) | 내연기관용 연료분사밸브 | |
EP1154151B1 (en) | Injection valve with single disc turbulence generation | |
US4993643A (en) | Fuel injector with variable fuel spray shape or pattern | |
US5797427A (en) | Fuel injector check valve | |
US4339080A (en) | Fuel injection nozzle | |
KR960013110B1 (ko) | 연료 분사 밸브용 중공체 | |
KR100601188B1 (ko) | 가압된 와류 연료 인젝터를 위한 플랫 니들 | |
US5282577A (en) | Cross section controlled multi-jet injection valve | |
EP0789142A4 (en) | FUEL INJECTION DEVICE OF THE STORAGE GENERATION | |
US20070108317A1 (en) | Fuel injection device, in particular for an internal combustion engine with direct fuel injection, and method for producing it non-provisional, utility | |
JPH01247761A (ja) | 燃料噴射弁 | |
US6360960B1 (en) | Fuel injector sac volume reducer | |
US5950930A (en) | Fuel injection valve for internal combustion engines | |
US4487369A (en) | Electromagnetic fuel injector with improved discharge structure | |
US3095153A (en) | Variable area spray nozzle | |
US4641784A (en) | Fuel injection nozzles | |
US4529165A (en) | Solenoid valve | |
JP4154033B2 (ja) | 内燃機関 | |
US2556369A (en) | Accumulator type injection nozzle | |
JP2004521266A (ja) | 内燃機関のための燃料噴射弁 | |
GB2107781A (en) | Fuel injection nozzle with valve element damping | |
JPH0388960A (ja) | 内燃機関用燃料噴射ノズル | |
JPH0415396B2 (enrdf_load_stackoverflow) |