US3926861A - Detergent compositions containing amine oxides - Google Patents

Detergent compositions containing amine oxides Download PDF

Info

Publication number
US3926861A
US3926861A US414586A US41458673A US3926861A US 3926861 A US3926861 A US 3926861A US 414586 A US414586 A US 414586A US 41458673 A US41458673 A US 41458673A US 3926861 A US3926861 A US 3926861A
Authority
US
United States
Prior art keywords
detergent
composition
alkyl
morpholine
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US414586A
Inventor
John Fred Gerecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK132335D priority Critical patent/DK132335A/da
Priority claimed from US00166253A external-priority patent/US3809659A/en
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Priority to US414586A priority patent/US3926861A/en
Priority to US05/613,370 priority patent/US4048338A/en
Application granted granted Critical
Publication of US3926861A publication Critical patent/US3926861A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/92Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
    • C07D211/94Oxygen atom, e.g. piperidine N-oxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/24Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Detergent Compositions (AREA)

Abstract

Hydroxy higher alkyl morpholine oxides, and formulations containing the same. The compounds have many beneficial effects in detergent and cosmetic compositions, particularly desirable for application to the skin and for modification of foaming power of detergent compositions.

Description

United States Patent Gerecht *Dec. 16, 1975 [54] DETERGENT COMPOSITIONS [56] References Cited [75] Inventor: John Fred Gerecht, Somerville, NJ. 3,281,368 10/1966 Zimmerer et al. 252/547 X [73] Assignee: Colgate-Palmolive Company, New 3:21;: 52 2 York NY.
[ Notice: The portion of the term of this Prilnfll') Examiner-Herbert B. Guynn patent subsequent to May 7, l99l, Attorney, Agent, or FirmRichard N. Miller; Ronald has been disclaimed. S. Cornell; Herbert S. Sylvester [22] Filed: Nov. 9, 1973 [21] Appl. No.: 414,586 [57] ABSTRACT Related Application Data Hydroxy higher alkyl morpholine oxides, and formula- [62] Division of Ser. No. 166,253, July 26, 1971, Pat. No tions containing the same. The compounds have many 3,809,659, h ch is a division Of 677,723. beneficial effects in detergent and cosmetic composi- 1967' Pat 316371682 tions, particularly desirable for application to the skin and for modification of foaming power of detergent [52] US. Cl. 252/542; 252/524; 252/DIG. l3; Compositions 252/DIG. 14; 260/247.7 A; 424/l7l; 424/248 [5l] Int. Cl. ..C11D 3/28; Cl 1D 3/04 [58] Field of Search 252/542, 547, 524, 528; 8 Claims, No Drawings DETERGENT COMPOSITIONS CONTAINING AMINE OXIDES This application is a divisional of copending application Ser. No. 166.253, filed July 26, 1971, now US. Pat. No. 3,809.659, which is a divisional of application Ser. No. 677.723 filed Oct. 24, 1967, now US. Pat. No. 3.637.682.
This invention relates to morpholine oxides.
One aspect of this invention relates to morpholine oxides of the formula where R is a long chain alkyl group of at least 6 carbon atoms. e.g. 6 to 20, preferably 10 to 14, carbon atoms.
It has been found that the compounds of this invention have beneficial and unusual characteristics, particularly suitable, for example, in cosmetic and detergent applications.
The compounds described above may be prepared by reacting a long chain 1,2 epoxide with morpholine, followed by the conversion of the resulting N-2- hydroxyalkyl-morpholine to the corresponding N-oxide by oxidation, as with hydrogen peroxide.
Examples of 2-hydroxyalkyl groups are 2-hydroxydodecyl. 2-hydroxyoctadecyl, 2-hydroxynonyl, 2- hydroxydecyl. 2hydroxyundecyl, Z-hydroxytridecyl. Z-hydroxytetradecyl. 2-hydroxypentadecyl, 2-hydroxyhexadecyl, and 2-hydroxylheptadecyl. Mixtures of compounds of different 2-hydroxyalkyl groups may be employed (e.g. a mixture in which these groups have 12-16 carbon atoms).
The compounds of this invention have many desirable attributes of particular value in emulsification and cleansing and detergency. Among these attributes are a desirable effect on the skin, and particularly a nonirritating and even anti-irritating effect when used in conjunction with surface active agents that ordinarily irritate the skin. The use of the compositions of the invention gives desirable modifications of the foaming powder and/or foam characteristics of detergent compositions, such as a foam boosting effect. By using the new compounds valuable compositions intended for application to the skin or hair (or for use in contact with the skin) may be formulated. This invention also provides novel compounds of good miscibility with water which may be formulated into aqueous compositions which remain clear over a wide temperature range. 1
The novel compounds may be employed in detergent compositions, including light-duty liquids, heavy duty highly-built liquids, and granular compositions in which they may, for example. be post-added to spray-dried built detergent powders. In such detergent compositions they may be mixed with polymeric materials including agents for preventing redeposition of soil. such as sodium carboxymethylcellulose or polyvinyl alcohol; opacifiers; perfumes; anti-tamishing agents; bacteriostatic agents; and oxygenand chlorine-releasing bleaches. The novel compounds may also be used in hair-shampooing. hair-dyeing, or other hair-treating or hair-conditioning compositions. The novel compounds 2 may be incorporated in a variety of cosmetic compositions, including such compositions intended for application to the skin as skin lotions, creams, gels. or clear liquids.
In the use of the novel hydroxyalkyl morpholine oxides of this invention in detergent compositions. the new compound may be used alone or may be added to any of the conventional surface-active detergents. These may be of the anionic, non-ionic. cationic or amphoteric types, or mixtures thereof.
The anionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and an anionic solubilizing group. Typical examples of anionic solubilizing groups are sulfonate, sulfate, carboxylate. phosphonate and phosphate. Examples of suitable anionic detergents which fall within the scope of the invention include the soaps, such as the water-soluble salts of higher fatty acids or rosin acids. such as may be derived from fats. oils and waxes of animal, vegetable or marine origin. e. g.. the sodium soaps of tallow, grease, coconut oil. tall oil and mixtures thereof; and the sulfated and sulfonated synthetic detergents, particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
As examples of suitable synthetic anionic detergents there may be cited the higher alkyl mononuclear aro matic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the alkyl group in a straight or branched chain, e.g.. the sodium salts of higher alkyl benzene sulfonates or of the higher alkyl toluene. xylene and phenol sulfonates; alkyl naphthalene sulfonate, ammonium diamyl naphthalene sulfonate, and sodium dinonyl naphthalene sulfonate. In one preferred type of composition there is used a linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers; in other terminology, the benzene ring is preferably attached in large part at the 3 or higher (e.g. 4, 5, 6 or 7) position of the alkyl group and the content of isomers in which the benzene ring is attached at the 2 or 1 position is correspondingly low. Particularly preferred materials are set forth in US. Pat. No. 3,320,174, May 16, 1967, of J. Rubinfeld.
Other anionic detergents are the olefin sulfonates, including long chain alkene sulfonates, long chain hydroxyalkane sulfonates or mixtures of alkenesulfonates and hydroxyalkanesulfonates. These olefin sulfonate detergents may be prepared, in known manner, by the reaction of S0,, with long chain olefins (of 8-25. preferably 12-21 carbon atoms) of the formula RCH=CHR,, where R is alkyl and R is alkyl or hydrogen, to produce a mixture of sultones and alkenesulfonic acids, which mixture is then treated to convert the sultones to sulfonates. Examples of other sulfate or sulfonate detergents are paraffin sulfonates, such as the reaction products of alpha olefins and bisulfites (e.g. sodium bisulfite), e.g. primary paraffin sulfonates of about 10-20, preferably about 15-20, carbon atoms; sulfates of higher alcohols; salts of a-sulfofatty esters (e.g. of about 10 to 20 carbon atoms, such as methyl a-sulfomyristate or oz-sulfotallowate Examples of sulfates of higher alcohols are sodium lauryl sulfate. sodium tallow alcohol sulfate. Turkey Red Oil or other sulfated oils. or sulfates of monoor diglycerides of fatty acids (e.g. stearic monoglyceride monosulfate), alkyl poly (ethenoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and lauryl alcohol (usually having 1 to 5 ethenoxy groups per molecule); lauryl or other higher alkyl glyceryl ether sulfonates; aromatic poly (ethenoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and nonyl phenol (usually having 1 to 6 oxyethylene groups per molecule).
The suitable anionic detergents include also the acyl sarcosinates (e.g. sodium lauroylsarcosinate) the acyl esters (e.g. oleic acid ester) of isethionates, and the acyl N-methyl taurides (e.g. potassium N-methyl lauroylor oleyl tauride).
The most highly preferred water soluble anionic detergent compounds are the ammonium and substituted ammonium (such as mono-. diand triethanolamine), alkali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts of the higher alkyl benzene sulfonates, olefin sulfonates, the higher alkyl sulfates, and the higher fatty acid monoglyceride sulfates. The particular salt will be suitably selected depending upon the particular formulation and the proportions therein.
Nonionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and a hydrophilic group which is a reaction product of a solubilizing group such as carboxylate, hydroxyl, amido or amino with ethylene oxide or with the polyhydration product thererof, poly ethylene glycol.
As examples of nonionic surface active agents which may be used there may be noted the condensation products of alkyl phenols with ethylene oxide, e.g., the reaction product of isooctyl phenol with about 6 to 30 ethylene oxide units; condensation products of alkyl thiophenols with 10 to ethylene oxide units; condensation products of higher alcohols such as tridecyl alcohol with ethylene oxide; ethylene oxide addends of monoesters of hexahydric alcohols and inner ethers thereof such as sorbitan monolaurate, sorbitol monooleate and mannitan monopalmitate, and the condensation products of polypropylene glycol with ethylene oxide.
Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
As examples of suitable synthetic cationic detergents there may be noted the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-2-aminoethyl stearyl amine and N-2-aminoethyl myristyl amine; amide-linked amines such as those of the type R CONHC H NH wherein R is an alkyl group of about 9 to carbon atoms, such as N-Z-amino ethylstearyl amide and N-amino ethyl myristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 12 to 18 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including such 1 to 3 carbon alkyl groups bearing inert substituents, such as phenyl groups, and there is present an anion such as halogen, acetate, methosulfate, etc. Typical quaternary ammonium detergents are ethyl-dimethylstearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride,
4 trimethyl stearyl ammonium chloride, trimethyl-cetyl ammonium bromide, dimethyl-ethyl dilauryl ammonium chloride, dimethyl-propyl-myristyl ammonium chloride, and the corresponding methosulfates and acetates.
Examples of suitable amphoteric detergents are those containing both an anionic and a cationic group and a hydrophobic organic group. which is advantageously a higher aliphatic radical, e.g. of 10-20 carbon atoms. Among these are the N-long chain alkyl aminocarboxylic acids (e.g. of the formula the N-long chain alkyl iminodicarboxylic acids (e.g. of the formula RN(R'COOM) and the N-long chain alkyl betaines (e.g. of the formula where R is a long chain alkyl group, e.g. of about lO2O carbons, R is a divalent radical joining the amino and carboxyl portions of an amino acid (e.g. an alkylene radical of l4 carbon atoms), M is hydrogen or a saltforming metal, R is a hydrogen or another monovalent substituent (e.g. methyl or other lower alkyl), and R and R are monovalent substituents joined to the nitrogen by carbon-to-nitrogen bonds (e.g. methyl or other lower alkyl substituents). Examples of specific amphoteric detergents are N-alkyl-betaaminopropionic acid; N-alkyl-beta-iminodipropionic acid, and N-alkyl, N,N- dimethyl glycine; the alkyl group may be, for example. that derived from coco fatty alcohol, lauryl alcohol, myristyl alcohol (or a lauryl-myristyl mixture), hydrogenated tallow alcohol, cetyl, stearyl, or blends of such alcohols. The substituted aminopropionic and iminodipropionic acids are often supplied in the sodium or other salt forms, which may likewise be used in the practice of this invention. Examples of other amphoteric detergents are the fatty imidazolines such as those made by reacting a long chain fatty acid (e.g. of 10 to 20 carbon atoms) with diethylene triamine and monohalocarboxylic acids having 2 to 6 carbon atoms; betaines containing a sulfonic group instead of the carboxylic group; betaines in which the long chain substituent is joined to the carboxylic group without an intervening nitrogen atom, e.g. inner salts of 2trimethylamino fatty acids such as Z-trimethylaminolauric acid, and compounds of any of the previously mentioned types but in which the nitrogen atoni is replaced by phosphorus.
The relative proportions of the hydroxyalkyl morpholine oxide and the other detergent may vary widely, e.g. in the range of ratios of :1 to 1:100; preferably about 5 to 30 parts of the morpholine oxide per 100 parts of the other detergent are used.
A very suitable dishwashing liquid detergent may contain, for example, a mixture of a linear higher alkylbenzene sulfonate and a higher alkyl ether sulfate in a ratio of about 0.411 to 1:1. In one type of sulfate-alkyl benzenesulfonate highly effective for this purpose, the alkylphenyl moiety has a molecular weight of 230 to 240; its alkyl group is largely (at least 80 mol percent) in the C to C12 range, at least half of the alkyls in the C10Cl2 range being C10 and C11, the C10 and C11 being at least 45% of the total alkyl, at least 80% of the alkyl substituent being alkyl groups having the benzene attachment on the 3 -(or higher, e.g. 3-4-5- or 6-) car bon of the alkyl. The higher alkyl ether sulfate in this dishwashing formulation may, for example, have the formula R(OCl-I. ,CH ),,SO M where R is long chain alkyl of 10 to 15 carbon atoms, n is about 1 to 5 (e.g. about 3) and M is a cation such as ammonium, sodium, potassium, mono di or triethanolammonium, etc.
Water-soluble builder salts may also be present, in the usual proportions, in the detergent formulations when heavy duty cleaning is desired. These salts include phosphates and particularly condensed phosphates (e.g. pyrophosphates or tripolyphosphates), silicates, borates and carbonates (including bicarbonates), as well as organic builders such as salts of nitrilotriacetic acid or ethylene diamine tetracetic acid. Sodium and potassium salts are preferred. Specific examples are sodium tripolyphosphate, potassium pyrophosphate, sodium hexametaphosphate, sodium carbonate, sodium bicarbonate, sodium sesquicarbonate, sodium tetraborate, sodium silicate, salts (e.g. Na salt) of meth ylene diphosphonic acid, trisodium nitrilotriacetate, or mixtures of such builders, including mixtures of pentasodium tripolyphosphate and trisodium nitrilotriacetate in a ratio, of these two builders, of 1:10 to 10:1, e.g. 1:1. The proportions of builder salt may be, for example, 50 parts or more (e.g. 50 to 1000 parts) per 100 parts of detergent. A granular heavy duty detergent composition for washing clothes may comprise, for example, about l518% linear tridecylbenzenesulfonate of the type disclosed in Rubinfeld US. Pat. No. 3,320,174 May 16, 1967, about 50% hydrated pentasodium tripolyphosphate, about 3 to 8% sodium silicate, about 25% of the N-2-hydroxydodecyl morpholine oxide, and the balance sodium sulfate. A heavy duty detergent liquid composition for washing clothes in cool water may comprise, for example, an aqueous solution containing about 10% of a non-ionic detergent, about of tetrapotassium pyrophosphate, about 17% of the N-hydroxyalkyl morpholine oxide and about 4% sodium silicate. Optical brighteners and soil-suspending agents may be included in the usual minor amounts in each case.
In formulating the novel hydroxyalkyl morpholine oxides of this invention into skin lotions, the new com pound may be incorporated into the well known hand lotions containing water-immiscible materials such as mineral oils, blends of liquid mineral oils with high boiling petroleum fractions (such as paraffin wax, petrolatum or oxocerite), lanolin, fatty oil esters such as glyceryl monostearate, and fatty acids such as stearic or oleic acid. These water-immiscible materials may be components of an oil phase of an oil'in-water emulsion. A blend of about l-3 parts of mineral oil, about 0.5-2 parts of either lanolin or lanolin alcohol or a mixture of these, about 1-3 parts of fatty acid and about 27 parts of polyhydroxy compound such as glyceryl monostearate may be used as the oil phase. The ratio of aqueous phase to oil phase is typically about 5:1 to 20:1. The aqueous phase may contain a detergent surfactant, for example in concentration of about 0.1 to 5% of said phase. The amount of the N-hydroxyalkyl morpholine oxide in the lotion may be, for example, in the range of about 0.2-5
In a typical method for making the lotion comprising an oil-in-water emulsion, the oil phase and water phase are heated (e.g. to 80C., say 74C.) and the oil phase is added to the Water phase and mixed thoroughly. The temperature is then lowered (e.g. to 3550C., say 40C.) and additional ingredients such as glycerine and calcium caseinate or other hydrophilic colloid are incorporated into the water phase of the emulsion.
The novel hydroxyalkyl morpholine oxides of this invention may be used in shampoo compositions in which they may be blended with any suitable watersoluble anionic detergent, which may be one of the well known types used in shampoos, e.g. an alkyl sulfate of for example, l2l8 carbon atoms, such as sodium lauryl sulfate or sodium tallow alcohol sulfate other sulfate detergents such as the triethanolammonium salt of the monosulfate of an ethoxylated lauryl alcohol (made from, for example, 3 mols of ethylene oxide and one mol of coconut alcohol), or a sulfonated detergent. such as an alkylbenzenesulfonate or olefin sulfonate or an amphoteric detergent such as an N-long chain alkyl aminocarboxylic acid or an N-long chain alkyl iminodicarboxylic acid, as previously described herein. A typical shampoo composition may comprise, for example, an aqueous mixture containing about 1 to 15% of the hydroxyalkyl morpholine oxide and about 10 to 30% of the other detergent, and may be in free flowing liquid, cream, or lotion form.
The novel hydroxyalkyl morpholine oxides of this invention may also be used as constituents of toilet bars, in admixture with conventional toilet soaps, such as the usual sodium soap of a mixture of about 3 parts of tallow fatty acids and one part of coconut oil fatty acids, or in admixture with synthetic detergents such as the olefin sulfonates mentioned above or the long chain fatty acid (e.g. coconut oil fatty acid) monoglyceryl sulfates. In one example, about 15 parts of the hydroxyalkyl morpholine oxide is used with parts of the other detergent (soap or synthetic).
The following Examples are given to illustrate this invention further. In these examples, as in the remainder of the application, all proportions are by weight unless otherwise indicated.
EXAMPLE 1 20 grams of 1,2-epoxydodecane (b.p. 9798C. at 3.5 mm Hg A) is heated with 9.7 grams of morpholine at 100C. in a sealed container for 16 hours. The resulting mixture is then fractionally distilled and the product is collected at a temperature of 1 19C. and a pressure of 0.05 mm Hg A. 23.4 grams of N-2hydroxydodecylmorpholine having an equivalent weight of 273, by titration (as compared to the calculated equivalent weight of 271 for this compound) are obtained. This product (23.4 grams) is mixed with 9.74 grams of aqueous 30% hydrogen peroxide and 50 ml of methanol and heated at 50C. for 2 hours. Thereafter any excess peroxide is decomposed by adding 0.1 gram platinum black on charcoal (of 5% Pt content) and heating the mixture at 40C. for 4 hours. The platinum-on-charcoal catalyst is filtered off, and the filtrate is evaporated to recover the crude product, which is then recrystallized from 300 ml of acetone to produce 17.5 grams of purified N-Z-hydroxydodecyl-morpholine N-oxide having a melting point of l512C. (and having an equivalent weight by potentiometric titration in methanol, equivalence point at pH 3.25, of 290; as compared to the calculated equivalent weight of 287 for this compound).
EXAMPLE 2 A mixture ofCl2Cl6 alpha olefins is epoxidized in conventional manner to give a mixture of 1.2-epoxyalkanes of 12-16 carbon atoms having an average molecular weight of about 207. 100 grams (0.48 mol) of this epoxide mixture is heated with 46 grams (a excess) of morpholine in a Parr bomb having a magnetically operated stirrer. and maintained at a temperature of 100C. overnight. The product is then distilled at a subatmospheric pressure (1 mm Hg A) and the fractions distilling at 145l 85C. (temperature of distilling head) are collected. The collected material is reacted with hydrogen peroxide as in Example 1. to produce a white solid mixture of N-2-hydroxyalkyl-morpholine oxides containing 12 to 16 carbons in the alkyl group.
EXAMPLE 3 Using the method described in Example 1. there is prepared N-2-hydroxyoctadecyl-morpholine oxide of melting point 147148C. The measured equivalent weight is 371.5; the equivalent weight calculated for this compound is 371.6. 1
EXAMPLE 4 Tests of the foaming powder of the compound of Example 1 are made by shaking cylinders containing the following solutions:
a. a 0.05% solution of the compound in water;
b. a solution of 0.05% of sodium linear alkylbenzenesulfonate detergent in Water.
c. a solution of 0.05% of the compound and 0.05% of the foregoing alkylbenzenesulfonate in water.
It is found that solution (b) foams much better than solution (a); and solution (c) yields more foam that solution (b) and the foam is more stable.
EXAMPLE 5 The N-2-hydroxydodecyl-morpholine N-oxide is tested for its effectiveness in reducing the skin irritation ordinarily caused by exposure to aqueous sodium lauryl sulfate. In this test there is used a control composition containing 2% of sodium lauryl sulfate in water. and an otherwise identical composition containing, in addition. 0.5% of the hydroxyalkylmorpholine oxide. Each composition is applied to the skin of rabbits twice a day for two days. using six different skin sites for each composition. and observing the irritation 48 hours after the beginning of the test. The composition containing the N-Z-hydroxydodecylmorpholine N-oxide is found to cause appreciably less skin irritation.
EXAMPLE 6 A hand lotion is formulated from the following ingredients:
a. an aqueous mixture of 74.4 parts deionized Water. 1 part sodium lauryl sulfate. 1 part of the hydroxyalkyl morpholine oxide of Example 1. and as preservatives. 0.18 part methyl p-hydroxybenzoate and 0.22 part propyl p-hydroxybenzoate.
b. a mixture of 2.0 parts light mineral oil. 5.0 parts glyceryl monostearate. 1.0 part lanolin alcohol (Amerchol H9) and 1.5 part stearic acid (triple pressed).
c. a mixture of 3.0 parts glycerine. 0.5 part calcium caseinate and 5.0 parts deionized water.
8 d. a mixture of 1 part benzyl alcohol and 0.5 part per fume.
The oily mixture (b) is melted and added to the aqueous mixture (a) while the latter is in heated agitated condition. to form an emulsion. which is allowed to cool. To the resulting warm mixture the glycerinecaseinate-water blend (c) is added. with stirring. and after further cooling. to room temperature. the benzylalcohol-perfume mixture (d) is added. The presence of the benzylalcohol helps to control the viscosity of the lotion.
In tests of the protective effect of the lotion against irritation by prolonged contact with an irritating detergent solution (aqueous sodium lauryl sulfate). the 10- tion of this Example is found to give improved protection as compared to a similar hand lotion free of the hydroxyalkyl morpholine oxide.
EXAMPLE 7 A liquid detergent composition is formulated from the following ingredients: sodium linear alkylbenzenesulfonate. 22%; ammonium salt of monosulfate of eth oxylated sulfated straight chain primary alkanol (the alkanol having 12-14 carbon atoms and the ethoxylated product containing 3 ethylene oxide units per molecule). 10%; mixed lauric/myristic (/30) ethanolmide, 5%; N2-hydroxydodecyl-morpholine oxide. 5% ethanol. 5.3% sodium xylene sulfonate, 5.8%; and water. constituting substantially the remainder of the composition. A given amount of this detergent formulation is found to be effective for washing a considerably greater number of greased plates (36 vs. 27. in hard water) than an equal amount of an otherwise identical detergent formulation free of hydroxyalkyl morpholine oxide.
The alkylbenzenesulfonate is produced by sulfonation of an alkylbenzene of molecular weight 238. containing mainly alkyl groups of 10 to 12 carbons.
EXAMPLE 8 Example 7 is repeated except that the fatty acid monoethanolamide is omitted from the composition. The resulting detergent composition is found to be effective for washing a considerably greater number of greased plates (33 plates) than otherwise identical formulations containing (a) the fatty acid monoethanolamide in place of the hydroxyalkyl morpholine oxide (27 plates); (b) lauryl dimethylamine oxide in place of the hydroxyalkyl morpholine oxide (25 plates).
EXAMPLE 9 A liquid detergent composition is formulated from: the alkylbenzenesulfonate of Example 7. 35%; the ammonium alkyl ether sulfate of Example 7. 4%; N-2- hydroxydodecyl-morpholine oxide; 5%; ethanol. 5.1%; urea. 5%; sodium xylenesulfonate. 1.7%. The resulting formulation is found to be effective for washing a considerably greater number of greased plates (39. in hard water) than an otherwise identical formulation contain ing lauryl dimethylamine oxide in place of the hydroxyalkyl morpholine oxide (30 plates).
EXAMPLE 10 In another variation of the method of preparation of the novel compounds. one mol of the 1.2-epoxyalkane (e.g. 1.2-epoxydodecane) is reacted with 1.5 mols of morpholine under reflux at atmospheric pressure for 4 hours until all the epoxide has reacted. The excess of morpholine is then distilled off under vacuum, the reaction product is cooled to 50C.. and 1.05 mols of aqueous 35% hydrogen peroxide are added slowly while the mixture is stirred and cooled to maintain its temperature below 85C. Toward the end of the reaction the mixture is diluted with water so that it can still be stirred readily. The mixture is then heated to 85-90C. for 1 hour. When 1.2-epoxy dodecane is used as the starting material, there is obtained a slightly yellow solution which slowly solidifies to a paste and which contains 59.5% N-Z-hydroxydodecyl-morpholine oxide and 1.2% N-Z-hydroxydodecyl-morpholine in water.
EXAMPLE 1 1 Following the procedure of Example 10. the following Z-hydroxyalkyl morpholine oxides are prepared from the corresponding 1.2-epoxyalkane (e.g. using 1.2-epoxynonane for making the hydroxynonyl-mor pholine oxide). After crystallization as in Example 1. the product has the indicated melting point.
m. N-2-h vdrox vnonyl-morpholine oxide Mt -150C. N-2 h vdrox vundecyl-morpholine oxide |50.5-15 l .5C. N-2-hydroxytridec vl-morpholine oxide I 5 l l 52C. N-2-hydroxytetradecyl-morpholine oxide [5 152C. N-2-hydroxypentadecykmorpholine oxide ll52C. N-2-hydrohexadecyl-morpholine oxide [SI-152C. N-2-hydroxyheptadecy|-morpholine oxide ISO-151C.
EXAMPLE 12 Another liquid detergent composition contains 23% of the sodium linear alkylbenzenesulfonate of Example 7. 13% of the ammonium salt of sulfated ethoxylated alkanol of Example 7, 5% of the N-Z-hydroxydodecyl morpholine oxide (supplied as the paste of Example 10). 5% of sodium xylenesulfonate (hydrotrope). The mixture is adjusted to a pH of 7.5. In a test of its dishwashing performance. it is found to wash considerably more plates (in water of 150 ppm hardness) before the foam disappears than an otherwise identical formulation containing 5% lauric/myristic monoethanolamide or 5% lauric/myristic diethanolamide in place of the material of Example 10. The clear point of the product is 32F. in contrast to clear points of 44F. and 52F., respectively. of the two liquid formulations used for the comparisons.
EXAMPLE 13 0.25 g. of N-Z-hydroxydodecyl-morpholine oxide is added to cc. of distilled water at room temperature (25C.) with continuous stirring. The material dissolves quickly. The temperature of the solution is raised slowly to 100C. and then cooled in an ice bath. The solution is found to be clear; the dissolved material does not come out of solution until the temperature is reduced to 2C. In contrast. in this test, N-2-hydroxydodecyl-diethanolamine oxide forms a cloudy mixture at the outset.
EXAMPLE 14 This Example illustrates a liquid detergent for use in the machinewashing of clothes in cool water.
A liquid detergent is prepared by mixing in the following order. at a temperature of l45l80F.. 32.3 parts of water; 0.005 part of a non-ionic detergent which is a polyoxyethylated nonyl phenol (specifically a condensation product of 15 mols of ethylene oxide and 1 mol of nonyl phenol): and 1 part ofa copolymer of vinylmethyl ether and maleic anhydride (Gantrez AN-908 under these conditions the anhydride ring of the copolymer opens. forming an acidic partial ester with the polyethoxylated nonyl phenol. There are then added 1.6 parts of an aqueous 45.4% solution of KOH: 0.69 part of sodium carboxymethylcellulose; 2 parts of a 10% aqueous dispersion of fluorescent brighteners; 1.7 parts of an aqueous 1% solution of blue dye (Polar Brilliant Blue); 0.12 part of an aqueous 0.5% solution of green dye (D & C Green No. 8); 8.56 part of aqueous sodium silicate of 43.5% concentration in which the Na O: SiO. mol ratio is 112.35); 10 parts of a nonionic detergent which is a polyoxyethylated alkyl phenol (specifically a condensation product of 10 mols of ethylene oxide and one mol of branched chain dodecyl phenol); 1 to 5 parts of N-hydroxydodecyl-morpholine oxide: and 41 parts of an aqueous 60% solution of tetrapotassium pyrophosphate. together with a small amount of perfume. The brighteners used in the above formulation include (a) 0.08 part of Geigy Tinopal RBS-2007c. a naphthotriazole stilbene sulfonate brightener, and (b) 0.12 part of another stilbene brightener bis (anilino diethanolamino s-triazinyl) stilbene disulfonic acid.
EXAMPLE 15 a. A shampoo composition is prepared by mixing 2 to 5% N-2-hydroxydodecyl-morpholine oxide. 10% triethanolammonium lauryl sulfate and. the balance. water.
b. In another shampoo composition there is used 10% of sodium monosulfate of ethoxylated lauryl alcohol (made with 3 to 4 mols of ethylene oxide per mol of lauryl alcohol) in place of the triethanolammonium lauryl sulfate.
c. Another shampoo composition contains 10% of triethanolamine oleate, 9% of N-Z-hydroxydodecylmorpholine oxide, and 1.6% of a cationic dispersing agent, oleyl dimethyl benzyl ammonium chloride and, the balance, water.
d. A shampoo composition. in gel form. contains 68% of an aqueous 41% solution of triethanolammonium lauryl sulfate; 6% sorbitol; 4% ethyl alcohol; 1.8% methyl cellulose, serving as a thickener; 5% lauricmyristic diethanolamide; 1% N-Z-hydroxydodecylmorpholine oxide; a small amount of formaldehyde as a preservative and the balance water. The pH is adjusted to 7.2, as by addition of triethanolamine. While the invention finds its greatest utility in the embodiment in which the unsubstituted 2-hydroxyalkyl morpholine oxides are used, it is also within the broader scope of this invention to use long chain 3- hydroxyalkyl morpholine oxides (which may be made in the same way as the corresponding Z-hydroxyalkyl compounds. using the corresonding 1,3 oxetane in place of the 1,2 epoxide) and to use compounds in which there is a substituent such as lower alkyl (e.g.
methyl. ethyl or propyl) on one or more of the carbon atoms of the morpholine ring. forming such compounds as N-(3-hydroxydodecyl) morpholine oxide or N42- hydroxyhexadecyl) 2-methylmorpholine oxide.
It is to be understood that the foregoing detailed description is merely given by way of illustration and that many variations may be made therein without departing from the spirit of the invention. The Abwherein R is alkyl of 6 to 20 carbon atoms. the weight ratio of said morpholine oxide to said other detergent being in the range of 100:1 to 1:100.
2. A detergent composition as in claim 1 in which said morpholine oxide is present in a weight ratio of about 5 to 30 parts per 100 parts of other detergent.
3. A detergent composition as in claim 2 which consists essentially of to 30% by weight of a water-soluble anionic or amphoteric detergent and 1% to by weight of a morpholine oxide of the formula where R is alkyl of 6 to 20 carbon atoms in an aqueous medium.
4. A detergent composition as in claim 2 in which said detergent is an anionic sulfated or sulfonated synthetic organic detergent having 8 to 26 carbon atoms to the molecule.
5. Composition as in claim 4 in which the anionic detergent comprises a linear alkylbenzenesulfonate having 10 to 16 carbon atoms in the alkyl group.
6. A detergent composition as in claim 4 in which said detergent is a mixture of CwC alkylbenzene sulfonate and an alkyl ether sulfate of the formula R(OCH CH ),,SO M wherein n is about 1 to 5 and M is a cation selected from the group consisting of ammonium, sodium, potassium and mono-, dior triethanolammonium and said composition is in the form of a liquid which is suitable for washing dishes.
7. A detergent composition as in claim 2 in which said detergent is an anionic alkyl sulfate having 12 to 18 carbon atoms in the alkyl group.
8. Composition as in claim 7 containing sodium lau-

Claims (8)

1. A DETEGENT COMPOSITION CONSISTING ESSENTIALLY OF A WATERSOLUBLE ORGANIC DETEGENT SELECTED FROM THE GROUP CONSISTING OF ANIONIC, NONIONIC, CATIONIC AND AMPHOTERIC DETERGENTS AND MIXTURES THEREOF AND A MORPHOLINE OXIDE OF THE FORMULA
2. A detergent composition as in claim 1 in which said morpholine oxide is present in a weight ratio of about 5 to 30 parts per 100 parts of other detergent.
3. A detergent composition as in claim 2 which consists essentially of 10% to 30% by weight of a water-soluble anionic or amphoteric detergent and 1% to 15% by weight of a morpholine oxide of the formula
4. A detergent composition as in claim 2 in which said detergent is an anionic sulfated or sulfonated synthetic organic detergent having 8 to 26 carbon atoms to the molecule.
5. Composition as in claim 4 in which the anionic detergent comprises a linear alkylbenzenesulfonate having 10 to 16 carbon atoms in the alkyl group.
6. A detergent composition as in claim 4 in which said detergent is a mixture of C10-C12 alkylbenzene sulfonate and an alkyl ether sulfate of the formula R(OCH2CH2)nSO4M wherein n is about 1 to 5 and M is a cation selected from the group consisting of ammonium, sodium, potassium and mono-, di- or triethanol-ammonium and said composition is in the form of a liquid which is suitable for washing dishes.
7. A detergent composition as in claim 2 in which said detergent is an anionic alkyl sulfate having 12 to 18 carbon atoms in the alkyl group.
8. Composition as in claim 7 containing sodium lauryl sulfate.
US414586A 1967-10-24 1973-11-09 Detergent compositions containing amine oxides Expired - Lifetime US3926861A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK132335D DK132335A (en) 1967-10-24
US414586A US3926861A (en) 1967-10-24 1973-11-09 Detergent compositions containing amine oxides
US05/613,370 US4048338A (en) 1973-11-09 1975-07-24 Aqueous cosmetic composition containing amine oxides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US67772367A 1967-10-24 1967-10-24
US68259767A 1967-11-13 1967-11-13
US00166253A US3809659A (en) 1967-10-24 1971-07-26 Amine oxides
US414586A US3926861A (en) 1967-10-24 1973-11-09 Detergent compositions containing amine oxides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US00166253A Division US3809659A (en) 1963-07-17 1971-07-26 Amine oxides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/613,370 Division US4048338A (en) 1973-11-09 1975-07-24 Aqueous cosmetic composition containing amine oxides

Publications (1)

Publication Number Publication Date
US3926861A true US3926861A (en) 1975-12-16

Family

ID=27496690

Family Applications (1)

Application Number Title Priority Date Filing Date
US414586A Expired - Lifetime US3926861A (en) 1967-10-24 1973-11-09 Detergent compositions containing amine oxides

Country Status (2)

Country Link
US (1) US3926861A (en)
DK (1) DK132335A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033895A (en) * 1975-12-24 1977-07-05 Revlon, Inc. Non-irritating shampoo compositions containing stearyl amine oxide
FR2478636A1 (en) * 1980-03-21 1981-09-25 Ferrosan Ab NOVEL MORPHOLINO COMPOUNDS, PROCESS FOR THEIR PREPARATION AND MEDICAMENTS CONTAINING SAME
EP0133905A2 (en) * 1983-06-30 1985-03-13 Revlon, Inc. Low pH hair conditioner and neutralizer conditioning compositions containing amine oxides
US4894221A (en) * 1981-03-19 1990-01-16 Ab Ferrosan Method of treating plaque using morpholine compounds
WO1998038269A1 (en) * 1997-02-27 1998-09-03 The Procter & Gamble Company Laundry detergent bars with improved physical properties
WO2013142672A3 (en) * 2012-03-22 2014-04-10 The Procter & Gamble Company Personal care compositions and methods
US10966916B2 (en) 2014-11-10 2021-04-06 The Procter And Gamble Company Personal care compositions
US10987290B2 (en) 2017-10-20 2021-04-27 The Procter And Gamble Company Aerosol foam skin cleanser
US11207248B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases
US11207261B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases
US11365397B2 (en) 2018-11-29 2022-06-21 The Procter & Gamble Company Methods for screening personal care products
US11419805B2 (en) 2017-10-20 2022-08-23 The Procter & Gamble Company Aerosol foam skin cleanser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281368A (en) * 1961-12-04 1966-10-25 Procter & Gamble Built tertiary amine oxide detergents
US3441611A (en) * 1961-12-04 1969-04-29 Procter & Gamble Hydroxyalkylamine oxide detergent compounds
US3809659A (en) * 1967-10-24 1974-05-07 Colgate Palmolive Co Amine oxides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281368A (en) * 1961-12-04 1966-10-25 Procter & Gamble Built tertiary amine oxide detergents
US3441611A (en) * 1961-12-04 1969-04-29 Procter & Gamble Hydroxyalkylamine oxide detergent compounds
US3809659A (en) * 1967-10-24 1974-05-07 Colgate Palmolive Co Amine oxides

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033895A (en) * 1975-12-24 1977-07-05 Revlon, Inc. Non-irritating shampoo compositions containing stearyl amine oxide
US4636382A (en) * 1980-03-21 1987-01-13 Ab Ferrosan Morpholino compounds and compositions
FR2478636A1 (en) * 1980-03-21 1981-09-25 Ferrosan Ab NOVEL MORPHOLINO COMPOUNDS, PROCESS FOR THEIR PREPARATION AND MEDICAMENTS CONTAINING SAME
EP0038785A1 (en) * 1980-03-21 1981-10-28 AB Ferrosan Novel morpholino coumpounds
US4894221A (en) * 1981-03-19 1990-01-16 Ab Ferrosan Method of treating plaque using morpholine compounds
EP0133905A2 (en) * 1983-06-30 1985-03-13 Revlon, Inc. Low pH hair conditioner and neutralizer conditioning compositions containing amine oxides
EP0133905A3 (en) * 1983-06-30 1986-06-04 Revlon, Inc. Low ph hair conditioner and neutralizer conditioning compositions containing amine oxides
WO1998038269A1 (en) * 1997-02-27 1998-09-03 The Procter & Gamble Company Laundry detergent bars with improved physical properties
WO2013142672A3 (en) * 2012-03-22 2014-04-10 The Procter & Gamble Company Personal care compositions and methods
US10966916B2 (en) 2014-11-10 2021-04-06 The Procter And Gamble Company Personal care compositions
US11207248B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases
US11207261B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases
US10987290B2 (en) 2017-10-20 2021-04-27 The Procter And Gamble Company Aerosol foam skin cleanser
US11419805B2 (en) 2017-10-20 2022-08-23 The Procter & Gamble Company Aerosol foam skin cleanser
US11365397B2 (en) 2018-11-29 2022-06-21 The Procter & Gamble Company Methods for screening personal care products

Also Published As

Publication number Publication date
DK132335A (en)

Similar Documents

Publication Publication Date Title
US3538009A (en) Method for reducing skin irritation in detergent compositions
US6087309A (en) Liquid cleaning compositions containing selected mid-chain branched surfactants
EP0670827B1 (en) Alkylglyceramides and their use as surfactants
US3280179A (en) Processes for producing acyclic surfactant sulfobetaines
US3562337A (en) Detergent
US3926861A (en) Detergent compositions containing amine oxides
CA2002095C (en) High viscosity detergent gel composition and method of making same
US3944663A (en) Mild light duty detergent containing homopolymers of ethylene oxide
US3755206A (en) Detergent compositions
US3637682A (en) N-2-hydroxy alkyl morpholine oxides
US4107095A (en) Liquid olefin sulfonate detergent compositions containing anti-gelling agents
CA1057617A (en) Non-gelling alpha-olefin sulfonate liquid detergent
JPS61268796A (en) Gentle detergent composition
FI67401B (en) TVAETTMEDELBLANDNINGAR INNEHAOLLANDE ALKYLSULFOSUCCINAT
US5906972A (en) Liquid detergent composition
US4048338A (en) Aqueous cosmetic composition containing amine oxides
US3627822A (en) Novel compounds with detergency and fabric-softening ability and method of making the same
US3679611A (en) Compositions with hydroxyalkyl piperidine or pyrrolidine oxides
US4231903A (en) Detergent compositions
US3979340A (en) Olefin sulfonate detergent compositions
JPS63277300A (en) Liquid detergent composition
CA1209438A (en) Surfactant
US4102826A (en) Liquid detergent
CA1210662A (en) Anionic nonionic surfactant mixture
JPH01272697A (en) Liquid detergent composition