US3960394A - Pipe union - Google Patents

Pipe union Download PDF

Info

Publication number
US3960394A
US3960394A US05/388,977 US38897773A US3960394A US 3960394 A US3960394 A US 3960394A US 38897773 A US38897773 A US 38897773A US 3960394 A US3960394 A US 3960394A
Authority
US
United States
Prior art keywords
pipes
pipe union
clearance
pipe
sealing elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/388,977
Inventor
Wolfgang Hubner
Wilhelm Fasshauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Brennstoffinstitut Freiberg GmbH
Original Assignee
Deutsches Brennstoffinstitut Freiberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Brennstoffinstitut Freiberg GmbH filed Critical Deutsches Brennstoffinstitut Freiberg GmbH
Priority to US05/388,977 priority Critical patent/US3960394A/en
Application granted granted Critical
Publication of US3960394A publication Critical patent/US3960394A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/10Adhesive or cemented joints
    • F16L13/11Adhesive or cemented joints using materials which fill the space between parts of a joint before hardening
    • F16L13/116Adhesive or cemented joints using materials which fill the space between parts of a joint before hardening for socket pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical
    • B29C65/488Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical being longitudinal, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • B29C65/542Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts by injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1286Stepped joint cross-sections comprising at least one bevelled joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/55Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles sealing elements being incorporated into the joints, e.g. gaskets

Definitions

  • the present invention relates generally to a pipe union and more particularly to a pipe union which is suitable for both metallic and non-metallic pipes, especially but not exclusively for those of large diameter and subject to high interior pressures.
  • non-metallic pipes that is pipes of synthetic plastic material and the like, which are connected at their juncture by adhesive connections, by welding or by simple friction couplings using elastic sealing members.
  • the friction couplings wherein the end portion of one pipe is pushed into that of a pipe with which it is to be connected, is particularly advantageous in terms of the simplicity of establishing such a pipe connection. This is especially helpful where the pipe union must be established in situ, that is on a construction site.
  • Another type of pipe union known from the prior art provides for a snap-coupling of the pipe end portions to be connected, wherein one pipe end portion is forced into the other pipe end portion of the adjacent pipe, which is possible because the synthetic plastic material of which these pipes are made is capable of yielding sufficiently to permit such introduction.
  • An adhesive or a sealing material is then injected into spaces which are provided between the outer circumferential surface of the inner pipe end portion and the inner circumferential surface of the outer pipe end portion.
  • the invention aims to provide an improved pipe union which is especially suitable for large-diameter pipes which are subject to high interior pressures, and which can be used with very good results on pipes which are to be buried in the ground.
  • Another object of the invention is to provide such a pipe union which permits, insofar as the installation of pipes to be buried in the ground is concerned, the use of only narrow pipe ditches, thereby eliminating the need for and the time and labor associated with the digging of wide pipe ditches.
  • the novel invention provides a pipe union which, briefly stated, comprises a pair of pipes having respective end portions one of which is received within the other and defines therewith an annular clearance.
  • a pair of sealing elements is sealingly accommodated in the clearance and they are spaced from one another in axial direction of the clearance.
  • Passage means communicates with the clearance intermediate the sealing elements, and a body of hardened material -- which was admitted in flowable state via the passage means -- is accommodated in and fills the clearance intermediate the sealing elements, to thereby unite the pipes in stress-transmitting contact with the end portions thereof.
  • Such a pipe union can be used with pipes which must be prevented from performing relative axial movements, as well as those where relative axial movements are of no consequence. Moreover, it meets the aforementioned objects and in addition makes it possible to readily test the tightness or leakiness of any particular pipe union in a similar and more sophisticated manner that was possible with the prior art.
  • FIG. 1 is a fragmentary, partially sectioned view illustrating one embodiment of the invention, prior to the introduction of the body of hardenable material;
  • FIG. 2 is a sectioned enlarged detailed view of FIG. 1 showing the body of hardenable material in place;
  • FIG. 3 is a view similar to FIG. 2, illustrating a further embodiment of the invention.
  • FIG. 4 is a view similar to FIG. 3, but illustrating still an additional embodiment of the invention.
  • FIGS. 1 and 2 two fragmentarily shown pipes are provided, of which one has an end portion 2 which is received within the enlarged bell-shaped end portion 1 of the other pipe. After the end portions 1 and 2 are thus telescoped together, in the manner shown in FIG. 1, they define with one another a relatively large annular clearance 5. Located in this clearance 5 are two sealing rings 3 and 4 of which the former performs the main sealing function and the latter an auxiliary sealing function.
  • the sealing rings 3 and 4 may be of any well known sealing material which is conventionally used in pipe unions.
  • the sealing rings 3 and 4 are axially spaced from one another, they seal a portion of the clearance 5 between themselves, that is the portion intermediate the sealing rings 3 and 4 is sealed both against access from the interior of the pipes and from the exterior of the pipes.
  • the volume of this portion may be enlarged, if desired, by providing the inner circumferential surface of the end portion 1 and/or the outer circumferential surface of the end portion 2 with one or more recesses 5' (one shown in each of these surfaces) which communicate with and constitute a part of the clearance 5.
  • Reference numeral 6 identifies a passage communicating with the clearance 5, here in the region of the recesses 5', and through which a hardenable material state can be introduced to fill the clearance 5 and the recesses 5'.
  • the passages 6 are so oriented as to face upwardly, to prevent the flowable material from flowing out again before it can harden.
  • the interior of the pipes is subjected to a slight overpressure, as compared to atmospheric pressure, so that the sealing effectiveness of the seals 3 and 4 can be tested.
  • the hardenable material is introduced and, when it is hardened and formed the body 7, the pipes connected by the pipe union can be operated at full internal pressure.
  • the recesses 5' can be omitted, since their purpose is primarily to facilitate a blocking of the end portions 1 and 2 against relative axial movement, due to the pressure of hardenable material therein.
  • FIGS. 3 and 4 show two embodiments of the invention which are particularly suitable for pipes which must not be subjected to axial forces.
  • the pipe can only resist tangential stresses due to the interior pressure.
  • the connection also must not prevent relative axial movement, as is the case in FIGS. 1 and 2.
  • This type of pipe is substantially less expensive to produce then the type of pipe used in FIGS. 1 and 2, and it can be readily used if the pipeline is to be straight.
  • FIG. 3 wherein like reference numerals identify the same components as in FIGS. 1 and 2, the arrangement is essentially the same as in FIGS. 1 and 2 except that a separating layer 8 is provided which prevents stress-transmitting bonding of the body 7 to the end portion 2.
  • the layer 8 is interposed between the body 7 and the outer circumferential surface of the end portion 2.
  • the layer 8 is provided to assure that although the clearance 5 is entirely filled, freedom of slight relative axial movement between the pipes having the end portions 1 and 2 remains, while the sealing ring 3 is nevertheless reliably supported against displacement out of its position under the influence of interior pressure, just as in the case of FIGS. 1 and 2.
  • FIG. 4 like reference numerals again identify the same components as in FIGS. 1 and 2.
  • the sealing ring 4 is replaced with a sealing ring 4'having an annular or a tubular lip or projection 4" which surrounds the outer circumferential surface of the end portion 2 and extends all the way to the sealing ring 3.
  • This particular arrangement has the advantage that even after the body 7 has been formed and the pipe union is in operative condition, a certain amount of freedom of relative angular displacement of the pipes having the end portions 1 and 2, is maintained--due to the elastic compressibility of the material of the lip 4"--without having to fear that the pipe union will be destroyed as a result of such movement.
  • the material for the body 7 is advantageously a synthetic plastic resin material, for instance, Mokodur L5001 and hardening agent H11 (GDR trade name), which preferably has filler material, such as chopped glass fibers, embedded in it for strength.
  • resin material provides the necessary strength, especially if reinforced, and is capable of transmitting high pressures and shear forces.
  • these resins do not during setting shrink to such an extent that the clearance would not be properly filled when the body 7 is in existence.
  • the material of the layer 8 or of the lip 4" should advantageously be elastically yieldable, in order to permit the aforementioned relative angular displacement of the pipes having the end portions 1 and 2.
  • the present invention makes it possible to install a pipeline in a relatively narrow pipe ditch, which need not be any wider than if steel pipes are installed. It is merely necessary to raise the last-installed pipe with an appropriate mechanical device out of the ditch, so that the next pipe can be connected to it by means of the novel pipe union.
  • the pipes are subsequentally allowed to descend into the ditch to rest on the bottom thereof or be otherwise supported. This manner of installation can be utilized even if water should run into the ditch, as long as the water does not cause the pipeline to float in the ditch.
  • the fact that the auxiliary sealing ring 4 is present in all instances, assures that water cannot enter into the clearance 5 so that the latter will always remain clean and dry in readiness for the introduction of the material which hardens and turns into the body 7.
  • the pipeline can be pressurized at full operating pressure to check the tightness of the line.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A pair of pipes have respective end portions one of which is received within the other and defines therewith an annular clearance. Two axially spaced sealing elements are sealingly accommodated in the clearance, and an opening in the outer one of the end portions communicates with the clearance intermediate these sealing elements. A body of hardened material, which was admitted in flowable state via the passage, is accommodated in and fills the clearance intermediate the sealing elements to thereby unite the pipes in stress-transmitting contact with the end portions.

Description

BACKGROUND OF THE INVENTION
The present invention relates generally to a pipe union and more particularly to a pipe union which is suitable for both metallic and non-metallic pipes, especially but not exclusively for those of large diameter and subject to high interior pressures.
It is known from the prior art to provide non-metallic pipes, that is pipes of synthetic plastic material and the like, which are connected at their juncture by adhesive connections, by welding or by simple friction couplings using elastic sealing members. The friction couplings, wherein the end portion of one pipe is pushed into that of a pipe with which it is to be connected, is particularly advantageous in terms of the simplicity of establishing such a pipe connection. This is especially helpful where the pipe union must be established in situ, that is on a construction site.
However, the prior-art constructions for friction couplings have certain disadvantages. In order for the elastic sealing element which is accommodated between the connected end portions of the pipes in such couplings, to be fully effective even in the event of high interior pressures in the pipes, it is necessary that the clearance between the two telescoped-together pipe end portions must be of small dimensions. If that is not the case, the elastic sealing element can be pushed out of its proper position by the interior pressure existing in the pipes, and the sealing effectiveness can thereby become lost. Because of the small dimensions permissible for the clearance, the connected pipes can perform only a small relative angular movement, but in many instances the installation conditions are such that angular movements of a more significant extent are required. Moreover, in these prior-art constructions any relative angular movement of the pipes results in stress-transmission between the pipes which can lead to destruction of the pipe material, because the free edge of the inner pipe end portion is wedged against a part of the inner circumferential surface of the outer pipe end portion, so that high pressures are transmitted over a small surface area, amounting, in effect, to transmission by point contact. For this latter reason, in particular, it has heretofore been necessary to install pipes which are connected in this manner, with exceedingly great care. If, as is frequently the case, the pipes are to be located at the bottom of a pipe ditch, then it was necessary to place the pipes onto the bottom of the ditch and to connect them only after they had been put in place. This, on the other hand, necessitated that the ditch had to be much wider than would otherwise have been the case, in order to permit access of the operators to the pipes. Needles to say, the wider the ditch must be made, the more work is involved in digging it and the more expensive the installation will become.
A further disadvantage of these prior-art telescoped pipe connections has been that they do not provide for retention of the pipes against axial separation. This could be overcome, for instance in cases where the pipes are installed in a ditch, by providing a requisite number of abutments which engage the pipes and prevent their axial displacement. However, a large number of such abutments would have to be provided, and the larger the pipe diameter and the interior pressure to which the pipes are subjected, the stronger would be the forces tending to separate the pipes axially and the larger would have to be the abutments.
An attempt has been made in the prior art to avoid this last problem by using a telescoped-together pipe connection which is provided with passages in the connected end portions, which passages so cooperate with one another that when, after the telescoping-together of the pipe end portions, a length of steel rope or wire rope is inserted into these passages, the two pipes will be locked against relative axial displacement. This, also, has certain disadvantages. On the one hand, if the pipes are of synthetic plastic material which does not corrode, the use of the wire rope which does readily corrode introduces a factor which can significantly reduce the maintenance-free lifetime of a pipe installation. Moreover, if the pipes are of large diameter and/or subjected to high internal pressures, the use of this type of connection is in any case of questionable validity, both in terms of the economics involved and in terms of the structural strength. In addition, if pipes connected in this manner undergo relative angular movement, which in actual practices can hardly ever be excluded, the forces which are transmitted between the pipes via the wire rope act upon very small surface areas of the respective pipes, so that there is again the danger that the pipe material might become damaged or even destroyed.
Another type of pipe union known from the prior art provides for a snap-coupling of the pipe end portions to be connected, wherein one pipe end portion is forced into the other pipe end portion of the adjacent pipe, which is possible because the synthetic plastic material of which these pipes are made is capable of yielding sufficiently to permit such introduction. An adhesive or a sealing material is then injected into spaces which are provided between the outer circumferential surface of the inner pipe end portion and the inner circumferential surface of the outer pipe end portion.
It is evident that this type of pipe union also is possessed of certain disadvantages. In the first place, it can be practiced only with pipes of synthetic plastic material, and with pipes of relatively thin walled construction and of small dimensions, because this type of connection relies on the resilient deformation of the pipe material. Furthermore, angular displacement of the connected pipes with reference to one another is neither possible nor permissible because such displacements would break the seal between the two connected pipe end portions. Moreover, such a coupling can be successfully used only if the pipe end portions to be connected are dimensionally very accurate, which in many instances is a very difficult or even impossible requirement. It is clear that tolerance variations under such circumstances will readily lead to leakage at the pipe union. Aside from all this, it will be appreciated that the use of adhesives for injection in the manner outlined above, is not readily practical for in situ installations, because even relatively minor ambient influences, for instance dust, moisture, strong sunlight or the like, can so influence the quality of the adhesive connection as to jeopardize the integrity and sealing effectiveness of the pipe union. Despite these disadvantages, the use of adhesive connections for joining small-diameter pipes has become relatively widespread, but adhesive connections for large-diameter pipes have never been used in practice.
As has been pointed out earlier, it is also known in the prior art to weld end portions of respective pipes together. Of course, this would in almost all instances have to be done in situ, that is at the building site, and this requires the presence of skilled personnel and of relatively complicated and expensive equipment. Aside from that, a connection by welding is limited to only certain types of pipe materials and is relatively slow and therefore economically not attractive.
In addition to the various disadvantages outlined above with respect to the prior art, all of the prior-art pipe unions have the further drawback that if they develop a leak, the location of the lead along a line of pipes can be established only with great difficulty, and by time-consuming procedures. It is not only necessary that each pipe union be completely accessible at all points of its circumference, but also the specific manner in which the tests for tightness must be carried is relatively primative and involves the use of bubble-blowing material or the like.
SUMMARY OF THE INVENTION
It is, accordingly, a general object of the present invention to overcome the disadvantages of the prior art.
More particularly, it is an object of the present invention to provide an improved pipe union which is not possessed of the aforementioned disadvantages.
Still more particularly, the invention aims to provide an improved pipe union which is especially suitable for large-diameter pipes which are subject to high interior pressures, and which can be used with very good results on pipes which are to be buried in the ground.
Another object of the invention is to provide such a pipe union which permits, insofar as the installation of pipes to be buried in the ground is concerned, the use of only narrow pipe ditches, thereby eliminating the need for and the time and labor associated with the digging of wide pipe ditches.
In keeping with these objects, and with others which will become apparent hereafter, including that the desired and novel pipe union be capable of permitting relatively significant angular inclination of connected pipes with reference to one another, the novel invention provides a pipe union which, briefly stated, comprises a pair of pipes having respective end portions one of which is received within the other and defines therewith an annular clearance. A pair of sealing elements is sealingly accommodated in the clearance and they are spaced from one another in axial direction of the clearance. Passage means communicates with the clearance intermediate the sealing elements, and a body of hardened material -- which was admitted in flowable state via the passage means -- is accommodated in and fills the clearance intermediate the sealing elements, to thereby unite the pipes in stress-transmitting contact with the end portions thereof.
Such a pipe union can be used with pipes which must be prevented from performing relative axial movements, as well as those where relative axial movements are of no consequence. Moreover, it meets the aforementioned objects and in addition makes it possible to readily test the tightness or leakiness of any particular pipe union in a similar and more sophisticated manner that was possible with the prior art.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a fragmentary, partially sectioned view illustrating one embodiment of the invention, prior to the introduction of the body of hardenable material;
FIG. 2 is a sectioned enlarged detailed view of FIG. 1 showing the body of hardenable material in place;
FIG. 3 is a view similar to FIG. 2, illustrating a further embodiment of the invention; and
FIG. 4 is a view similar to FIG. 3, but illustrating still an additional embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Discussing the drawing now in detail, and referring firstly to the embodiment in FIGS. 1 and 2, it will be seen that two fragmentarily shown pipes are provided, of which one has an end portion 2 which is received within the enlarged bell-shaped end portion 1 of the other pipe. After the end portions 1 and 2 are thus telescoped together, in the manner shown in FIG. 1, they define with one another a relatively large annular clearance 5. Located in this clearance 5 are two sealing rings 3 and 4 of which the former performs the main sealing function and the latter an auxiliary sealing function. The sealing rings 3 and 4 may be of any well known sealing material which is conventionally used in pipe unions. Because the sealing rings 3 and 4 are axially spaced from one another, they seal a portion of the clearance 5 between themselves, that is the portion intermediate the sealing rings 3 and 4 is sealed both against access from the interior of the pipes and from the exterior of the pipes. The volume of this portion may be enlarged, if desired, by providing the inner circumferential surface of the end portion 1 and/or the outer circumferential surface of the end portion 2 with one or more recesses 5' (one shown in each of these surfaces) which communicate with and constitute a part of the clearance 5. Reference numeral 6 identifies a passage communicating with the clearance 5, here in the region of the recesses 5', and through which a hardenable material state can be introduced to fill the clearance 5 and the recesses 5'.
When the pipes with the novel pipe union are installed, it is advantageous if the passages 6 are so oriented as to face upwardly, to prevent the flowable material from flowing out again before it can harden. Before the material is introduced, to form the body 7 after it has hardened, the interior of the pipes is subjected to a slight overpressure, as compared to atmospheric pressure, so that the sealing effectiveness of the seals 3 and 4 can be tested. For this purpose, it is only necessary to connect the passage 6 with a pressure measuring device and to observe whether a leak exists which would be detected due to the escape of material from the interior of the pipes through the clearance 6, past the body 7 and out of the passage 6. Thereupon, the hardenable material is introduced and, when it is hardened and formed the body 7, the pipes connected by the pipe union can be operated at full internal pressure.
If the hardenable material forming the body 7 if of the type having adhesive capabilities, then the recesses 5' can be omitted, since their purpose is primarily to facilitate a blocking of the end portions 1 and 2 against relative axial movement, due to the pressure of hardenable material therein.
It will be appreciated that when the body 7 has come into being, that is when the material has hardened to form the body 7, axial forces are uniformly transmitted between the end portions 1 and 2 over the entire circumference thereof. The pipe can resist axial and tangential stresses due to the interior pressure and acting within the pipe wall. Localized transmission of forces, for instance by point contact as mentioned with respect to the prior art, is completely avoided and the resultant excess stressing of the material is thus prevented.
FIGS. 3 and 4 show two embodiments of the invention which are particularly suitable for pipes which must not be subjected to axial forces. The pipe can only resist tangential stresses due to the interior pressure. The connection also must not prevent relative axial movement, as is the case in FIGS. 1 and 2. This type of pipe is substantially less expensive to produce then the type of pipe used in FIGS. 1 and 2, and it can be readily used if the pipeline is to be straight.
In the embodiment of FIG. 3, wherein like reference numerals identify the same components as in FIGS. 1 and 2, the arrangement is essentially the same as in FIGS. 1 and 2 except that a separating layer 8 is provided which prevents stress-transmitting bonding of the body 7 to the end portion 2. It will be seen that the layer 8 is interposed between the body 7 and the outer circumferential surface of the end portion 2. The layer 8 is provided to assure that although the clearance 5 is entirely filled, freedom of slight relative axial movement between the pipes having the end portions 1 and 2 remains, while the sealing ring 3 is nevertheless reliably supported against displacement out of its position under the influence of interior pressure, just as in the case of FIGS. 1 and 2.
In the embodiment of FIG. 4, like reference numerals again identify the same components as in FIGS. 1 and 2. Here, however, the sealing ring 4 is replaced with a sealing ring 4'having an annular or a tubular lip or projection 4" which surrounds the outer circumferential surface of the end portion 2 and extends all the way to the sealing ring 3. This particular arrangement has the advantage that even after the body 7 has been formed and the pipe union is in operative condition, a certain amount of freedom of relative angular displacement of the pipes having the end portions 1 and 2, is maintained--due to the elastic compressibility of the material of the lip 4"--without having to fear that the pipe union will be destroyed as a result of such movement. This means that even if the ground in which the pipeline is embedded should settle or otherwise move, no damage to the seal-tightness of the pipe union will develop despite the fact that the pipes having the end portions 1 and 2 can move relative to one another to a certain extent.
Resort to the present invention permits, in effect, a mechanized installation of a pipeline, that is all of the various steps needed for establishing the respective pipe union can be carried out by means of mechanical devices. This results in high productivity and reduction in the expenses of installation.
The material for the body 7 is advantageously a synthetic plastic resin material, for instance, Mokodur L5001 and hardening agent H11 (GDR trade name), which preferably has filler material, such as chopped glass fibers, embedded in it for strength. Such resin material provides the necessary strength, especially if reinforced, and is capable of transmitting high pressures and shear forces. On the other hand, these resins do not during setting shrink to such an extent that the clearance would not be properly filled when the body 7 is in existence.
The material of the layer 8 or of the lip 4"should advantageously be elastically yieldable, in order to permit the aforementioned relative angular displacement of the pipes having the end portions 1 and 2.
Due to the fact that the sealing ring 3 is always reliably supported by the material of the body 7, it cannot be pushed out of its assigned position. This, on the other hand, makes it possible to provide a relatively large clearance 5 which, in turn, makes it possible in the first place to provide the body 7. Also, due to the large clearance it is possible, if and where necessary, to angle the pipes having the end portions 1 and 2 with reference to one another to quite a significant extent, before the material is introduced which subsequently hardens and forms the body 7.
All in all, the present invention makes it possible to install a pipeline in a relatively narrow pipe ditch, which need not be any wider than if steel pipes are installed. It is merely necessary to raise the last-installed pipe with an appropriate mechanical device out of the ditch, so that the next pipe can be connected to it by means of the novel pipe union. The pipes are subsequentally allowed to descend into the ditch to rest on the bottom thereof or be otherwise supported. This manner of installation can be utilized even if water should run into the ditch, as long as the water does not cause the pipeline to float in the ditch. The fact that the auxiliary sealing ring 4 is present in all instances, assures that water cannot enter into the clearance 5 so that the latter will always remain clean and dry in readiness for the introduction of the material which hardens and turns into the body 7.
When the pipe unions have been completed, that is when the material introduced through the passage 6 has hardened and formed the respective bodies 7, the pipeline can be pressurized at full operating pressure to check the tightness of the line.
It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of constructions differing from the type described above.
While the invention has been illustrated and described as embodied in a pipe union, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can by applying current knowledge readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended without the meaning and range of equivalence of the following claims.

Claims (13)

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims:
1. A rigid pipe union, particularly for large-diameter pipes which are subject to high interior pressures, comprising a pair of pipes having respective male and female end portions, the male end portion being of a substantially smaller outer diameter than the inner diameter of said female portion and being received within said female portion and defining therewith a relatively large annular clearance; a pair of sealing elements sealingly accommodated in said clearance and being spaced from one another in axial direction of said clearance; passage means communicating with said clearance intermediate said sealing elements; and a rigid body of hardened material admitted in flowable state via said passage means, accommodated in and filling said clearance intermediate said sealing elements and thereby rigidly uniting said pipes in stress-transmitting contact with said end portions thereof.
2. A pipe union as defined in claim 1, wherein said pipes are of synthetic plastic material.
3. A pipe union as defined in claim 1, said end portions having respective juxtaposed circumferential surfaces which define with one another said clearance; and wherein at least one of said surfaces is provided with a recess in the region where said passage means communicates with said clearance, said recess being opened to and constituting an enlargement of said clearance, and said body also filling said recess.
4. A pipe union as defined in claim 1, said end portins having respective juxtaposed circumferential surfaces which define with one another said clearance; and further comprising separating means interposed between said body and one of said surfaces and preventing adherence of the former to the latter.
5. A pipe union as defined in claim 4, wherein said one surface is the circumferential surface of said one end portion.
6. A pipe union as defined in claim 4, wherein said separating means comprises a portion of elastically yieldable material.
7. A pipe union as defined in claim 6, wherein said portion is of one piece with one of said sealing elements, said portion being of tubular configuration and extending from said one to the other of said sealing elements.
8. A pipe union as defined in claim 1, wherein said body is of synthetic resin material.
9. A pipe union as defined in claim 1, wherein said body is of glass-fiber reinforced synthetic resin material.
10. A pipe union as defined in claim 1, wherein said passage means is provided in said other end portion and has an inlet end which is accessible exteriorly of said pipes.
11. A pipe union as defined in claim 3, wherein at least one of said end portions is provided with a circumferential groove in which one of said sealing elements is partly accommodated.
12. A pipe union as defined in claim 11, wherein the other of said end portions is also provided with a circumferential groove in which the other of said sealing elements is partly accommodated.
13. A pipe union as defined in claim 11, wherein said one end portion is provided with another axially spaced circumferential groove in which the other of said sealing elements is partly accommodated.
US05/388,977 1973-08-16 1973-08-16 Pipe union Expired - Lifetime US3960394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/388,977 US3960394A (en) 1973-08-16 1973-08-16 Pipe union

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/388,977 US3960394A (en) 1973-08-16 1973-08-16 Pipe union

Publications (1)

Publication Number Publication Date
US3960394A true US3960394A (en) 1976-06-01

Family

ID=23536333

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/388,977 Expired - Lifetime US3960394A (en) 1973-08-16 1973-08-16 Pipe union

Country Status (1)

Country Link
US (1) US3960394A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2381228A1 (en) * 1977-02-14 1978-09-15 Pilgrim Eng Dev Formation of joint between pipe and coupling sleeve - by filling interspace with compsn. contg. epoxy! resin, hardened under pipe working pressure
US4190479A (en) * 1976-12-23 1980-02-26 Union Carbide Corporation Method of producing a joint capable of transmitting high torque
US4352584A (en) * 1978-10-24 1982-10-05 Union Carbide Corporation Method of producing a joint capable of transmitting high torque
US4552384A (en) * 1978-10-18 1985-11-12 Battenfeld Maschinenfabriken Gmbh Molded-joint assembly
US4595218A (en) * 1983-08-04 1986-06-17 Imperial Clevite Inc. Insulative coupling
US20030107219A1 (en) * 2001-11-20 2003-06-12 Andreas Hoppenz Pipe joint and method of producing a pipe joint
US20060033336A1 (en) * 2004-08-11 2006-02-16 Syracuse Castings Sales Corporation Weld-free connectors for structural elements
CN1304779C (en) * 2004-08-18 2007-03-14 武汉大学 Steel skeleton composite pipe
RU2288399C8 (en) * 2005-04-07 2007-06-27 Казанская государственная архитектурно-строительная академия Pipe junction
US20090014121A1 (en) * 2004-03-24 2009-01-15 Ips, Corporation - Weld-On Division Chemical fusion of non-metallic pipe joints
US20100025982A1 (en) * 2008-07-31 2010-02-04 Mueller Industries, Inc. Coupling, joint and method for fixedly and sealingly securing components to one another
US20100025988A1 (en) * 2008-07-31 2010-02-04 Jamison Tommy L Coupling, joint and method for fixedly and sealingly securing components to one another
US20110081192A1 (en) * 2009-10-02 2011-04-07 Andrew Llc Cone to Boom Interconnection
US20110089679A1 (en) * 2008-03-25 2011-04-21 Matthew David Meredith Method and apparatus for repairing tubular members
WO2013015693A1 (en) * 2011-07-01 2013-01-31 Mirador As Method for installation of a pipe based system, and a pipe based system particularly suitable for the method
US8746747B2 (en) 2004-03-24 2014-06-10 IPS Corporation—Weld-On Division Pipe joints
US8925978B2 (en) 2008-07-31 2015-01-06 Mueller Industries, Inc. Coupling and joint for fixedly and sealingly securing components to one another
US20150091290A1 (en) * 2013-09-27 2015-04-02 G.B.D. Corp. Method and apparatus for connecting pipes
US20150192141A1 (en) * 2014-01-08 2015-07-09 Summit Esp, Llc Motor shroud for an electric submersible pump
CN105666855A (en) * 2016-03-28 2016-06-15 武汉理工大学 Glue joint connecting structure of composite round pipe
FR3031072A1 (en) * 2014-12-24 2016-07-01 Renault Sa AXLE ROPE AND ASSOCIATED BONDING METHOD
US9638015B2 (en) 2014-11-12 2017-05-02 Summit Esp, Llc Electric submersible pump inverted shroud assembly
US20180038540A1 (en) * 2016-08-08 2018-02-08 Schaeffler Technologies AG & Co. KG Method for connection of plastic fittings in a coolant valve system
US20180313475A1 (en) * 2017-04-28 2018-11-01 Nibco Inc. High temperature leak prevention for piping components and connections
CN109131596A (en) * 2017-06-15 2019-01-04 本田技研工业株式会社 Bonding structure
WO2019053413A3 (en) * 2017-09-14 2019-04-25 Lentus Composites Limited Seal arrangement
WO2019178257A1 (en) 2018-03-16 2019-09-19 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US10823316B2 (en) 2017-04-28 2020-11-03 Nibco Inc. Piping connections and connection sockets

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US627673A (en) * 1898-06-06 1899-06-27 Donald Mcdonald Pipe-joint.
US1102961A (en) * 1912-10-24 1914-07-07 Mannesmann Roehren Werke Ag Pipe-joint packing.
US1770852A (en) * 1928-11-12 1930-07-15 Mueller Brass Co Connecting means
US2156604A (en) * 1937-10-16 1939-05-02 Atlas Mineral Products Company Pipe joint
US2492823A (en) * 1948-10-14 1949-12-27 Nathaniel P Young Joint for sewer pipes
US2903763A (en) * 1953-12-14 1959-09-15 Gen Motors Corp Fused aluminum to copper pipe coupling
US3112564A (en) * 1961-10-25 1963-12-03 William J Murray Method of forming a brazed lock joint
US3606401A (en) * 1968-07-22 1971-09-20 Integral Industriebedarf Gmbh Connecting sleeve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US627673A (en) * 1898-06-06 1899-06-27 Donald Mcdonald Pipe-joint.
US1102961A (en) * 1912-10-24 1914-07-07 Mannesmann Roehren Werke Ag Pipe-joint packing.
US1770852A (en) * 1928-11-12 1930-07-15 Mueller Brass Co Connecting means
US2156604A (en) * 1937-10-16 1939-05-02 Atlas Mineral Products Company Pipe joint
US2492823A (en) * 1948-10-14 1949-12-27 Nathaniel P Young Joint for sewer pipes
US2903763A (en) * 1953-12-14 1959-09-15 Gen Motors Corp Fused aluminum to copper pipe coupling
US3112564A (en) * 1961-10-25 1963-12-03 William J Murray Method of forming a brazed lock joint
US3606401A (en) * 1968-07-22 1971-09-20 Integral Industriebedarf Gmbh Connecting sleeve

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190479A (en) * 1976-12-23 1980-02-26 Union Carbide Corporation Method of producing a joint capable of transmitting high torque
FR2381228A1 (en) * 1977-02-14 1978-09-15 Pilgrim Eng Dev Formation of joint between pipe and coupling sleeve - by filling interspace with compsn. contg. epoxy! resin, hardened under pipe working pressure
US4552384A (en) * 1978-10-18 1985-11-12 Battenfeld Maschinenfabriken Gmbh Molded-joint assembly
US4352584A (en) * 1978-10-24 1982-10-05 Union Carbide Corporation Method of producing a joint capable of transmitting high torque
US4595218A (en) * 1983-08-04 1986-06-17 Imperial Clevite Inc. Insulative coupling
US20030107219A1 (en) * 2001-11-20 2003-06-12 Andreas Hoppenz Pipe joint and method of producing a pipe joint
US7014219B2 (en) * 2001-11-20 2006-03-21 Siemens Aktiengesellschaft Pipe joint and method of producing a pipe joint
US8276636B2 (en) * 2004-03-24 2012-10-02 IPS, Corporation-Weld-On-Division Chemical fusion of non-metallic pipe joints
US9044900B2 (en) 2004-03-24 2015-06-02 Ips Corporation Chemical fusion of non-metallic pipe joints
US8746747B2 (en) 2004-03-24 2014-06-10 IPS Corporation—Weld-On Division Pipe joints
US20090014121A1 (en) * 2004-03-24 2009-01-15 Ips, Corporation - Weld-On Division Chemical fusion of non-metallic pipe joints
US20060033336A1 (en) * 2004-08-11 2006-02-16 Syracuse Castings Sales Corporation Weld-free connectors for structural elements
CN1304779C (en) * 2004-08-18 2007-03-14 武汉大学 Steel skeleton composite pipe
RU2288399C8 (en) * 2005-04-07 2007-06-27 Казанская государственная архитектурно-строительная академия Pipe junction
US20110089679A1 (en) * 2008-03-25 2011-04-21 Matthew David Meredith Method and apparatus for repairing tubular members
US9016727B2 (en) * 2008-03-25 2015-04-28 Flexlife Limited Apparatus for repairing tubular members
US20100025988A1 (en) * 2008-07-31 2010-02-04 Jamison Tommy L Coupling, joint and method for fixedly and sealingly securing components to one another
US20100025982A1 (en) * 2008-07-31 2010-02-04 Mueller Industries, Inc. Coupling, joint and method for fixedly and sealingly securing components to one another
US8925978B2 (en) 2008-07-31 2015-01-06 Mueller Industries, Inc. Coupling and joint for fixedly and sealingly securing components to one another
US20110081192A1 (en) * 2009-10-02 2011-04-07 Andrew Llc Cone to Boom Interconnection
WO2013015693A1 (en) * 2011-07-01 2013-01-31 Mirador As Method for installation of a pipe based system, and a pipe based system particularly suitable for the method
CN103688094A (en) * 2011-07-01 2014-03-26 米拉多尔股份公司 Method for installation of a pipe based system, and a pipe based system particularly suitable for the method
US9458953B2 (en) 2011-07-01 2016-10-04 Mirador As Method for installation of a pipe based system, and a pipe based system particularly suitable for the method
CN103688094B (en) * 2011-07-01 2016-12-28 米拉多尔股份公司 System based on pipeline and the method installing system based on pipeline
US20150091290A1 (en) * 2013-09-27 2015-04-02 G.B.D. Corp. Method and apparatus for connecting pipes
US9175692B2 (en) * 2014-01-08 2015-11-03 Summit Esp, Llc Motor shroud for an electric submersible pump
US20150192141A1 (en) * 2014-01-08 2015-07-09 Summit Esp, Llc Motor shroud for an electric submersible pump
US9638015B2 (en) 2014-11-12 2017-05-02 Summit Esp, Llc Electric submersible pump inverted shroud assembly
FR3031072A1 (en) * 2014-12-24 2016-07-01 Renault Sa AXLE ROPE AND ASSOCIATED BONDING METHOD
CN105666855A (en) * 2016-03-28 2016-06-15 武汉理工大学 Glue joint connecting structure of composite round pipe
US20180038540A1 (en) * 2016-08-08 2018-02-08 Schaeffler Technologies AG & Co. KG Method for connection of plastic fittings in a coolant valve system
US10865914B2 (en) * 2017-04-28 2020-12-15 Nibco Inc. High temperature leak prevention for piping components and connections
US10823316B2 (en) 2017-04-28 2020-11-03 Nibco Inc. Piping connections and connection sockets
US20180313475A1 (en) * 2017-04-28 2018-11-01 Nibco Inc. High temperature leak prevention for piping components and connections
US11708922B2 (en) 2017-04-28 2023-07-25 Nibco Inc. Piping connections and connection sockets
CN109131596A (en) * 2017-06-15 2019-01-04 本田技研工业株式会社 Bonding structure
US10556401B2 (en) * 2017-06-15 2020-02-11 Honda Motor Co., Ltd. Bonded structure
CN109131596B (en) * 2017-06-15 2021-07-23 本田技研工业株式会社 Adhesive structure
WO2019053413A3 (en) * 2017-09-14 2019-04-25 Lentus Composites Limited Seal arrangement
WO2019178257A1 (en) 2018-03-16 2019-09-19 Divergent Technologies, Inc. Single shear joint for node-to-node connections
CN112119251A (en) * 2018-03-16 2020-12-22 戴弗根特技术有限公司 Single shear joint for node-to-node connections
EP3765776A4 (en) * 2018-03-16 2021-11-17 Divergent Technologies, Inc. Single shear joint for node-to-node connections

Similar Documents

Publication Publication Date Title
US3960394A (en) Pipe union
US3081102A (en) Gasket for telescoping joint
US3884510A (en) Device for the tensile locking of pipe elements
US4647080A (en) Pipe joint
US4648633A (en) Socket joint
US3612578A (en) Prefabricated electrically insulating pipe joint
SU1132799A3 (en) Sealed bell-and-spigot joint of pipes
US7360797B2 (en) Coupling assembly and method
US3540757A (en) Pipe joint and method of forming a pipe joint
PH26668A (en) Brittle lines pipe connector
US7118137B2 (en) Testable pipe joint
US4714377A (en) Method of laying pipe sections
US4909519A (en) Pipe joint compression seal
US6039359A (en) Protective sleeve and related method for protecting a buried pipe joint
CN213598736U (en) Waterproof system for cable wall-penetrating pipeline
US4961599A (en) Sealing gland construction for use in hydraulic unit joints
JPH09317384A (en) Grout-injection hole in pipe for pipe-jacking method
JPS62220798A (en) Joint for gas pipe and corrosion preventive method of valve
JP2012000952A (en) Method for repairing pipe line
JP7459351B1 (en) Watertightness Test Method
JPS594591B2 (en) Waterproof structure for pipe penetrations in underground structures
KR102380491B1 (en) Water-proofing test device of sewage conduit
JPH0123023Y2 (en)
SU1046569A1 (en) Pipe joint
SU875143A1 (en) Sealing device