US3637682A - N-2-hydroxy alkyl morpholine oxides - Google Patents

N-2-hydroxy alkyl morpholine oxides Download PDF

Info

Publication number
US3637682A
US3637682A US677723A US3637682DA US3637682A US 3637682 A US3637682 A US 3637682A US 677723 A US677723 A US 677723A US 3637682D A US3637682D A US 3637682DA US 3637682 A US3637682 A US 3637682A
Authority
US
United States
Prior art keywords
morpholine
detergent
alkyl
oxide
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US677723A
Inventor
John Fred Gerecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Application granted granted Critical
Publication of US3637682A publication Critical patent/US3637682A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/24Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Definitions

  • This invention relates to morpholine oxides.
  • One aspect of this relates to morpholine oxides of the formula where R is a long chain alkyl group of at least six carbon atoms, e.g. 6 to 20, preferably 10 to 14, carbon atoms.
  • the compounds of this invention have beneficial and unusual characteristics, particularly suitable, for example, in cosmetic and detergent applications.
  • the compounds described above may be prepared by reacting a long chain 1,2 epoxide with morpholine, followed by the conversion of the resulting N-Z-hydroxyalkyl-morpholine to the corresponding N-oxide by oxidation, as with hydrogen peroxide.
  • Z-hydroxyalkyl groups are 2-hydroxydodecyl, 2-hydroxyoctadecyl, 2-hydroxynonyl, Z-hydroxydecyl, 2-hydroxyundecyl, 2-hydroxytridecyl, Z-hydroxytetradecyl, 2-hydroxypentadecyl, Z-hydroxyhexadecyl, and Z-hydroxyheptadecyl.
  • Mixtures of compounds of different 2-hydroxyalkyl groups may be employed (e.g. a mixture in which these groups have 12-16 carbon atoms).
  • the compounds of this invention have many desirable attributes of particular value in emulsification and cleansing and detergency. Among these attributes are a desirable effect on the skin, and particularly a non-irritating and even anti-irritating effect when used in conjunction with surface active agents that ordinarily irritate the skin.
  • the use of the compositions of the invention gives desirable modifications of the foaming power and/ or foam characteristics of detergent compositions, such as a foam boosting effect.
  • This invention also provides novel compounds of good miscibility with water which may be formulated into aqueous compositions which remain clear over a wide temperature range.
  • the novel compounds may be employed in detergent compositions, including light-duty liquids, heavy duty highly-built liquids, and granular compositions in which they may, for example, be post-added to spray-dried built detergent powders.
  • detergent compositions they may be mixed with polymeric materials including agents for preventing redeposition of soil, such as sodium carboxymethylcellulose or polyvinyl alcohol; opacifiers; perfumes; anti-tarnishing agents; bacteriostatic agents; and oxygenand chlorine-releasing bleaches.
  • the novel compounds may also be used in hair-shampooing, hair-dyeing, or other hair-treating or hair-conditioning compositions.
  • the novel compounds may be incorporated in a variety of cosmetic compositions, including such compositions intended for application to the skin as skin lotions, creams, gels, or clear liquids.
  • the new compound may be used alone or may be added to any of the conventional surface-active detergents. These may be of the anionic, non-ionic, cationic or amphoteric types, or mixtures thereof.
  • the anionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and an anionic solubilizing group.
  • anionic solubilizing groups are sulfonate, sulfate, carboxylate, phosphonate and phosphate.
  • Suitable anionic detergents which fall within the scope of the invention include the soaps, such as the water-soluble salts of higher fatty acids or rosin acids, such as may be derived from fats, oils and waxes of animals, vegetable or marine origin, e.g., the sodium soaps of tallow, grease, coconut oil, tall oil and mixtures thereof; and the sul-fated and sulfonated synthetic detergents, particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
  • the soaps such as the water-soluble salts of higher fatty acids or rosin acids, such as may be derived from fats, oils and waxes of animals, vegetable or marine origin, e.g., the sodium soaps of tallow, grease, coconut oil, tall oil and mixtures thereof
  • the sul-fated and sulfonated synthetic detergents particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
  • suitable synthetic anionic detergents there may be cited the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the alkyl group in a straight or branched chain, e.g., the sodium salts of higher alkyl benzene sulfonates or of the higher alkyl toluene, xylene and phenol sulfonates; alkyl naphthalene sulfonate, ammonium diamyl naphthalenesulfonate, and sodium dinonyl naphthalene sulfonate.
  • the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the alkyl group in a straight or branched chain, e.g., the sodium salts of higher alkyl
  • composition there is used a linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50) of 2- (or lower) phenyl isomers; in other terminology, the benzene ring is preferably attached in large part at the 3 or higher (e.g. 4, 5, 6 or 7) position of the alkyl group and the content of isomers in which the benzene ring is attached at the 2 or 1 position is correspondingly low.
  • Particularly preferred materials are set forth in U.S. Pat. 3,320174, May 16, 1967, of J. Rubinfeld.
  • anionic detergents are the olefin sulfonates, including long chain alkene sulfonates, long chain hydroxyalkane sulfonates or mixtures of alkenesulfonates and hydroxyalkanesulfonates.
  • paraflin sulfonates such as the reaction products of alpha olefins and bisulfites (e.g. sodium bisulfite), e.g. primary paraffin sulfonates of about 1040, preferably about 15-20, carbon atoms; sulfates of higher alcohols; salts of a-sulfofatty esters, (eg of about 10 to 20 carbon atoms, such as methyl ot-sulfomyristate or a-sulfotallowate).
  • alpha olefins and bisulfites e.g. sodium bisulfite
  • primary paraffin sulfonates of about 1040, preferably about 15-20, carbon atoms
  • sulfates of higher alcohols e.g. primary paraffin sulfonates of higher alcohols
  • salts of a-sulfofatty esters eg of about 10 to 20 carbon atoms, such as methyl ot-sulfomyr
  • sulfates of higher alcohols are sodium lauryl sulfate, sodium tallow alcohol sulfate. Turkey Red Oil or other sulfated oils, or sulfates of monoor diglycerides of fatty acids (e.g.
  • alkyl poly (ethenoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and lauryl alcohol (usually having 1 to 5 ethenoxy groups per molecule); lauryl or other higher alkyl glyceryl ether sulfonates; aromatic poly (ethenoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and nonyl phenol (usually having 1 to 6 oxyethylene groups per molecule).
  • the suitable anionic detergents include also the acyl sarcosinates (e.g. sodium lauroylsarcosinate) the acyl esters (e.g. oleic acid ester) of isethionates, and the acyl N-methyl taurides (e.g. potassium N-methyl lauroylor oleyl tauride).
  • acyl sarcosinates e.g. sodium lauroylsarcosinate
  • the acyl esters e.g. oleic acid ester
  • acyl N-methyl taurides e.g. potassium N-methyl lauroylor oleyl tauride
  • the most highly preferred water soluble anionic detergent compounds are the ammonium and substituted ammonium (such as mono-, diand triethanolamine), alkali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts of the higher alkyl benzenesulfonates, olefin sulfonates, the higher alkyl sulfates, and the higher fatty acid monoglyceride sulfates.
  • alkali metal such as sodium and potassium
  • alkaline earth metal such as calcium and magnesium
  • the particular salt will be suitably selected depending upon the particular formulation and the proportions therein.
  • Nonionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and a hydrophilic group which is a reaction product of a solubilizing group such as carboxylate, hydroxyl, amido or amino with ethylene oxide or with the polyhydration product thereof, polyethylene glycol.
  • nonionic surface active agents which may be used there may be noted the condensation products of alkyl phenols with ethylene oxide, e.g., the reaction product of isooctyl phenol with about 6 to 30 ethylene oxide units; condensation products of alkyl thiophenols with to ethylene oxide units; condensation products of higher fatty alcohols such as tridecyl alcohol with ethylene oxide; ethylene oxide addends of monoesters of hexahydric alcohols and inner ethers thereof such as sorbitan monolaurate, sorbitol mono-oleate and mannitan monopalmitate, and the condensation products of polypropylene glycol with ethylene oxide.
  • condensation products of alkyl phenols with ethylene oxide e.g., the reaction product of isooctyl phenol with about 6 to 30 ethylene oxide units
  • condensation products of alkyl thiophenols with to ethylene oxide units condensation products of higher fatty alcohols such as tridecyl alcohol with ethylene oxide
  • Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
  • suitable synthetic cationic detergents there may be noted the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-2-aminoethyl stearyl amine and N-2-aminoethyl myristyl amine; amide-linked amines such as those of the type R CONI-IC H NH wherein R is an alkyl group of about 9 to carbon atoms, such as N-Z-amino ethylstearyl amide and N- amino ethyl myristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 12 to 18 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including such 1 to 3 carbon alkyl groups bearing inert substituents, such as phenyl groups, and there is present an ani
  • Typical quarternary ammonium detergents are ethyl-dimethylstearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, trimethyl stearyl ammonium chloride, trimethyl-cetyl ammonium bromide, dimethyl-ethyl dilauryl ammonium chloride, dimethyl-propyl-myristyl ammonium chloride, and the corresponding methosulfates and acetates.
  • amphoteric detergents are those containing both an anionic and a cationic group and a hydrophobic organic group, which is advantageously a higher aliphatic radical, e.g. of 1020 carbon atoms.
  • suitable amphoteric detergents are those containing both an anionic and a cationic group and a hydrophobic organic group, which is advantageously a higher aliphatic radical, e.g. of 1020 carbon atoms.
  • suitable amphoteric detergents are those containing both an anionic and a cationic group and a hydrophobic organic group, which is advantageously a higher aliphatic radical, e.g. of 1020 carbon atoms.
  • these are the N-long chain alkyl aminocarboxylic acids, e.g. of the formula RN-R'COOM the N-long chain alkyl iminodicarboxylic acids e.g. of the formula RN(RCOOM) and the N-long chain alkyl betaines,
  • R is a divalent radical joining the amino and carboxyl portions of an amino acid (e.g. an alkylene radical of 1-4 carbon atoms)
  • M is hydrogen or a salt-forming metal
  • R is a hydrogen or another monovalent substituent (e.g. methyl or other lower alkyl)
  • R and R are monovalent substituents joined to the nitrogen by carbon-to-nitrogen bonds (e.g. methyl or other lower alkyl substituents).
  • amphoteric detergents are N-alkyl-beta-aminopropionic acid; N-alkylbeta-iminodipropionic acid, and N-alkyl, N,N-dirnethyl glycine; the alkyl group may be, for example, that derived from coco fatty alcohol, lauryl alcohol, myristyl alcohol (or a lauryl-myristyl mixture), hydrogenated tallow alcohol, cetyl, stearyl, or blends of such alcohols.
  • the substituted aminopropionic and iminodipropionic acids are often supplied in the sodium or other salt forms, which may likewise be used in the practice of this invention.
  • amphoteric detergents examples include the fatty imidazolines such as those made by reacting a long chain fatty acid (e.g. of 10 to 20 carbon atoms) with diethylene triamine and monohalocarboxylic acids having 2 to 6 carbon atoms, e.g. l-coco-S-hydroxethyl-5-carboxymethylimidazoline; betaines containing a sulfonic group instead of the carboxylic group; betaines in which the long chain substituent is joined to the carboxylic group without an intervening nitrogen atom, e.g. inner salts of Z-trimethylamino fatty acids such as 2-trimethyl aminolauric acid, and compounds of any of the previously mentioned types but in which the nitrogen atom is replaced by phosphorus.
  • a long chain fatty acid e.g. of 10 to 20 carbon atoms
  • diethylene triamine and monohalocarboxylic acids having 2 to 6 carbon atoms e.g. l-coco-S
  • the relative proportions of the hydroxyalkyl morpholine oxide and the other detergent may vary Widely, e.g. in the range of ratios of 100:1 to 1:100; preferably about 5 to 30 parts of the morpholine oxide per 100 parts of the other detergent are used.
  • a very suitable dishwashing liquid detergent may contain, for example, a mixture of a linear higher alkylbenzene sulfonate and a higher alkyl ether sulfate in a ratio of about 0.411 to 1:1.
  • the alkylphenyl moiety has a molecular weight of 230 to 240; its alkyl group is largely (at least mol percent) in the C10 to C12 range, at least half of the alkyls in the C10-C12 range being C10 and C11, the C10 and C11 being at least 45% of the total alkyl, at least 80% of the alkyl substituent being alkyl groups having the benzene attachment on the 3- (or higher, e.g.
  • the higher alkyl ether sulfate in this dishwashing formulation may, for example, have the formula R(OCH CH SO M where R is long chain alkyl of 10 to 15 carbon atoms, 11 is about 1 to 5 (e.g. about 3) and M is a cation such as ammonium, sodium, potassium, mono-, dior triethanolammonium, etc.
  • Water-soluble builder salts may also be present, in the usual proportions, in the detergent formulations when heavy duty cleaning is desired.
  • These salts include phosphates and particularly condensed phosphates (e.g. pyrophosphates or tripolyphosphates), silicates, borates and carbonates (including bicarbonates), as well as organic builders such as salts of nitrilotriacetic acid or ethylene diamine tetracetic acid.
  • Sodium and potassium salts are preferred. Specific examples are sodium tripolyphosphate, potassium pyrophosphate, sodium hexametaphosphate, sodium carbonate, sodium bicarbonate, sodium scsquicarbonate, sodium tetraborate, sodium silicate, salts (e.g.
  • the proportions of builder salt may be, for example, 50 parts or more (e.g. 50 to 1000 parts) per parts of detergent.
  • a granular heavy duty detergent composition for washing clothes may comprise, for example, about 1518% linear tridecylbenzenesulfonate of the type disclosed in Rubinfeld U .8. Pat.
  • a heavy duty detergent liquid composition for washing clothes in cool water may comprise, for example, an aqueous solution containing about 10% of a non-ionic detergent, about 25% of tetrapotassium pyrophosphate, about 17% of the N-hydroxyalkyl morpholine oxide and about 4% sodium silicate.
  • Optical brighteners and soil-suspending agents may be included in the usual minor amounts in each case.
  • the new compound may be incorporated into the well known hand lotions containing water-immiscible materials such as mineral oils, blends of liquid mineral oils with high boiling petroleum fractions (such as paraffin wax, petrolatum or oxocerite), lanolin, fatty oil esters such as glyceryl monostearate, and fatty acids such as stearic or oleic acid.
  • water-immiscible materials such as mineral oils, blends of liquid mineral oils with high boiling petroleum fractions (such as paraffin wax, petrolatum or oxocerite), lanolin, fatty oil esters such as glyceryl monostearate, and fatty acids such as stearic or oleic acid.
  • water-immiscible materials may be components of an oil phase of an oil-in-water emulsion.
  • a blend of about 1-3 parts of mineral oil, about 0.5-2 parts of either lanolin or lanolin alcohol or a mixture of these, about 13 parts of fatty acid and about 2-7 parts of polyhydroxy compound such as glyceryl monostearate may be used as the oil phase.
  • the ratio of aqueous phase to oil phase is typically about :1 to 20:1.
  • the aqueous phase may contain a detergent surfactant, for example in concentration of about 0.1 to 5% of said phase.
  • the amount of the N-hydroxyalkyl morpholine oxide in the lotion may be, for example, in the range of about 0.25%.
  • the oil phase and water phase are heated (e.g. to 70-80 C., say 74 C.) and the oil phase is added to the water phase and mixed thoroughly.
  • the temperature is then lowered (e.g. to 35-50 C., say 40 C.) and additional ingredients such as glycerine and calcium caseinate or other hydrophilic colloid are incorporated into the water phase of the emulsion.
  • the novel hydroxyalkyl morpholine oxides of this in- 'vention may be used in shampoo compositions in which they may be blended with any suitable water-soluble anionic detergent, which may be one of the well known types used in shampoos, e.g. an alkyl sulfate of for example, 12-18 carbon atoms, such as sodium lauryl sulfate or sodium tallow alcohol sulfate other sulfate detergents such as the triethanolammonium salt of the monosulfate of an ethoxylated lauryl alcohol (made from, for example, 3 mols of ethylene oxide and one mol of coconut alcohol), or a sulfonated detergent, such as an alkylbenzenesulfonate or olefin sulfonate or an amphoteric detergent such as an N-long chain alkyl aminocarboxylic acid or an N-long chain alkyl iminodicarboxylic acid, as previously described herein.
  • a typical shampoo composition
  • novel hydroxyalkyl morpholine oxides of this invention may also be used as constituents of toilets bars, in admixture with conventional toilet soaps, such as the usual sodium soap of a mixture of about 3 parts of tallow fatty acids and one part of coconut oil fatty acids, or in admixture with synthetic detergents such as the olefin sulfonates mentioned above or the long chain fatty acid (e.g. coconut oil fatty acid) moonglyceryl sulfates.
  • synthetic detergents such as the olefin sulfonates mentioned above or the long chain fatty acid (e.g. coconut oil fatty acid) moonglyceryl sulfates.
  • about parts of the hydroxyalkyl morpholine oxide is used with 100 parts of the other detergent (soap or synthetic).
  • EXAMPLE 1 20 grams of 1,2-epoxydodecane (B.P. 97-98 C. at 3.5 mm. Hg A) is heated with 9.7 grams of morpholine at 100 C. in a sealed container for 16 hours. The resulting mixture is then fractionally distilled and the product is collected at a temperature of 119 C. and a pressure of 0.05 mm. Hg A. 23.4 grams of N-2-hydroxydodecyl-morpholine having an equivalent weight of 273, by titration (as compared to the calculated equivalent Weight of 271 for this compound) are obtained. This product (23.4 grains) is mixed with 9.74 grams of aqueous 30% hydrogen peroxide and 50 ml. of methanol and heated at 50 C.
  • EXAMPLE 2 A mixture of Cl-2-Cl6 alpha olefins is epoxidized in conventional manner to give a mixture of 1,2-epoxyalkanes of 1216 carbon atoms having an average molecular weight of about 207. 100 grams (0.48 mol) of this epoxide mixture is heated with 46 grams (a 10% excess) of morpholine in a Parr bomb having a magnetically operated stirrer, and maintained at a temperature of 100 C. overnight. The product is then distilled at a subatmospheric pressure (1 mm. Hg A) and the fractions distilling at -185 C. (temperature of distilling head) are collected. The collected material is reacted with hydrogen peroxide as in Example 1, to produce a white solid mixture of N-Z-hydroxyalkyl-morpholine oxides containing 12 to 16 carbons in the alkyl group.
  • solution (c) a solution of 0.05% of the compound and 0.05% of the foregoing alkylbenzenesulfonate in water. It is found that solution (b) foams much better than solution (a); and solution (0) yields more foam than solution (b) and the foam is more stable.
  • N-2-hydroxydodecyl-morpholine N-oxide is tested for its effectiveness in reducing the skin irritation ordinarily caused by exposure to aqueous sodium lauryl sulfate.
  • a control composition containing 2% of sodium lauryl sulfate in water, and an otherwise identical composition containing, in addition, 0.5% of the hydroxyalkylmorpholine oxide.
  • Each composition is applied to the skin of rabbits twice a day for two days, using six different skin sites for each composition, and observing the irritation 48 hours after the beginning of the test.
  • the composition containing the N-2-hydroxydodecyl- 7 morpholine N-oxide is found to cause appreciably less skin irritation.
  • EXAMPLE 6 A hand lotion is formulated from the following ingredicuts:
  • the oily mixture (b) is melted and added to the aqueous mixture (a) while the la tter is in heated agitated condition, to form an emulsion, which is allowed to cool.
  • the glycerine-caseinatewater blend (c) is added, with stirring, and after further cooling, to room temperature, the benzyl-alcohol-perfume mixture (d) is added.
  • the presence of the 'benzylalcohol helps to control the viscosity of the lotion.
  • the lotion of this example is found to give improved protection as compared to a similar hand lotion free of the hydroxyalkyl morpholine oxide.
  • a liquid detergent composition is formulated from the following ingredients: sodium linear alkylbenzenesulfonate, 22%; ammonium salt of monosulfate of ethoxylated sulfated straight chain primary alkanol (the alkanol having 1214 carbon atoms and the ethoxylated product containing 3 ethylene oxide units per molecule), 10%; mixed lauric/myristic (70/30) ethanolamide, 5%; N-2- hydroxydodecyl-morpholine oxide, 5%; ethanol, 5.3% sodium xylene sulfonate, 5.8%; and water, constituting substantially the remainder of the composition.
  • a given amount of this detergent formulation is found to be effective for washing a considerably greater number of greased plates (36 vs. 27, in hard water) than an equal amount of an otherwise identical detergent formulation free of hydroxyalkyl morpholine oxide.
  • the alkylbenzenesulfonate is produced by sulfonation of an alkylbenzene of molecular weight 238, containing mainly alkyl grgoups of to 12 carbons.
  • Example 7 is repeated except that the fatty acid monocthanolamide is omitted from the composition.
  • the resulting detergent composition is found to be effective for washing a considerably greater number of greased plates (33 plates) than otherwise identical formulations containing (a) the fatty acid monoethanolamide in place of the hydroxyalkyl morpholine oxide (27 plates); (b) lauryl dimethylamine oxide in place of the hydroxyalkyl morpholine oxide plates).
  • a liquid detergent composition is formulated from: the alkylbenzenesulfonate of Example 7, the ammonium alkyl ether sulfate of Example 7, 4%; N-Z-hydroxydodecylmorpholine oxide, 5 ethanol, 5.1%; urea, 5 sodium xylene-sulfonate, 1.7%.
  • the resulting formulation is found to be effective for washing a considerably greater number of greased plates (39, in hard water) than an otherwise identical formulation containing lauryl dimethylamine oxide in place of the hydroxyalkyl morpholine oxide (30 plates).
  • one mol of the 1,2-epoxyalkane (e.g. 1,2-epoxydodecane) is reacted with 1.5 mols of morpholine under reflux at atmospheric pressure for 4 hours until all the epoxide has reacted.
  • the excess of morpholine is then distilled off under vacuum, the reaction product is cooled to 50 C., and 1.05 mols of aqueous 35% hydrogen peroxide are added slowly While the mixture is stirred and cooled to maintain its temperature below C.
  • the mixture is diluted with water so that it can still be stirred readily. The mixture is then heated to 8590 C. for one hour.
  • the mixture is adjusted to a pH of 7.5. In a test of its dishwashing performance, it is found to wash considerably more plates (in water of 150 ppm. hardness) before the foam disappears than an otherwise identical formulation containing 5% lauric/myristic monoethanolamide or 5% lauric/ myristic diethanolamide in place of the material of Example 10.
  • the clear point of the product is 32 F. in contrast to clear points of 44 F. and 52 F., respectively, of the two liquid formulations used for the comparisons.
  • EXAMPLE 13 0.25 g. of N-2-hydroxydodecyl-morpholine oxide is added to 25 cc. of distilled water at room temperature (25 C.) with continuous stirring. The material dissolves quickly. The temperature of the solution is raised slowly to C. and then cooled in an ice bath. The solution is found to be clear; the dissolved material does not come out of solution until the temperature is reduced to 2 C. In contrast, in this test, N-2-hydroxydodecyl-diethanolamine oxide forms a cloudy mixture at the outset.
  • EXAMPLE 14 This example illustrates a liquid detergent for use in the machine-washing of clothes in cool water.
  • a liquid detergent is prepared by mixing in the following order, at a temperature of -180 F., 32.3 parts of water; 0.005 part of a non-ionic detergent which is a polyoxyethylated nonyl phenol (specifically a condensation product of 15 mols of ethylene oxide and 1 mol of nonyl phenol); and 1 part of a copolymer of vinylmethyl ether and maleic anhydride (Gantrez AN-908); under these conditions the anhydride ring of the copolymer opens, forming an acidic partial ester with the polyethoxylated nonyl phenol.
  • a non-ionic detergent which is a polyoxyethylated nonyl phenol (specifically a condensation product of 15 mols of ethylene oxide and 1 mol of nonyl phenol)
  • a copolymer of vinylmethyl ether and maleic anhydride Gantrez AN-908
  • the brighteners used in the above formulation include (a) 0.08 part of Geigy Tinopal RBS-200%, a naphthotriazole stilbene sulfonate brightener, and (b) 0.12 part of another stilbene brightener bis (anilino diethanolamino s-triazinyl) stilbene disulfonic acid.
  • EXAMPLE 15 (a) A shampoo composition is prepared by mixing 2 to 5% N-2-hydroxydodecyl-morpholine oxide, triethanolammonium lauryl sulfate and, the balance, water.
  • Another shampoo composition contains 10% of triethanolamine oleate, 9% of N-Z-hydroxydodecylmorpholine oxide, and 1.6% of a cationic dispersing agent, oleyl dimethyl benzyl ammonium chloride and, the balance, water.
  • a shampoo composition, in gel form, contains 68% of an aqueous 41% solution of triethanolammonium lauryl sulfate; 6% sorbitol; 4% ethyl alcohol; 1.8% methyl cellulose, serving as a thickener; 5% lauric-myristic diethanolamide; 1% N 2 hydroxydodecyl-morpholine oxide; a small amount of formaldehyde as a preservative and the balance water.
  • the pH is adjusted to 7.2; as by addition of triethanolamine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Abstract

HYDROXY HIGHER ALKYL MORPHOLINE OIDES, AND FORMULATIONS CONTAINING THE SAME. THE COMPOUNDS HAVE MANY BENEFICIAL EFFECTS IN DETERGENT AND COSMETIC COMPOSITIONS. PARTICULARLY DESIRABLE FOR APPLICATION TO THE SKIN AND FOR MODIFICATION OF FOAMING POWER OF DETERGENT COMPOSITIONS.

Description

United States Patent 3,637,682 N-Z-HYDROXY ALKYL MORPHOLINE OXIDES John Fred Gerecht, Somerville, Null, assignor to Colgate- Palmolive Company, New York, N.Y. No Drawing. Filed Oct. 24, 1967, Ser. No. 677,723 lint. Cl. (107d 87/32 U.S. Cl. 260-2475 A 2 Ciaims ABSTRACT OF THE DISCLOSURE Hydroxy higher alkyl morpholine oxides, and formulations containing the same. The compounds have many beneficial effects in detergent and cosmetic compositions, particularly desirable for application to the skin and for modification of foaming power of detergent compositions.
This invention relates to morpholine oxides. One aspect of this relates to morpholine oxides of the formula where R is a long chain alkyl group of at least six carbon atoms, e.g. 6 to 20, preferably 10 to 14, carbon atoms.
It has been found that the compounds of this invention have beneficial and unusual characteristics, particularly suitable, for example, in cosmetic and detergent applications.
The compounds described above may be prepared by reacting a long chain 1,2 epoxide with morpholine, followed by the conversion of the resulting N-Z-hydroxyalkyl-morpholine to the corresponding N-oxide by oxidation, as with hydrogen peroxide.
Examples of Z-hydroxyalkyl groups are 2-hydroxydodecyl, 2-hydroxyoctadecyl, 2-hydroxynonyl, Z-hydroxydecyl, 2-hydroxyundecyl, 2-hydroxytridecyl, Z-hydroxytetradecyl, 2-hydroxypentadecyl, Z-hydroxyhexadecyl, and Z-hydroxyheptadecyl. Mixtures of compounds of different 2-hydroxyalkyl groups may be employed (e.g. a mixture in which these groups have 12-16 carbon atoms).
The compounds of this invention have many desirable attributes of particular value in emulsification and cleansing and detergency. Among these attributes are a desirable effect on the skin, and particularly a non-irritating and even anti-irritating effect when used in conjunction with surface active agents that ordinarily irritate the skin. The use of the compositions of the invention gives desirable modifications of the foaming power and/ or foam characteristics of detergent compositions, such as a foam boosting effect. By using the new compounds valuable compositions intended for application to the skin or hair (or for use in contact with the skin) may be formulated. This invention also provides novel compounds of good miscibility with water which may be formulated into aqueous compositions which remain clear over a wide temperature range.
The novel compounds may be employed in detergent compositions, including light-duty liquids, heavy duty highly-built liquids, and granular compositions in which they may, for example, be post-added to spray-dried built detergent powders. In such detergent compositions they may be mixed with polymeric materials including agents for preventing redeposition of soil, such as sodium carboxymethylcellulose or polyvinyl alcohol; opacifiers; perfumes; anti-tarnishing agents; bacteriostatic agents; and oxygenand chlorine-releasing bleaches. The novel compounds may also be used in hair-shampooing, hair-dyeing, or other hair-treating or hair-conditioning compositions. The novel compounds may be incorporated in a variety of cosmetic compositions, including such compositions intended for application to the skin as skin lotions, creams, gels, or clear liquids.
In the use of the novel hydroxyalkyl morpholine oxides of this invention in detergent compositions, the new compound may be used alone or may be added to any of the conventional surface-active detergents. These may be of the anionic, non-ionic, cationic or amphoteric types, or mixtures thereof.
The anionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and an anionic solubilizing group. Typical examples of anionic solubilizing groups are sulfonate, sulfate, carboxylate, phosphonate and phosphate. Examples of suitable anionic detergents which fall within the scope of the invention include the soaps, such as the water-soluble salts of higher fatty acids or rosin acids, such as may be derived from fats, oils and waxes of animals, vegetable or marine origin, e.g., the sodium soaps of tallow, grease, coconut oil, tall oil and mixtures thereof; and the sul-fated and sulfonated synthetic detergents, particularly those having about 8 to 26, and preferably about 12 to 22, carbon atoms to the molecule.
As examples of suitable synthetic anionic detergents there may be cited the higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the alkyl group in a straight or branched chain, e.g., the sodium salts of higher alkyl benzene sulfonates or of the higher alkyl toluene, xylene and phenol sulfonates; alkyl naphthalene sulfonate, ammonium diamyl naphthalenesulfonate, and sodium dinonyl naphthalene sulfonate. In one preferred type of composition there is used a linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50) of 2- (or lower) phenyl isomers; in other terminology, the benzene ring is preferably attached in large part at the 3 or higher (e.g. 4, 5, 6 or 7) position of the alkyl group and the content of isomers in which the benzene ring is attached at the 2 or 1 position is correspondingly low. Particularly preferred materials are set forth in U.S. Pat. 3,320174, May 16, 1967, of J. Rubinfeld.
Other anionic detergents are the olefin sulfonates, including long chain alkene sulfonates, long chain hydroxyalkane sulfonates or mixtures of alkenesulfonates and hydroxyalkanesulfonates. These olefin sulfonate detergents may be prepared, in known manner, by the reaction of S0 with long chain olefins (of 8-25, preferably 12-21 carbon atoms) of the formula RCH=CH R where R is 7 alkyl and R is alkyl or hydrogen, to produce a mixture of sultones and alkenesulfonic acids, which mixture is then treated to convert the sultones to sulfonates. Examples of other sulfate or sulfonate detergents are paraflin sulfonates, such as the reaction products of alpha olefins and bisulfites (e.g. sodium bisulfite), e.g. primary paraffin sulfonates of about 1040, preferably about 15-20, carbon atoms; sulfates of higher alcohols; salts of a-sulfofatty esters, (eg of about 10 to 20 carbon atoms, such as methyl ot-sulfomyristate or a-sulfotallowate).
Examples of sulfates of higher alcohols are sodium lauryl sulfate, sodium tallow alcohol sulfate. Turkey Red Oil or other sulfated oils, or sulfates of monoor diglycerides of fatty acids (e.g. stearic monoglyceride monosulfate), alkyl poly (ethenoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and lauryl alcohol (usually having 1 to 5 ethenoxy groups per molecule); lauryl or other higher alkyl glyceryl ether sulfonates; aromatic poly (ethenoxy) ether sulfates such as the sulfates of the condensation products of ethylene oxide and nonyl phenol (usually having 1 to 6 oxyethylene groups per molecule).
The suitable anionic detergents include also the acyl sarcosinates (e.g. sodium lauroylsarcosinate) the acyl esters (e.g. oleic acid ester) of isethionates, and the acyl N-methyl taurides (e.g. potassium N-methyl lauroylor oleyl tauride).
The most highly preferred water soluble anionic detergent compounds are the ammonium and substituted ammonium (such as mono-, diand triethanolamine), alkali metal (such as sodium and potassium) and alkaline earth metal (such as calcium and magnesium) salts of the higher alkyl benzenesulfonates, olefin sulfonates, the higher alkyl sulfates, and the higher fatty acid monoglyceride sulfates. The particular salt will be suitably selected depending upon the particular formulation and the proportions therein.
Nonionic surface active agents include those surface active or detergent compounds which contain an organic hydrophobic group and a hydrophilic group which is a reaction product of a solubilizing group such as carboxylate, hydroxyl, amido or amino with ethylene oxide or with the polyhydration product thereof, polyethylene glycol.
As examples of nonionic surface active agents which may be used there may be noted the condensation products of alkyl phenols with ethylene oxide, e.g., the reaction product of isooctyl phenol with about 6 to 30 ethylene oxide units; condensation products of alkyl thiophenols with to ethylene oxide units; condensation products of higher fatty alcohols such as tridecyl alcohol with ethylene oxide; ethylene oxide addends of monoesters of hexahydric alcohols and inner ethers thereof such as sorbitan monolaurate, sorbitol mono-oleate and mannitan monopalmitate, and the condensation products of polypropylene glycol with ethylene oxide.
Cationic surface active agents may also be employed. Such agents are those surface active detergent compounds which contain an organic hydrophobic group and a cationic solubilizing group. Typical cationic solubilizing groups are amine and quaternary groups.
As examples of suitable synthetic cationic detergents there may be noted the diamines such as those of the type RNHC H NH wherein R is an alkyl group of about 12 to 22 carbon atoms, such as N-2-aminoethyl stearyl amine and N-2-aminoethyl myristyl amine; amide-linked amines such as those of the type R CONI-IC H NH wherein R is an alkyl group of about 9 to carbon atoms, such as N-Z-amino ethylstearyl amide and N- amino ethyl myristyl amide; quaternary ammonium compounds wherein typically one of the groups linked to the nitrogen atom is an alkyl group of about 12 to 18 carbon atoms and three of the groups linked to the nitrogen atom are alkyl groups which contain 1 to 3 carbon atoms, including such 1 to 3 carbon alkyl groups bearing inert substituents, such as phenyl groups, and there is present an anion such as halogen, acetate, methosulfate, etc. Typical quarternary ammonium detergents are ethyl-dimethylstearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, benzyl-dimethyl-stearyl ammonium chloride, trimethyl stearyl ammonium chloride, trimethyl-cetyl ammonium bromide, dimethyl-ethyl dilauryl ammonium chloride, dimethyl-propyl-myristyl ammonium chloride, and the corresponding methosulfates and acetates.
Examples of suitable amphoteric detergents are those containing both an anionic and a cationic group and a hydrophobic organic group, which is advantageously a higher aliphatic radical, e.g. of 1020 carbon atoms. Among these are the N-long chain alkyl aminocarboxylic acids, e.g. of the formula RN-R'COOM the N-long chain alkyl iminodicarboxylic acids e.g. of the formula RN(RCOOM) and the N-long chain alkyl betaines, e.g. of the formula where R is a long chain alkyl group, e.g. of about 10-20 carbons, R is a divalent radical joining the amino and carboxyl portions of an amino acid (e.g. an alkylene radical of 1-4 carbon atoms), M is hydrogen or a salt-forming metal, R is a hydrogen or another monovalent substituent (e.g. methyl or other lower alkyl), and R and R are monovalent substituents joined to the nitrogen by carbon-to-nitrogen bonds (e.g. methyl or other lower alkyl substituents). Examples of specific amphoteric detergents are N-alkyl-beta-aminopropionic acid; N-alkylbeta-iminodipropionic acid, and N-alkyl, N,N-dirnethyl glycine; the alkyl group may be, for example, that derived from coco fatty alcohol, lauryl alcohol, myristyl alcohol (or a lauryl-myristyl mixture), hydrogenated tallow alcohol, cetyl, stearyl, or blends of such alcohols. The substituted aminopropionic and iminodipropionic acids are often supplied in the sodium or other salt forms, which may likewise be used in the practice of this invention. Examples of other amphoteric detergents are the fatty imidazolines such as those made by reacting a long chain fatty acid (e.g. of 10 to 20 carbon atoms) with diethylene triamine and monohalocarboxylic acids having 2 to 6 carbon atoms, e.g. l-coco-S-hydroxethyl-5-carboxymethylimidazoline; betaines containing a sulfonic group instead of the carboxylic group; betaines in which the long chain substituent is joined to the carboxylic group without an intervening nitrogen atom, e.g. inner salts of Z-trimethylamino fatty acids such as 2-trimethyl aminolauric acid, and compounds of any of the previously mentioned types but in which the nitrogen atom is replaced by phosphorus.
The relative proportions of the hydroxyalkyl morpholine oxide and the other detergent may vary Widely, e.g. in the range of ratios of 100:1 to 1:100; preferably about 5 to 30 parts of the morpholine oxide per 100 parts of the other detergent are used.
A very suitable dishwashing liquid detergent may contain, for example, a mixture of a linear higher alkylbenzene sulfonate and a higher alkyl ether sulfate in a ratio of about 0.411 to 1:1. In one type of sulfate-alkylbenzenesulfonate highly eifective for this purpose, the alkylphenyl moiety has a molecular weight of 230 to 240; its alkyl group is largely (at least mol percent) in the C10 to C12 range, at least half of the alkyls in the C10-C12 range being C10 and C11, the C10 and C11 being at least 45% of the total alkyl, at least 80% of the alkyl substituent being alkyl groups having the benzene attachment on the 3- (or higher, e.g. 34-5- or 6-) carbon of the alkyl. The higher alkyl ether sulfate in this dishwashing formulation may, for example, have the formula R(OCH CH SO M where R is long chain alkyl of 10 to 15 carbon atoms, 11 is about 1 to 5 (e.g. about 3) and M is a cation such as ammonium, sodium, potassium, mono-, dior triethanolammonium, etc.
Water-soluble builder salts may also be present, in the usual proportions, in the detergent formulations when heavy duty cleaning is desired. These salts include phosphates and particularly condensed phosphates (e.g. pyrophosphates or tripolyphosphates), silicates, borates and carbonates (including bicarbonates), as well as organic builders such as salts of nitrilotriacetic acid or ethylene diamine tetracetic acid. Sodium and potassium salts are preferred. Specific examples are sodium tripolyphosphate, potassium pyrophosphate, sodium hexametaphosphate, sodium carbonate, sodium bicarbonate, sodium scsquicarbonate, sodium tetraborate, sodium silicate, salts (e.g. Na salt) of methylene diphosphonic acid, trisodium nitrilotriacetate, or mixtures of such builders, including mixtures of pentasodium tripolyphosphate and trisodium nitrilotriacetate in a ratio, of these two builders, of [:10 to 10:1, e.g. 1:1. The proportions of builder salt may be, for example, 50 parts or more (e.g. 50 to 1000 parts) per parts of detergent. A granular heavy duty detergent composition for washing clothes may comprise, for example, about 1518% linear tridecylbenzenesulfonate of the type disclosed in Rubinfeld U .8. Pat. 3,320,174, May 16, 1967, about 2050% hydrated pentasodium tripolyphosphate, about 3 to 8% sodium silicate, about 25% of the N-2- hydroxydodecyl morpholine oxide, and the balance sodium sulfate. A heavy duty detergent liquid composition for washing clothes in cool water may comprise, for example, an aqueous solution containing about 10% of a non-ionic detergent, about 25% of tetrapotassium pyrophosphate, about 17% of the N-hydroxyalkyl morpholine oxide and about 4% sodium silicate. Optical brighteners and soil-suspending agents may be included in the usual minor amounts in each case.
In formulating the novel hydroxyalkyl morpholine oxides of this invention into skin lotions, the new compound may be incorporated into the well known hand lotions containing water-immiscible materials such as mineral oils, blends of liquid mineral oils with high boiling petroleum fractions (such as paraffin wax, petrolatum or oxocerite), lanolin, fatty oil esters such as glyceryl monostearate, and fatty acids such as stearic or oleic acid. These water-immiscible materials may be components of an oil phase of an oil-in-water emulsion. A blend of about 1-3 parts of mineral oil, about 0.5-2 parts of either lanolin or lanolin alcohol or a mixture of these, about 13 parts of fatty acid and about 2-7 parts of polyhydroxy compound such as glyceryl monostearate may be used as the oil phase. The ratio of aqueous phase to oil phase is typically about :1 to 20:1. The aqueous phase may contain a detergent surfactant, for example in concentration of about 0.1 to 5% of said phase. The amount of the N-hydroxyalkyl morpholine oxide in the lotion may be, for example, in the range of about 0.25%.
In a typical method for making the lotion comprising an oil-in-water emulsion, the oil phase and water phase are heated (e.g. to 70-80 C., say 74 C.) and the oil phase is added to the water phase and mixed thoroughly. The temperature is then lowered (e.g. to 35-50 C., say 40 C.) and additional ingredients such as glycerine and calcium caseinate or other hydrophilic colloid are incorporated into the water phase of the emulsion.
The novel hydroxyalkyl morpholine oxides of this in- 'vention may be used in shampoo compositions in which they may be blended with any suitable water-soluble anionic detergent, which may be one of the well known types used in shampoos, e.g. an alkyl sulfate of for example, 12-18 carbon atoms, such as sodium lauryl sulfate or sodium tallow alcohol sulfate other sulfate detergents such as the triethanolammonium salt of the monosulfate of an ethoxylated lauryl alcohol (made from, for example, 3 mols of ethylene oxide and one mol of coconut alcohol), or a sulfonated detergent, such as an alkylbenzenesulfonate or olefin sulfonate or an amphoteric detergent such as an N-long chain alkyl aminocarboxylic acid or an N-long chain alkyl iminodicarboxylic acid, as previously described herein. A typical shampoo composition may comprise, for example, an aqueous mixture containing about 1 to 15% of the hydroxyalkyl morpholine oxide and about to 30% of the other detergent, and may be in free flowing liquid, cream, or lotion form.
The novel hydroxyalkyl morpholine oxides of this invention may also be used as constituents of toilets bars, in admixture with conventional toilet soaps, such as the usual sodium soap of a mixture of about 3 parts of tallow fatty acids and one part of coconut oil fatty acids, or in admixture with synthetic detergents such as the olefin sulfonates mentioned above or the long chain fatty acid (e.g. coconut oil fatty acid) moonglyceryl sulfates. In one example, about parts of the hydroxyalkyl morpholine oxide is used with 100 parts of the other detergent (soap or synthetic).
The following examples are given to illustrate this invention further. In these examples, as in the remainder of the application, all proportions are by weight unless otherwise indicated.
EXAMPLE 1 20 grams of 1,2-epoxydodecane (B.P. 97-98 C. at 3.5 mm. Hg A) is heated with 9.7 grams of morpholine at 100 C. in a sealed container for 16 hours. The resulting mixture is then fractionally distilled and the product is collected at a temperature of 119 C. and a pressure of 0.05 mm. Hg A. 23.4 grams of N-2-hydroxydodecyl-morpholine having an equivalent weight of 273, by titration (as compared to the calculated equivalent Weight of 271 for this compound) are obtained. This product (23.4 grains) is mixed with 9.74 grams of aqueous 30% hydrogen peroxide and 50 ml. of methanol and heated at 50 C. for 2 hours. Thereafter any excess peroxide is decomposed by adding 0.1 gram platinum black on charcoal (of 5% Pt content) and heating the mixture at 40 C. for 4 hours. The platinum-on-charcoal catalyst is filtered off, and the filtrate is evaporated to recover the crude product, which is then recrystallized from 300 ml. of acetone to produce 17.5 grams of purified N-Z-hydroxydodecyl-morpholine N-oxide having a melting point of 151 2 C. (and having an equivalent weight by potentiometric titration in methanol, equivalence point at pH 3.25, of 290; as compared to the calculated equivalent weight of 287 for this compound).
EXAMPLE 2 A mixture of Cl-2-Cl6 alpha olefins is epoxidized in conventional manner to give a mixture of 1,2-epoxyalkanes of 1216 carbon atoms having an average molecular weight of about 207. 100 grams (0.48 mol) of this epoxide mixture is heated with 46 grams (a 10% excess) of morpholine in a Parr bomb having a magnetically operated stirrer, and maintained at a temperature of 100 C. overnight. The product is then distilled at a subatmospheric pressure (1 mm. Hg A) and the fractions distilling at -185 C. (temperature of distilling head) are collected. The collected material is reacted with hydrogen peroxide as in Example 1, to produce a white solid mixture of N-Z-hydroxyalkyl-morpholine oxides containing 12 to 16 carbons in the alkyl group.
EXAMPLE 3 Using the method described in Example 1, there is prepared N-Z-hydroxyoctadecyl-morpholine oxide of melting point 147148 C. The measured equivalent weight is 371.5 the equivalent weight calculated for this compound is 371.6.
EXAMPLE 4 Tests of the foaming power of the compound of Example 1 are made by shaking cylinders containing the following solutions:
'(a) a 0.05% solution of the compound in water;
(b) a solution of 0.05% of sodium linear alkylbenzenesulfonate detergent in water.
(c) a solution of 0.05% of the compound and 0.05% of the foregoing alkylbenzenesulfonate in water. It is found that solution (b) foams much better than solution (a); and solution (0) yields more foam than solution (b) and the foam is more stable.
EXAMPLE 5 The N-2-hydroxydodecyl-morpholine N-oxide is tested for its effectiveness in reducing the skin irritation ordinarily caused by exposure to aqueous sodium lauryl sulfate. In this test there is used a control composition containing 2% of sodium lauryl sulfate in water, and an otherwise identical composition containing, in addition, 0.5% of the hydroxyalkylmorpholine oxide. Each composition is applied to the skin of rabbits twice a day for two days, using six different skin sites for each composition, and observing the irritation 48 hours after the beginning of the test. The composition containing the N-2-hydroxydodecyl- 7 morpholine N-oxide is found to cause appreciably less skin irritation.
EXAMPLE 6 A hand lotion is formulated from the following ingredicuts:
(a) an aqueous mixture of 74.4 parts deionized water, 1 part sodium lauryl sulfate, 1 part of the hydroxyalkyl morpholine oxide of Example 1, and, as preservatives, 0.18 part methyl p-hydroxybenzoate and 0.22 part propyl p-hydroxybenzoate.
(b) a mixture of 2.0 parts light mineral oil, 5.0 parts glyceryl monostearate, 1.0 part lanolin alcohol (Amerchol H9) and 1.5 part stearic acid (triple pressed).
(c) a mixture of 3.0 parts glycerine, 0.5 part calcium caseinate and 5.0 parts deionized water.
(d) a mixture of 1 part benzyl alcohol and 0.5 part perfume.
The oily mixture (b) is melted and added to the aqueous mixture (a) while the la tter is in heated agitated condition, to form an emulsion, which is allowed to cool. To the resulting warm mixture the glycerine-caseinatewater blend (c) is added, with stirring, and after further cooling, to room temperature, the benzyl-alcohol-perfume mixture (d) is added. The presence of the 'benzylalcohol helps to control the viscosity of the lotion.
In tests of the protective effect of the lotion against irritation by prolonged contact with an irritating detergent solution (aqueous sodium lauryl sulfate), the lotion of this example is found to give improved protection as compared to a similar hand lotion free of the hydroxyalkyl morpholine oxide.
EXAMPLE 7 A liquid detergent composition is formulated from the following ingredients: sodium linear alkylbenzenesulfonate, 22%; ammonium salt of monosulfate of ethoxylated sulfated straight chain primary alkanol (the alkanol having 1214 carbon atoms and the ethoxylated product containing 3 ethylene oxide units per molecule), 10%; mixed lauric/myristic (70/30) ethanolamide, 5%; N-2- hydroxydodecyl-morpholine oxide, 5%; ethanol, 5.3% sodium xylene sulfonate, 5.8%; and water, constituting substantially the remainder of the composition. A given amount of this detergent formulation is found to be effective for washing a considerably greater number of greased plates (36 vs. 27, in hard water) than an equal amount of an otherwise identical detergent formulation free of hydroxyalkyl morpholine oxide.
The alkylbenzenesulfonate is produced by sulfonation of an alkylbenzene of molecular weight 238, containing mainly alkyl grgoups of to 12 carbons.
EXAMPLE 8 Example 7 is repeated except that the fatty acid monocthanolamide is omitted from the composition. The resulting detergent composition is found to be effective for washing a considerably greater number of greased plates (33 plates) than otherwise identical formulations containing (a) the fatty acid monoethanolamide in place of the hydroxyalkyl morpholine oxide (27 plates); (b) lauryl dimethylamine oxide in place of the hydroxyalkyl morpholine oxide plates).
EXAMPLE 9 A liquid detergent composition is formulated from: the alkylbenzenesulfonate of Example 7, the ammonium alkyl ether sulfate of Example 7, 4%; N-Z-hydroxydodecylmorpholine oxide, 5 ethanol, 5.1%; urea, 5 sodium xylene-sulfonate, 1.7%. The resulting formulation is found to be effective for washing a considerably greater number of greased plates (39, in hard water) than an otherwise identical formulation containing lauryl dimethylamine oxide in place of the hydroxyalkyl morpholine oxide (30 plates).
8 EXAMPLE 10 In another variation of the method of preparation of the novel compounds, one mol of the 1,2-epoxyalkane (e.g. 1,2-epoxydodecane) is reacted with 1.5 mols of morpholine under reflux at atmospheric pressure for 4 hours until all the epoxide has reacted. The excess of morpholine is then distilled off under vacuum, the reaction product is cooled to 50 C., and 1.05 mols of aqueous 35% hydrogen peroxide are added slowly While the mixture is stirred and cooled to maintain its temperature below C. Toward the end of the reaction the mixture is diluted with water so that it can still be stirred readily. The mixture is then heated to 8590 C. for one hour. When 1,2-epoxy dodecanc is used as the starting material, there is obtained a slightly yellow solution which slowly solidifies to a paste and which contains 59.5% N-2-hydroxydodecyl-morpholine oxide and 1.2% N-2-hydroxydodecyl-morpholine in water.
tEXAM PLE 1 1 Following the procedure of Example 10, the following 2-hydroxyalkyl morpholine oxides are prepared from the corresponding 1,2-epoxyalkane (e.g. using 1,2-epoxy nonane for making the hydroxynonyl-morpholine oxide). After crystallization as in Example 1, the product has the indicated melting point.
M.P., C N-2-hydroxynonyl-morpholine oxide 149-150 N-Z-hydroxyundecyl-morpholine oxide 150.5151.5
N-2-hydroxytridecyl-morpholine oxide 151-152 N-2-hydroxytetradecyl-morpholine oxide 2. 151-152 N-2-hydroxypentadecyl-morpholine oxide 151-152 N -2-hydroxyhexadecyl-morpholine oxide 15 1-1 5 2 N-2-hydroxyheptadecyl-morpholine oxide 15 041 51 EXAMPLE 12 Another liquid detergent composition contains 23% of the sodium linear alkylbenzenesulfonate of Example 7, 13% of the ammonium salt of sulfated ethoxylated alkanol of Example 7, 5% of the N-2-hydroxydodecyl morpholine oxide (supplied as the paste of Example 10), 5% of sodium xylene-sulfonate (hydrotrope). The mixture is adjusted to a pH of 7.5. In a test of its dishwashing performance, it is found to wash considerably more plates (in water of 150 ppm. hardness) before the foam disappears than an otherwise identical formulation containing 5% lauric/myristic monoethanolamide or 5% lauric/ myristic diethanolamide in place of the material of Example 10. The clear point of the product is 32 F. in contrast to clear points of 44 F. and 52 F., respectively, of the two liquid formulations used for the comparisons.
EXAMPLE 13 0.25 g. of N-2-hydroxydodecyl-morpholine oxide is added to 25 cc. of distilled water at room temperature (25 C.) with continuous stirring. The material dissolves quickly. The temperature of the solution is raised slowly to C. and then cooled in an ice bath. The solution is found to be clear; the dissolved material does not come out of solution until the temperature is reduced to 2 C. In contrast, in this test, N-2-hydroxydodecyl-diethanolamine oxide forms a cloudy mixture at the outset.
EXAMPLE 14 This example illustrates a liquid detergent for use in the machine-washing of clothes in cool water.
A liquid detergent is prepared by mixing in the following order, at a temperature of -180 F., 32.3 parts of water; 0.005 part of a non-ionic detergent which is a polyoxyethylated nonyl phenol (specifically a condensation product of 15 mols of ethylene oxide and 1 mol of nonyl phenol); and 1 part of a copolymer of vinylmethyl ether and maleic anhydride (Gantrez AN-908); under these conditions the anhydride ring of the copolymer opens, forming an acidic partial ester with the polyethoxylated nonyl phenol. There are then added 1.6 parts of an aqueous 45.4% solution of KOH; 0.69 part of sodium carboxymethylcellulose; 2 parts of a 10% aqueous dispersion of fluorescent brighteners; 1.7 parts of an aqueous 1% solution of blue dye (Polar Brilliant Blue); 0.12 part of an aqueous 0.5% solution of green dye (D & C Green #8); 8.56 parts of aqueous sodium silicate of 43.5% concentration in Which the Na O:SiO mol ratio is 1:235); 10 parts of a non-ionic detergent which is a polyoxyethylated alkyl phenol (specifically a condensation product of 10 mols of ethylene oxide and one mol of branched chain dodecyl phenol); 1 to parts of N-hydroxydodecylmorpholine oxide; and 41 parts of an aqueous 60% solution of tetrapotassium pyrophosphate, together with a small amount of perfume. The brighteners used in the above formulation include (a) 0.08 part of Geigy Tinopal RBS-200%, a naphthotriazole stilbene sulfonate brightener, and (b) 0.12 part of another stilbene brightener bis (anilino diethanolamino s-triazinyl) stilbene disulfonic acid.
EXAMPLE 15 (a) A shampoo composition is prepared by mixing 2 to 5% N-2-hydroxydodecyl-morpholine oxide, triethanolammonium lauryl sulfate and, the balance, water.
(b) In another shampoo composition there is used 10% of sodium monosulfate of ethoxylated lauryl alcohol (made with 3 to 4 mols of ethylene oxide per mol of lauryl alcohol) in place of the triethanolammonium lauryl sulfate.
(c) Another shampoo composition contains 10% of triethanolamine oleate, 9% of N-Z-hydroxydodecylmorpholine oxide, and 1.6% of a cationic dispersing agent, oleyl dimethyl benzyl ammonium chloride and, the balance, water.
(d) A shampoo composition, in gel form, contains 68% of an aqueous 41% solution of triethanolammonium lauryl sulfate; 6% sorbitol; 4% ethyl alcohol; 1.8% methyl cellulose, serving as a thickener; 5% lauric-myristic diethanolamide; 1% N 2 hydroxydodecyl-morpholine oxide; a small amount of formaldehyde as a preservative and the balance water. The pH is adjusted to 7.2; as by addition of triethanolamine.
While the invention finds its greatest utility in the embodiment in which the unsubstituted Z-hydroxyalkyl morpholine oxides are used, it is also within the broader scope of this invention to use long chain 3-hydroxyalkyl morpholine oxides (which may be made in the same way as the corresponding 2-hydroxyalkyl compounds, using the corresponding 1,3 oxetane in place of the 1,2 epoxide) and to use compounds in which there is a substituent such as lower alkyl (e.g. methyl, ethyl or propyl) on one or more of the carbon atoms of the morpholine ring, form ing such compounds as N-(3-hydroxydodecyl) morpholine oxide or N-(Z-hydroxyhexadecyl) Z-methylmorpholine oxide.
It is to be understood that the foregoing detailed description is merely given by Way of illustration and that many variations may be made therein without departing from the spirit of the invention. The Abstract given above is merely for the convenience of searchers and is not to be given any weight in defining the scope of the invention.
What is claimed is:
1. A morpholine oxide of the formula where R is alkyl of six to twenty carbon atoms.
2. A morpholine oxide as in claim 1 in which R has 6 to 20 carbon atoms.
References Cited UNITED STATES PATENTS 3,413,292 11/19-68 Johnson, Jr. 260247.7
ALEX MAZEL, Primary Examiner J. TOVAR, Assistant Examiner U.S. Cl. X.R.
US677723A 1967-10-24 1967-10-24 N-2-hydroxy alkyl morpholine oxides Expired - Lifetime US3637682A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67772367A 1967-10-24 1967-10-24
US68259767A 1967-11-13 1967-11-13
US00166253A US3809659A (en) 1967-10-24 1971-07-26 Amine oxides

Publications (1)

Publication Number Publication Date
US3637682A true US3637682A (en) 1972-01-25

Family

ID=27389241

Family Applications (3)

Application Number Title Priority Date Filing Date
US677723A Expired - Lifetime US3637682A (en) 1967-10-24 1967-10-24 N-2-hydroxy alkyl morpholine oxides
US682597A Expired - Lifetime US3547932A (en) 1967-10-24 1967-11-13 Hydroxyalkyl piperidine or pyrrolidine oxides
US00166253A Expired - Lifetime US3809659A (en) 1963-07-17 1971-07-26 Amine oxides

Family Applications After (2)

Application Number Title Priority Date Filing Date
US682597A Expired - Lifetime US3547932A (en) 1967-10-24 1967-11-13 Hydroxyalkyl piperidine or pyrrolidine oxides
US00166253A Expired - Lifetime US3809659A (en) 1963-07-17 1971-07-26 Amine oxides

Country Status (15)

Country Link
US (3) US3637682A (en)
JP (1) JPS50676B1 (en)
AT (1) AT294111B (en)
BE (1) BE722739A (en)
BR (1) BR6802732D0 (en)
CA (1) CA982573A (en)
CH (1) CH534175A (en)
DE (1) DE1801114A1 (en)
DK (1) DK132335C (en)
FR (1) FR1589885A (en)
GB (1) GB1238954A (en)
IE (1) IE32414B1 (en)
IT (1) IT996006B (en)
NL (1) NL6815168A (en)
NO (1) NO129955B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048338A (en) * 1973-11-09 1977-09-13 Colgate-Palmolive Company Aqueous cosmetic composition containing amine oxides
US4714610A (en) * 1984-07-20 1987-12-22 Revlon, Inc. Low pH hair conditioner compositions containing amine oxides

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK132335A (en) * 1967-10-24
US3872116A (en) * 1972-06-16 1975-03-18 Jefferson Chem Co Inc Amino alcohols
DE2248842A1 (en) * 1972-10-05 1974-04-11 Huels Chemische Werke Ag DETERGENT AND CLEANING AGENTS WITH A FOAM-ATTENUATING SUBSTANCE
US3943234A (en) * 1973-08-09 1976-03-09 The Procter & Gamble Company Acidic emollient liquid detergent composition
JPS5182662A (en) * 1975-01-16 1976-07-20 Eagle Clamp Co TENBINTSURIGU
US4133779A (en) * 1975-01-06 1979-01-09 The Procter & Gamble Company Detergent composition containing semi-polar nonionic detergent and alkaline earth metal anionic detergent
JPS5217460U (en) * 1975-07-25 1977-02-07
EP0149347B1 (en) * 1983-12-29 1988-03-09 E.I. Du Pont De Nemours And Company Pentahydroperfluoroalkylamine n-oxides
ES2111607T3 (en) * 1992-10-27 1998-03-16 Procter & Gamble DETERGENT COMPOSITIONS TO INHIBIT DYE TRANSFER.
US5412118A (en) * 1993-10-12 1995-05-02 Lever Brothers Company, Division Of Conopco, Inc. Thickened foam stable compositions comprising alkyl(alkyl glycosid)uronamides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH306788A (en) * 1950-12-28 1955-04-30 Hoechst Ag Process for the preparation of an alkylaminobenzoic acid ester.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048338A (en) * 1973-11-09 1977-09-13 Colgate-Palmolive Company Aqueous cosmetic composition containing amine oxides
US4714610A (en) * 1984-07-20 1987-12-22 Revlon, Inc. Low pH hair conditioner compositions containing amine oxides

Also Published As

Publication number Publication date
DK132335C (en) 1976-05-03
GB1238954A (en) 1971-07-14
AT294111B (en) 1971-11-10
US3809659A (en) 1974-05-07
NO129955B (en) 1974-06-17
BE722739A (en) 1969-04-01
BR6802732D0 (en) 1973-01-02
IE32414B1 (en) 1973-07-25
JPS50676B1 (en) 1975-01-10
US3547932A (en) 1970-12-15
IT996006B (en) 1975-12-10
NL6815168A (en) 1969-04-28
IE32414L (en) 1969-04-24
DK132335B (en) 1975-11-24
FR1589885A (en) 1970-04-06
CA982573A (en) 1976-01-27
CH534175A (en) 1973-02-28
DE1801114A1 (en) 1969-05-22

Similar Documents

Publication Publication Date Title
US3280179A (en) Processes for producing acyclic surfactant sulfobetaines
US3637682A (en) N-2-hydroxy alkyl morpholine oxides
US2674580A (en) Liquid shampoo
EP0670827B1 (en) Alkylglyceramides and their use as surfactants
US3538009A (en) Method for reducing skin irritation in detergent compositions
US3944663A (en) Mild light duty detergent containing homopolymers of ethylene oxide
US3926861A (en) Detergent compositions containing amine oxides
US3755206A (en) Detergent compositions
US4107095A (en) Liquid olefin sulfonate detergent compositions containing anti-gelling agents
US3325412A (en) Vicinal acylamido sulfonates as lime soap dispersants
US4478734A (en) Detergent composition comprising a mixture of an N-acyllysine and anionic surface active agents, possessing unique properties in soft and hard water
US4064076A (en) Olefin sulfonate detergent compositions
GB1087414A (en) Improvements in or relating to amine oxides as surfaceactive agents
US4048338A (en) Aqueous cosmetic composition containing amine oxides
US2770599A (en) Stable liquid shampoos
JPH0580520B2 (en)
US3627822A (en) Novel compounds with detergency and fabric-softening ability and method of making the same
US5906972A (en) Liquid detergent composition
US3679611A (en) Compositions with hydroxyalkyl piperidine or pyrrolidine oxides
US4231903A (en) Detergent compositions
US3862965A (en) Shaped washing agents based on synthetic tensides
US3979340A (en) Olefin sulfonate detergent compositions
CA1209438A (en) Surfactant
JPH01272697A (en) Liquid detergent composition
US2928772A (en) Hair conditioning composition containing n (higher acyl colamino formylmethyl)pyridinium chloride and a fatty acids monoglyceride sulfate anionic detergent