US3925626A - Dynamic speaker having dome diaphragm and basket frequency - Google Patents

Dynamic speaker having dome diaphragm and basket frequency Download PDF

Info

Publication number
US3925626A
US3925626A US444825A US44482574A US3925626A US 3925626 A US3925626 A US 3925626A US 444825 A US444825 A US 444825A US 44482574 A US44482574 A US 44482574A US 3925626 A US3925626 A US 3925626A
Authority
US
United States
Prior art keywords
framework
diaphragm
secured
voice coil
loudspeaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US444825A
Inventor
Jr Robert John Stallings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US444825A priority Critical patent/US3925626A/en
Application granted granted Critical
Publication of US3925626A publication Critical patent/US3925626A/en
Assigned to STALLINGS, ROBERT J. SR. AND BRYAN, J. DAN, AND WALTERS, GARY H. reassignment STALLINGS, ROBERT J. SR. AND BRYAN, J. DAN, AND WALTERS, GARY H. ASSIGNS 50% TO ROBERT J. STALLINGS, S. AND 25% TO J. DAN BRYAN AND GARY H. WALTERS Assignors: R.J. STALLINGS COMPANY, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/021Casings; Cabinets ; Supports therefor; Mountings therein incorporating only one transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting

Definitions

  • the present invention is converned with improvements to direct radiating dynamic loudspeakers, in particular those utilizing a voice coil suspended in a magnetic field and driving a diaphragm to change the audio frequency currents in the voice coil to audible sound waves radiating from the diaphragm. More specifically, the invention is concerned with novel combinations of diaphragms and the means linking such diaphragms to the voice coil, novel means for suspending the linking means to the framework, such suspension having lead wires secured therein, and novel combinations of the improved speakers with speaker enclosures. Such improvements are applicable to a wide range of sizes of loudspeakers, suitable for use with all audio frequencres.
  • enclosures for speakers are still limited to those having six or more fiat sides, and many such enclosures include both a large diameter speaker for low frequencies known as a woofer and a small diameter speaker for high frequencies, a tweeter, both mounted on flat walls.
  • Such enclosureloudspeaker combinations do not give a faithful reproduction of the original sound, but tend to distort the same, to introduce undesirable harmonics, and are prone to be highly directional.
  • the principal object of the present invention is to provide a dynamic loudspeaker which may be used to obtain high fidelity sound.
  • a second object is to provide such a loudspeaker in combination with a spherical enclosure to further maximize the fidelity of the reproduced sound.
  • a third object is to furnish in such loudspeaker a novel combination of an outwardly convex diaphragm and means linking such diaphragm to the tube or form on which the voice coil of the loudspeaker is tightly wound and secured.
  • a fourth object is to provide a loudspeaker having an improved means of mounting the lead wires to the voice coil, one which avoids the wire slap of prior art loudspeakers.
  • a fifth object is to provide a novel combination of loudspeaker elements so structurally interrelated that the diaphragm reciprocates as an entity and there are few or no vibrations in only a part of the diaphragm.
  • a sixth object is to furnish such loudspeakers and loudspeakerenclosure combinations which may be used in a single size to faithfully reproduce all frequencies present in the original sound.
  • a seventh object is to provide a loudspeaker which will faithfully reproduce all audio frequencies.
  • An eighth object is to provide better high frequency dispersion and phase characteristics in such loudspeakers.
  • Customary means are used to form a resilient suspension connecting the outer periphery of the convex diaphragm to the framework of the loudspeaker, but a somewhat different and improved suspension is used to secure the extended tube of the voice coil to the framework. While the second suspension is still a resilient suspension, it is made of a virtually flat woven cloth and has the lead wires for the voice coil woven into it, wrinkled in assembly to provide the slack necessary for axial movement.
  • Such a speaker is preferably mounted in a spherical enclosure to obtain the maximum advantage from it.
  • FIG. 1 is an exploded perspective view of a particular embodiment of the improved loudspeaker of the invention
  • FIG. 2 is a cross section of an assembly of the same embodiment, with the addition of connectors and insulators for the lead wires;
  • FIG. 3 is a cross section like that of FIG. 2 but using a different magnetic structure
  • FIG. 4 is'a cross section of a combination of the loudspeaker of FIG. 3 with a spherical enclosure.
  • the loudspeaker illustrated in FIGS. 1 and 2 includes a more or less conventional framework 11 which includes a sidewall 12 joined to a horizontal base 13 extending inwardly toward its axis of symmetry 42. At its upper edge the sidewall 12 is joined to an outwardly jutting inner flange 43, which in turn is joined by a short sidewall 45 to an out-turned mounting flange 44.
  • This flange 44 may be square, as illustrated, or any other convenient shape. It is also convenient to provide it with a number of mounting holes 48.
  • the sidewall 12 (not necessarily conical, as shown) is preferably provided with a number of vents 46, most importantly in order to permit compressions and rarefactions of the air behind the diaphragm 34 to communicate with the surrounding air. Vents 46 also provide a convenient means for passing the voice coil lead wires 28 and 30 through the framework.
  • Base 13 of the framework is firmly secured to the top surface of the magnet structure comprising pole piece 14, bottom plate 16, center ring 18 and top ring 20, all of which are firmly secured together without air gaps except the gap 22 between the inner circumference of top ring and pole piece 14.
  • the through opening 17 in pole piece 14 and bottom ring 16 is an optional feature which is believed to produce somewhat superior performance. The reason for this is analogous to the reason for vents 46, as opening 17 provides a connection between the air space overlying pole piece 14 and the surrounding air, permitting the air which is variously compressed and expanded to attenuate such changes into the atmosphere. (There is an alternate but more restricted path through air gap 22.)
  • Diaphragm 34 is preferably made of a quite thin sheet metal, e.g., aluminum in a thickness of about 0.01 inch. The thickness should be the minimum consistent with rigidity, as it is desirable that the diaphragm translate up and down as a whole, without any part thereof vibrating at a different rate and without lagging behind or leading the balance of the diaphragm. This thickness will naturally vary with the metal or other rigid material employed.
  • the surround or resilient suspension 38 is more or less conventional, and is tightly secured to both the framework flange 43 and the outer periphery of diaphragm 34.
  • it is a dished or corrugated ring of fabric impregnated with a plastic to add some rigidity; the corrugations or concavity help supply the proper degree of rigidity and at the same time permit the mounting to be stretched as necessary to accommodate up and down movement of diaphragm 34.
  • the tube or form 32 Tightly secured to the underside of diaphragm 34 by an adhesive or other suitable connection 36 is the tube or form 32 which is centered on the axis of symmetry 42 and extends downwardly into the air gap 22. Also in the air gap and tightly wound on the lower portion of form 32 is the voice coil 24. Voice coil 24 is made of an appropriate wire gauge and with an appropriate number of turns so that the currents passing through it will react with the magnetic force in the field passing through air gap 22 to cause a force upward or downward from the coil, in the well-known manner.
  • Form 32 is partially supported in air gap 22 by a lower resilient support 40.
  • This lower support 40 is tightly secured at one end to the form and is tightly secured at its other end to the inner end of base 13 of the framework.
  • resilient support 40 is similar in its action to the upper resilient support 38, it differs therefrom in that it is made of essentially a flat piece of cloth which is wrinkled in assembly for the up and down motion of the form 32.
  • the lower resilient support 40 also differs from previously known such supports in that it includes the leads 29 and 31 from the pair of ends of voice coil 24.
  • Such leads 29 and 31 are preferably actually woven into the fabric of support 40, and are provided at their outer ends with metallic connectors 26 which are soldered or otherwise electrically and mechanically connected to the wire ends of the leads 29 and 31. Since these connectors immediately adjoin the metallic framework member 13, it is preferable to secure under each lead or each connector 26 an insulating wafer 27, to avoid short circuits.
  • Each connector 26 is then connected to one of the external leads 28 and 30 to the audio amplifier (not shown).
  • the preferred construction is with both of the woven end leads 29 and 31 and the external leads 28 and 30 disposed at diametrically opposed positions, the better to balance the weight carried by the lower resilient support 40 and thus to avoid any imbalance which may interfere with optimum operation of the speaker.
  • the loudspeaker illustrated in FIG. 3 is similar to that shown in FIGS. 1 and 2, differing only in the magnet structure. While the magnetic structure of the FIGS. 1 and 2 embodiment utilizes a core of ceramic material, that of FIG. 3 utilizes an Alnico core for pole piece 54. Mounted on this pole piece 54 are a pair of ferromagnetic arms 56, having the U-shaped configuration shown in the figure. Except at their tops and bottoms arms 56 do not have the circular geometry of the FIGS. 1 and 2 embodiment, and thus the air spaces 60 between parts 54 and 56 are open to the surrounding atmosphere. At their upper ends the arms 56 are necked down as shown, and an air gap 22 is provided between pole piece 54 and the inner ends of the connecting arms 56, corresponding to the gap 22 in FIGS.
  • this air gap contains the suspended coil form 32 having coil 24 tightly secured thereon.
  • the structure 50 of the FIG. 3 embodiment is the same as that previously described, and the same identifying numerals have been used to delineate its parts.
  • FIG. 4 illustrates another aspect of the present invention, a combination of one of the speakers previously described .with a primary enclosure adapted to improve its response characteristics, in particular its omnidirectionality and its uniform loudness response to the entire frequency spectrum.
  • one of the loudspeakers 10 shown in FIGS. 1 and 2 is shown mounted in an enclosure 64 made of a hard material such as glass, Plexiglas, or other relatively rigid plastic.
  • the enclosure 64 is a sphere of anywhere from about 8 inches in diameter on up, the larger the better.
  • the sphere is provided with a second opening on which is mounted a removable cap 63.
  • the sphere is preferably sealed shut by the members mounted in the openings, and connectors 65 are provided through cap 63.
  • External leads 66 and 67 are connected to these terminals on the outside, and on the inside relatively taut leads 68 and 69 connect the tenninals to terminals 26 of the loudspeaker, which connect internally to the ends of the voice coil, as previously described.
  • the loudspeakers of the present invention have frequency responses and dispersion which are so good over the entire range of the audio frequency spectrum that they can be used to replace all prior speakers, making the use of separate tweeters and woofers obsolete.
  • the preferred size range, in terms of the diameter of diaphragm 34, are from 2% up to 6 inches, and it should be remembered that in each case the diaphragm is buttressed and supported by the extended voice coil form to which it is rigidly secured.
  • the entire mass diaphragm, voice coil form and voice coil are translated together as an entity, removing the prior disadvantage of speakers with large diaphragms, regardless of their configuration. This in itself is the major contribution of the present inventor. Nevertheless, the auxiliary improvements should not be overlooked, namely the use of voice coil leads woven or otherwise secured to the lower resilient suspension and the combination of the speakers with the primary enclosure in the form of a relatively rigid spherical shell.
  • a loudspeaker and a primary enclosure therefor said enclosure being of hard material and having the general form of a spherical shell, said loudspeaker being secured to the wall of said enclosure at an opening therein, said loudspeaker comprising a framework, a magnet structure secured to one end of the framework and having an air gap therein, an outwardly convex diaphragm at the other end of said framework with its outer edge resiliently supported thereby, a voice coil form secured to the center portion of said diaphragm on the concave side thereof and extending down to said magnet structure and into the air gap therein, a voice coil securely wound on the lower end of said form and disposed in said air gap, a second resilient support extending between said framework and the voice coil form adjacent the voice coil thereon, and lead wires from said voice coil to the outside of the loudspeaker tightly secured to said second suspension.
  • a dynamic loudspeaker comprising a framework, a speaker, and a microphone
  • magnet structure secured to one end of the framework and having an air gap as said end, an outwardly convex, rigid diaphragm disposed at the other end of said framework with its outer periph- 6 ery resiliently supported thereon, a voice coil form having one end secured to the center portion of said diaphragm on the concave side thereof and extending to said magnet with its other end disposed in said air gap, and a voice coil securely mounted on said other end of the form and also disposed in said air gap.
  • the dynamic loudspeaker of claim 3 which also includes a second resilient suspension, said second resilient suspension extending between said one end of the framework and said voice coil form from adjacent the voice coil thereon, and a pair of lead wires from the ends of said voice coil, said lead wires being tightly secured to said second suspension.
  • a dyamic loudspeaker comprising a framework which includes a sidewall and an inwardly extending flange at one end, a magnetic structure secured to said flange of the framework and having an annular slot therein forming an air gap, a dielectric tube and a voice coil would thereon disposed in said air gap, said dielectric tube projecting out of said slot approximately to the outer end of said framework, a convex metal diaphragm disposed at said outer end of the framework and secured thereto by an annularly corrugated resilient suspension permitting limited reciprocating motion of the diaphragm along an axial line of motion coinciding with the axis of said tube, said diaphragm being secured to said projecting end of the tube adjacent the center of the diaphragm, so that all of the diaphragm, tube and voice coil reciprocate in unison, a second resilient suspension between said tube and said framework adjacent but spaced from the secured end of the framework, and a pair of leads extending from the ends of said voice coil to
  • a moving coil loudspeaker of the type ordinarily employing a paper cone diaphragm having its large end secured to the large end of a conical framework by means of a first resilient suspension and its small or apical end secured to both the moving coil and, by means of a second resilient suspension, to the small end of said framework
  • the improvement comprising a convex metal diaphragm replacing such paper cone and disposed at such larger end of the framework, a resilient suspension supporting said convex metal diaphragm and connecting it to the outer end of the framework, said moving coil being tightly mounted on a form which projects above the coil and extends into contact with the center portion of said metal diaphragm and is tightly secured thereto, and a second resilient suspension secured to said form above and adjacent the coil would thereon, the outer edge of the second suspension being secured to the small end of the framework.

Abstract

An all-frequency loudspeaker of the type using a voice coil suspended in a magnetic field and driven by the usual audio transformer of an amplifier system. The inventor''s contribution lies primarily in substituting for the usual paper cone diaphragm of the prior art an outwardly convex metal diaphragm secured near its center to an extension of the form or tube on which the voice coil is wound. As with other diaphragms, the convex metal diaphragm is secured to the rigid framework of the system by a resilient suspension at its outer periphery. A second resilient suspension extends between the framework and that part of the coil form adjacent the coil. Also disclosed is a combination of the improved speaker with a hard surfaced, spherical shell enclosure. When using the enclosure, a section of it is removed and the speaker is mounted in the opening so that the spherical wall of the enclosure is interposed between the outwardly convex diaphragm of the speaker and its voice coil. This effectively isolates and nullifies the sound produced by the back of the speaker as the diaphragm moves backwardly, leaving only the sound produced by the front of the diaphragm to reach the listener.

Description

United States Patent 1 1 1 1 3,925,626 Stallings, Jr. Dec. 9, 1975 [54] DYNAMIC SPEAKER HAVING DOME [57] ABSTRACT DIAPHRAGM AND BASKET FRAME 6 t An all-frequency loudspeaker of the type usmg a voice [7 1 Inventor Robert John Staumgs BOX coil suspended in a magnetic field and driven by the 230, Sugafland 77478 usual audio transformer of an amplifier system. The [22] Fil d; F b. 22 1974 inventors contribution lies primarily in substituting for the usual paper cone diaphragm of the prior art an [21] Appl 444,825 outwardly convex metal diaphragm secured near its center to an extension of the form or tube on which [52] us CL 179/1 5 5 179 5 181/153; the voice coil is wound. As with other diaphragms, the
181/172 convex metal diaphragm is secured to the rigid frame- 51 Int. c1. H04R 9/06; H04R 1/02 Work of the System y a resilient Suspension at its [58] Field of Search 179/1155 R, 115.5 vc, outer Periphery A second resilient Suspension extends 179/181 R 1155 s 15 7 171, between the framework and that part of the coil form 157 17 adjacent the coil. t Also disclosed is a combination of the improved [56] References Cited speaker with a hard surfaced, spherical shell UNITED STATES PATENTS enclosure. When using the enclosure, a section of it is 2,187,236 1/1940 Hausdorf 179/115.5 R removed and the Speaker is mounted in the Opening so 2,405,179 8/1946 Black, Jr. et al 179/115.5 R that the Spherical Wall Of the enclosure is interposed 2,442,791 6/1948 Wente 179/181 R between the outwardly Convex diaphragm 0f the 2,509,224 5/1950 Gayford 179/115,5 R speaker and its voice coil. This effectively isolates and 2,942,071 6/1960 Witchey 181/171 nullifies the sound produced by the back of the ,014,996 12/1961 Swanson" l79/115.5 VC speaker as the diaphragm moves backwardly, leaving 3,026,955 3/1962 W1lber 181/153 only the Sound produced by the front of the diaphragm to reach the listener. Primary Exammer-Kathleen H. Claffy Assistant Examiner-George G. Stellar 6 Claims, 4 Drawing Figures Attorney, Agent, or FzrmRoy H. Smith, Jr.
US. Patent Dec. 9, 1975 Sheet 1 of 2 3,925,626
* f igi US. Patent Dec. 9, 1975 Sheet 2 of2 DYNAMIC SPEAKER HAVING DOME DIAPHRAGM AND BASKET FRAME FIELD OF THE INVENTION The present invention is converned with improvements to direct radiating dynamic loudspeakers, in particular those utilizing a voice coil suspended in a magnetic field and driving a diaphragm to change the audio frequency currents in the voice coil to audible sound waves radiating from the diaphragm. More specifically, the invention is concerned with novel combinations of diaphragms and the means linking such diaphragms to the voice coil, novel means for suspending the linking means to the framework, such suspension having lead wires secured therein, and novel combinations of the improved speakers with speaker enclosures. Such improvements are applicable to a wide range of sizes of loudspeakers, suitable for use with all audio frequencres.
PRIOR ART None of the improvements of the present applicant is known to be commercially available. Except for the high range of frequencies, the loudspeakers that are available still use the familiar paper cone diaphragm and, as resilient suspensions for the cone, corrugated members made of various materials such as textile fabrics, sometimes impregnated with a resin or plastic. It is still the standard practice to run the lead wires through holes in the conical part of the metal framework, thence through the paper cone and down along the surface of the cone to the voice coil. Such lead wires are generally left slack, and the result is that they vibrate as the cone vibrates, an action known as wire slap. This sometimes becomes so troublesome that the lead wires fail in fatigue, and other times they puncture the cone and cause it to rattle, a phenomenon known as cone break-up.
The commercially available enclosures for speakers are still limited to those having six or more fiat sides, and many such enclosures include both a large diameter speaker for low frequencies known as a woofer and a small diameter speaker for high frequencies, a tweeter, both mounted on flat walls. Such enclosureloudspeaker combinations do not give a faithful reproduction of the original sound, but tend to distort the same, to introduce undesirable harmonics, and are prone to be highly directional.
With respect to patented and otherwise published prior art, somewhat more is known. The superiority of spherical enclosures, for instance, was disclosed by Harry F. Olson in his article Direct Radiator Loudspeaker Enclosures, published on pp. 2229 of The Journal of the Audio Engineering Society, Vol. 17, No. 1, January, 1969 although limited to work with speakers utilizing only paper cone diaphragms. Other relevant art appears in Hamsons US. Pat. No. 3,032,615 (May 1, 1962), disclosing the use of silicone grease to stick lead-in wires to a suspension, and Villchurs US. Pat. No. 3,033,945 (May 8, 1962), disclosing the use of a domed diaphragm for tweeters made of a phenolic impregnated fabric. Villchur teaches the use of only a single resilient suspension, and secures his voice coil directly to the outermost rim of his domed diaphragm. While this may work fairly well for tweeters, which are only l-2 inches in diameter, it has not been proven feasible for larger diaphragms, from 2 /2 to 6 inches in diameter.
OBJECTS OF THE INVENTION Accordingly, the principal object of the present invention is to provide a dynamic loudspeaker which may be used to obtain high fidelity sound. A second object is to provide such a loudspeaker in combination with a spherical enclosure to further maximize the fidelity of the reproduced sound. A third object is to furnish in such loudspeaker a novel combination of an outwardly convex diaphragm and means linking such diaphragm to the tube or form on which the voice coil of the loudspeaker is tightly wound and secured. A fourth object is to provide a loudspeaker having an improved means of mounting the lead wires to the voice coil, one which avoids the wire slap of prior art loudspeakers. A fifth object is to provide a novel combination of loudspeaker elements so structurally interrelated that the diaphragm reciprocates as an entity and there are few or no vibrations in only a part of the diaphragm. A sixth object is to furnish such loudspeakers and loudspeakerenclosure combinations which may be used in a single size to faithfully reproduce all frequencies present in the original sound. A seventh object is to provide a loudspeaker which will faithfully reproduce all audio frequencies. An eighth object is to provide better high frequency dispersion and phase characteristics in such loudspeakers.
SHORT STATEMENT OF THE INVENTION The above and further objects are realized according to the concept of the present inventor by utilizing an outwardly convex diaphragm, e.g., a thin spherical shell, preferably of metal. The convex diaphragm is secured to the voice coil by extending the tube or form on which the voice coil is tightly wound and secured until the tube contacts the diaphragm, and integrating the tube end to the diaphragm by adhesives or other suitable securing means. Any suitable magnetic structure may be utilized, with the voice coil suspended in the air gap of the magnetic circuit. Customary means are used to form a resilient suspension connecting the outer periphery of the convex diaphragm to the framework of the loudspeaker, but a somewhat different and improved suspension is used to secure the extended tube of the voice coil to the framework. While the second suspension is still a resilient suspension, it is made of a virtually flat woven cloth and has the lead wires for the voice coil woven into it, wrinkled in assembly to provide the slack necessary for axial movement.
Such a speaker is preferably mounted in a spherical enclosure to obtain the maximum advantage from it.
SHORT DESCRIPTION OF THE DRAWING FIGURES The invention is probably more easily comprehended by reference to the accompanying drawing, read together with the details below. In the drawing:
FIG. 1 is an exploded perspective view of a particular embodiment of the improved loudspeaker of the invention;
FIG. 2 is a cross section of an assembly of the same embodiment, with the addition of connectors and insulators for the lead wires;
FIG. 3 is a cross section like that of FIG. 2 but using a different magnetic structure, and
FIG. 4 is'a cross section of a combination of the loudspeaker of FIG. 3 with a spherical enclosure.
DETAILED DESCRIPTION OF THE DRAWING FIGURES The loudspeaker illustrated in FIGS. 1 and 2 includes a more or less conventional framework 11 which includes a sidewall 12 joined to a horizontal base 13 extending inwardly toward its axis of symmetry 42. At its upper edge the sidewall 12 is joined to an outwardly jutting inner flange 43, which in turn is joined by a short sidewall 45 to an out-turned mounting flange 44. This flange 44 may be square, as illustrated, or any other convenient shape. It is also convenient to provide it with a number of mounting holes 48. The sidewall 12 (not necessarily conical, as shown) is preferably provided with a number of vents 46, most importantly in order to permit compressions and rarefactions of the air behind the diaphragm 34 to communicate with the surrounding air. Vents 46 also provide a convenient means for passing the voice coil lead wires 28 and 30 through the framework.
Base 13 of the framework is firmly secured to the top surface of the magnet structure comprising pole piece 14, bottom plate 16, center ring 18 and top ring 20, all of which are firmly secured together without air gaps except the gap 22 between the inner circumference of top ring and pole piece 14. The through opening 17 in pole piece 14 and bottom ring 16 is an optional feature which is believed to produce somewhat superior performance. The reason for this is analogous to the reason for vents 46, as opening 17 provides a connection between the air space overlying pole piece 14 and the surrounding air, permitting the air which is variously compressed and expanded to attenuate such changes into the atmosphere. (There is an alternate but more restricted path through air gap 22.)
Mounted on the inner flange 43 of the framework by means of resilient mounting 38 is a spherical or domed diaphragm 34. Diaphragm 34 is preferably made of a quite thin sheet metal, e.g., aluminum in a thickness of about 0.01 inch. The thickness should be the minimum consistent with rigidity, as it is desirable that the diaphragm translate up and down as a whole, without any part thereof vibrating at a different rate and without lagging behind or leading the balance of the diaphragm. This thickness will naturally vary with the metal or other rigid material employed.
The surround or resilient suspension 38 is more or less conventional, and is tightly secured to both the framework flange 43 and the outer periphery of diaphragm 34. Typically, it is a dished or corrugated ring of fabric impregnated with a plastic to add some rigidity; the corrugations or concavity help supply the proper degree of rigidity and at the same time permit the mounting to be stretched as necessary to accommodate up and down movement of diaphragm 34.
Tightly secured to the underside of diaphragm 34 by an adhesive or other suitable connection 36 is the tube or form 32 which is centered on the axis of symmetry 42 and extends downwardly into the air gap 22. Also in the air gap and tightly wound on the lower portion of form 32 is the voice coil 24. Voice coil 24 is made of an appropriate wire gauge and with an appropriate number of turns so that the currents passing through it will react with the magnetic force in the field passing through air gap 22 to cause a force upward or downward from the coil, in the well-known manner.
Form 32 is partially supported in air gap 22 by a lower resilient support 40. This lower support 40 is tightly secured at one end to the form and is tightly secured at its other end to the inner end of base 13 of the framework. While resilient support 40 is similar in its action to the upper resilient support 38, it differs therefrom in that it is made of essentially a flat piece of cloth which is wrinkled in assembly for the up and down motion of the form 32.
The lower resilient support 40 also differs from previously known such supports in that it includes the leads 29 and 31 from the pair of ends of voice coil 24. Such leads 29 and 31 are preferably actually woven into the fabric of support 40, and are provided at their outer ends with metallic connectors 26 which are soldered or otherwise electrically and mechanically connected to the wire ends of the leads 29 and 31. Since these connectors immediately adjoin the metallic framework member 13, it is preferable to secure under each lead or each connector 26 an insulating wafer 27, to avoid short circuits. Each connector 26 is then connected to one of the external leads 28 and 30 to the audio amplifier (not shown). The preferred construction is with both of the woven end leads 29 and 31 and the external leads 28 and 30 disposed at diametrically opposed positions, the better to balance the weight carried by the lower resilient support 40 and thus to avoid any imbalance which may interfere with optimum operation of the speaker.
The loudspeaker illustrated in FIG. 3 is similar to that shown in FIGS. 1 and 2, differing only in the magnet structure. While the magnetic structure of the FIGS. 1 and 2 embodiment utilizes a core of ceramic material, that of FIG. 3 utilizes an Alnico core for pole piece 54. Mounted on this pole piece 54 are a pair of ferromagnetic arms 56, having the U-shaped configuration shown in the figure. Except at their tops and bottoms arms 56 do not have the circular geometry of the FIGS. 1 and 2 embodiment, and thus the air spaces 60 between parts 54 and 56 are open to the surrounding atmosphere. At their upper ends the arms 56 are necked down as shown, and an air gap 22 is provided between pole piece 54 and the inner ends of the connecting arms 56, corresponding to the gap 22 in FIGS. 1 and 2. As in the previously described embodiment, this air gap contains the suspended coil form 32 having coil 24 tightly secured thereon. In other respects, the structure 50 of the FIG. 3 embodiment is the same as that previously described, and the same identifying numerals have been used to delineate its parts.
FIG. 4 illustrates another aspect of the present invention, a combination of one of the speakers previously described .with a primary enclosure adapted to improve its response characteristics, in particular its omnidirectionality and its uniform loudness response to the entire frequency spectrum. In this combination, as illustrated, one of the loudspeakers 10 shown in FIGS. 1 and 2 is shown mounted in an enclosure 64 made of a hard material such as glass, Plexiglas, or other relatively rigid plastic. The enclosure 64 is a sphere of anywhere from about 8 inches in diameter on up, the larger the better. Its front end is opened to provide a mounting space for loudspeaker 50, and it is there provided with a thickened lip 72 as shown to receive the mounting screws 73 extending through the mounting holes in the speaker and threaded into tapped openings in the enclosure itself. At its opposite end, the sphere is provided with a second opening on which is mounted a removable cap 63. The sphere is preferably sealed shut by the members mounted in the openings, and connectors 65 are provided through cap 63. External leads 66 and 67 are connected to these terminals on the outside, and on the inside relatively taut leads 68 and 69 connect the tenninals to terminals 26 of the loudspeaker, which connect internally to the ends of the voice coil, as previously described.
It should be mentioned, that the loudspeakers of the present invention have frequency responses and dispersion which are so good over the entire range of the audio frequency spectrum that they can be used to replace all prior speakers, making the use of separate tweeters and woofers obsolete. The preferred size range, in terms of the diameter of diaphragm 34, are from 2% up to 6 inches, and it should be remembered that in each case the diaphragm is buttressed and supported by the extended voice coil form to which it is rigidly secured. The entire mass diaphragm, voice coil form and voice coil are translated together as an entity, removing the prior disadvantage of speakers with large diaphragms, regardless of their configuration. This in itself is the major contribution of the present inventor. Nevertheless, the auxiliary improvements should not be overlooked, namely the use of voice coil leads woven or otherwise secured to the lower resilient suspension and the combination of the speakers with the primary enclosure in the form of a relatively rigid spherical shell.
What is claimed is:
1. In combination, a loudspeaker and a primary enclosure therefor, said enclosure being of hard material and having the general form of a spherical shell, said loudspeaker being secured to the wall of said enclosure at an opening therein, said loudspeaker comprising a framework, a magnet structure secured to one end of the framework and having an air gap therein, an outwardly convex diaphragm at the other end of said framework with its outer edge resiliently supported thereby, a voice coil form secured to the center portion of said diaphragm on the concave side thereof and extending down to said magnet structure and into the air gap therein, a voice coil securely wound on the lower end of said form and disposed in said air gap, a second resilient support extending between said framework and the voice coil form adjacent the voice coil thereon, and lead wires from said voice coil to the outside of the loudspeaker tightly secured to said second suspension.
2. The dynamic loudspeaker of claim 1 in which said outwardly convex diaphragm is made of a metal and is between 2% and 6 inches in diameter.
3. A dynamic loudspeaker comprising a framework, a
magnet structure secured to one end of the framework and having an air gap as said end, an outwardly convex, rigid diaphragm disposed at the other end of said framework with its outer periph- 6 ery resiliently supported thereon, a voice coil form having one end secured to the center portion of said diaphragm on the concave side thereof and extending to said magnet with its other end disposed in said air gap, and a voice coil securely mounted on said other end of the form and also disposed in said air gap. 4. The dynamic loudspeaker of claim 3 which also includes a second resilient suspension, said second resilient suspension extending between said one end of the framework and said voice coil form from adjacent the voice coil thereon, and a pair of lead wires from the ends of said voice coil, said lead wires being tightly secured to said second suspension.
5. A dyamic loudspeaker comprising a framework which includes a sidewall and an inwardly extending flange at one end, a magnetic structure secured to said flange of the framework and having an annular slot therein forming an air gap, a dielectric tube and a voice coil would thereon disposed in said air gap, said dielectric tube projecting out of said slot approximately to the outer end of said framework, a convex metal diaphragm disposed at said outer end of the framework and secured thereto by an annularly corrugated resilient suspension permitting limited reciprocating motion of the diaphragm along an axial line of motion coinciding with the axis of said tube, said diaphragm being secured to said projecting end of the tube adjacent the center of the diaphragm, so that all of the diaphragm, tube and voice coil reciprocate in unison, a second resilient suspension between said tube and said framework adjacent but spaced from the secured end of the framework, and a pair of leads extending from the ends of said voice coil to the outside of the framework. 6. In a moving coil loudspeaker of the type ordinarily employing a paper cone diaphragm having its large end secured to the large end of a conical framework by means of a first resilient suspension and its small or apical end secured to both the moving coil and, by means of a second resilient suspension, to the small end of said framework, the improvement comprising a convex metal diaphragm replacing such paper cone and disposed at such larger end of the framework, a resilient suspension supporting said convex metal diaphragm and connecting it to the outer end of the framework, said moving coil being tightly mounted on a form which projects above the coil and extends into contact with the center portion of said metal diaphragm and is tightly secured thereto, and a second resilient suspension secured to said form above and adjacent the coil would thereon, the outer edge of the second suspension being secured to the small end of the framework.

Claims (6)

1. In combination, a loudspeaker and a primary enclosure therefor, said enclosure being of hard material and having the general form of a spherical shell, said loudspeaker being secured to the wall of said enclosure at an opening therein, said loudspeaker comprising a framework, a magnet structure secured to one end of the framework and having an air gap therein, an outwardly convex diaphragm at the other end of said framework with its outer edge resiliently supported thereby, a voice coil form secured to the center portion of said diaphragm on the concave side thereof and extending down to said magnet structure and into the air gap therein, a voice coil securely wound on the lower end of said form and disposed in said air gap, a second resilient support extending between said framework and the voice coil form adjacent the voice coil thereon, and lead wires from said voice coil to the outside of the loudspeaker tightly secured to said second suspension.
2. The dynamic loudspeaker of claim 1 in which said outwardly convex diaphragm is made of a metal and is between 2 1/2 and 6 inches in diameter.
3. A dynamic loudspeaker comprising a framework, a magnet structure secured to one end of the framework and having an air gap as said end, an outwardly convex, rigid diaphragm disposed at the other end of said framework with its outer periphery resiliently supported thereon, a voice coil form having one end secured to the center portion of said diaphragm on the concave side thereof and extending to said magnet with its other end disposed in said air gap, and a voice coil securely mounted on said other end of the form and also disposed in said air gap.
4. The dynamic loudspeaker of claim 3 which also includes a second resilient suspension, said second resilient suspension extending between said one end of the framework and said voice coil form from adjacent the voice coil thereon, and a pair of lead wires from the ends of said voice coil, said lead wires being tightly secured to said second suspension.
5. A dyamic loudspeaker comprising a framework which includes a sidewall and an inwardly extending flange at one end, a magnetic structure secured to said flange of the framework and having an annular slot therein forming an air gap, a dielectric tube and a voice coil would thereon disposed in said air gap, said dielectric tube projecting out of said slot approximately to the outer end of said framework, a convex metal diaphragm disposed at said outer end of the framework and secured thereto by an annularly corrugated resilient suspension permitting limited reciprocating motion of the diaphragm along an axial line of motion coinciding with the axis of said tube, said diaphragm being secured to said projecting end of the tube adjacent the center of the diaphragm, so that all of the diaphragm, tube and voice coil reciprocate in unison, a second resilient suspension between said tube and said framework adjacent but spaced from the secured end of the framework, and a pair of leads extending from the ends of said voice coil to the outside of the framework.
6. In a moving coil loudspeaker of the type ordinarily employing a paper cone diaphragm having its large end secured to the large end of a conical framework by means of a first resilient suspension and its small or apical end secured to both the moving coil and, by means of a second resilient suspension, to the small end of said framework, the improvement comprising a convex metal diaphragm replacing such paper cone and disposed at such larger end of the framework, a resilient suspension supporting said convex metal diaphragm and connecting it to the outer end of the framework, said moving coil being tightly mounted on a form which projects above the coil and extends into contact with the center portion of said metal diaphragm and is tightly secured thereto, and a second resilient suspension secured to said form above and adjacent the coil would thereon, the outer edge of the second suspension being secured to the small end of the framework.
US444825A 1974-02-22 1974-02-22 Dynamic speaker having dome diaphragm and basket frequency Expired - Lifetime US3925626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US444825A US3925626A (en) 1974-02-22 1974-02-22 Dynamic speaker having dome diaphragm and basket frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US444825A US3925626A (en) 1974-02-22 1974-02-22 Dynamic speaker having dome diaphragm and basket frequency

Publications (1)

Publication Number Publication Date
US3925626A true US3925626A (en) 1975-12-09

Family

ID=23766515

Family Applications (1)

Application Number Title Priority Date Filing Date
US444825A Expired - Lifetime US3925626A (en) 1974-02-22 1974-02-22 Dynamic speaker having dome diaphragm and basket frequency

Country Status (1)

Country Link
US (1) US3925626A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284167A (en) * 1979-06-04 1981-08-18 Electronic Research Assoc., Inc. Sound reproducing device
US4306121A (en) * 1979-04-12 1981-12-15 Instrument Systems Corporation Electro-acoustic transducer assembly
US4327257A (en) * 1979-09-10 1982-04-27 Schwartz Leslie H Alignment device for electro-acoustical transducers
US4547632A (en) * 1984-04-04 1985-10-15 Electro-Voice, Incorporated Dynamic loudspeaker
DE3511802A1 (en) * 1985-03-30 1986-10-09 Blaupunkt-Werke Gmbh, 3200 Hildesheim VIBRATION UNIT OF A DYNAMIC SPEAKER
EP0272059A2 (en) * 1986-12-17 1988-06-22 Acoustic Energy Limited Loudspeakers and their production
US5117938A (en) * 1990-07-11 1992-06-02 Samsung Electronics Co., Ltd. Speaker installing holder
US5526441A (en) * 1991-11-15 1996-06-11 Codnia; Basilio Full range convex electrodynamic loudspeaker
US5699439A (en) * 1994-06-01 1997-12-16 Nokia Technology Gmbh Loudspeakers
US5701358A (en) * 1994-07-05 1997-12-23 Larsen; John T. Isobaric loudspeaker
US5729616A (en) * 1994-06-01 1998-03-17 Nokia Technology Gmbh Centering diaphragm
US5848173A (en) * 1995-03-30 1998-12-08 Pioneer Electronic Corporation Surroundless loudspeaker
WO2001047321A2 (en) * 1999-12-10 2001-06-28 Harman International Industries, Incorporated Regressively hinged spider
US20040008857A1 (en) * 2002-07-15 2004-01-15 Marnie Glenn Arthur Dipole radiating dynamic speaker
WO2005020630A1 (en) 2003-08-22 2005-03-03 Koninklijke Philips Electronics N.V. Loudspeaker having a composite diaphragm structure
WO2006008081A1 (en) * 2004-07-19 2006-01-26 Ist Gmbh Innovations Service Team Loudspeaker with a diaphragm
WO2008011435A2 (en) * 2006-07-17 2008-01-24 Babb Burton A High fidelity loudspeaker
US8397861B1 (en) * 2012-03-02 2013-03-19 Bose Corporation Diaphragm surround
FR3012716A1 (en) * 2013-10-30 2015-05-01 Devialet ACOUSTIC SPEAKER HAVING AT LEAST ONE MOBILE CONVEX MEMBRANE SPEAKER IN CONTINUOUS FORM WITH AN ADJACENT BODY
WO2015082668A1 (en) * 2013-12-05 2015-06-11 Devialet Compact electrodynamic loudspeaker having a convex diaphragm
US20160044418A1 (en) * 2013-09-09 2016-02-11 Sonos, Inc. Loudspeaker Diaphragm
USD864917S1 (en) * 2017-09-12 2019-10-29 Pioneer Corporation Speaker for automobile
US11588097B2 (en) 2017-10-24 2023-02-21 Purdue Research Foundation Piezoelectric transducers based on vertically aligned PZT and graphene nanoplatelets
WO2023072781A1 (en) 2021-10-25 2023-05-04 Pss Belgium Nv Loudspeaker

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187236A (en) * 1935-11-04 1940-01-16 Hausdorf Erich Electrodynamic apparatus
US2405179A (en) * 1941-09-04 1946-08-06 Bell Telephone Labor Inc Electromechanical device
US2442791A (en) * 1945-09-07 1948-06-08 Bell Telephone Labor Inc Acoustic device
US2509224A (en) * 1943-09-28 1950-05-30 Int Standard Electric Corp Electroacoustical transducer
US2942071A (en) * 1954-10-01 1960-06-21 Rca Corp Horn-type transducer
US3014996A (en) * 1956-05-18 1961-12-26 Swanson Carl Axel Speaker construction
US3026955A (en) * 1956-08-23 1962-03-27 Howard L Wilber Spherical loudspeaker enclosure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187236A (en) * 1935-11-04 1940-01-16 Hausdorf Erich Electrodynamic apparatus
US2405179A (en) * 1941-09-04 1946-08-06 Bell Telephone Labor Inc Electromechanical device
US2509224A (en) * 1943-09-28 1950-05-30 Int Standard Electric Corp Electroacoustical transducer
US2442791A (en) * 1945-09-07 1948-06-08 Bell Telephone Labor Inc Acoustic device
US2942071A (en) * 1954-10-01 1960-06-21 Rca Corp Horn-type transducer
US3014996A (en) * 1956-05-18 1961-12-26 Swanson Carl Axel Speaker construction
US3026955A (en) * 1956-08-23 1962-03-27 Howard L Wilber Spherical loudspeaker enclosure

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306121A (en) * 1979-04-12 1981-12-15 Instrument Systems Corporation Electro-acoustic transducer assembly
US4284167A (en) * 1979-06-04 1981-08-18 Electronic Research Assoc., Inc. Sound reproducing device
US4327257A (en) * 1979-09-10 1982-04-27 Schwartz Leslie H Alignment device for electro-acoustical transducers
US4547632A (en) * 1984-04-04 1985-10-15 Electro-Voice, Incorporated Dynamic loudspeaker
DE3511802A1 (en) * 1985-03-30 1986-10-09 Blaupunkt-Werke Gmbh, 3200 Hildesheim VIBRATION UNIT OF A DYNAMIC SPEAKER
EP0272059A2 (en) * 1986-12-17 1988-06-22 Acoustic Energy Limited Loudspeakers and their production
EP0272059A3 (en) * 1986-12-17 1990-03-21 Acoustic Energy Limited Loudspeakers and their production
US5117938A (en) * 1990-07-11 1992-06-02 Samsung Electronics Co., Ltd. Speaker installing holder
US5526441A (en) * 1991-11-15 1996-06-11 Codnia; Basilio Full range convex electrodynamic loudspeaker
US5699439A (en) * 1994-06-01 1997-12-16 Nokia Technology Gmbh Loudspeakers
US5729616A (en) * 1994-06-01 1998-03-17 Nokia Technology Gmbh Centering diaphragm
US5701358A (en) * 1994-07-05 1997-12-23 Larsen; John T. Isobaric loudspeaker
US5848173A (en) * 1995-03-30 1998-12-08 Pioneer Electronic Corporation Surroundless loudspeaker
WO2001047321A2 (en) * 1999-12-10 2001-06-28 Harman International Industries, Incorporated Regressively hinged spider
US6351544B1 (en) 1999-12-10 2002-02-26 Harman International Industries Incorporated Regressively hinged spider
WO2001047321A3 (en) * 1999-12-10 2002-03-14 Harman Int Ind Regressively hinged spider
US6870941B2 (en) * 2002-07-15 2005-03-22 Glenn A. Marnie Dipole radiating dynamic speaker
US20040008857A1 (en) * 2002-07-15 2004-01-15 Marnie Glenn Arthur Dipole radiating dynamic speaker
WO2005020630A1 (en) 2003-08-22 2005-03-03 Koninklijke Philips Electronics N.V. Loudspeaker having a composite diaphragm structure
DE102004034882B4 (en) * 2004-07-19 2015-08-27 Norman Gerkinsmeyer driver
WO2006008081A1 (en) * 2004-07-19 2006-01-26 Ist Gmbh Innovations Service Team Loudspeaker with a diaphragm
WO2008011435A2 (en) * 2006-07-17 2008-01-24 Babb Burton A High fidelity loudspeaker
US20080069393A1 (en) * 2006-07-17 2008-03-20 Babb Burton A High Fidelity Loudspeaker
WO2008011435A3 (en) * 2006-07-17 2008-05-22 Burton A Babb High fidelity loudspeaker
US7529382B2 (en) * 2006-07-17 2009-05-05 Burton A. Babb High fidelity loudspeaker
US20090214076A1 (en) * 2006-07-17 2009-08-27 Babb Burton A High fidelity loudspeaker
US8397861B1 (en) * 2012-03-02 2013-03-19 Bose Corporation Diaphragm surround
US9681233B2 (en) * 2013-09-09 2017-06-13 Sonos, Inc. Loudspeaker diaphragm
US20160044418A1 (en) * 2013-09-09 2016-02-11 Sonos, Inc. Loudspeaker Diaphragm
WO2015062852A1 (en) * 2013-10-30 2015-05-07 Devialet Loudspeaker enclosure with at least one loudspeaker with a convex mobile membrane exhibiting continuity of shape with an adjacent member
FR3012716A1 (en) * 2013-10-30 2015-05-01 Devialet ACOUSTIC SPEAKER HAVING AT LEAST ONE MOBILE CONVEX MEMBRANE SPEAKER IN CONTINUOUS FORM WITH AN ADJACENT BODY
US10313783B2 (en) * 2013-10-30 2019-06-04 Devialet Loudspeaker enclosure with at least one loudspeaker with a convex mobile membrane exhibiting continuity of shape with an adjacent member
WO2015082668A1 (en) * 2013-12-05 2015-06-11 Devialet Compact electrodynamic loudspeaker having a convex diaphragm
FR3014628A1 (en) * 2013-12-05 2015-06-12 Devialet COMPACT ELECTRODYNAMIC SPEAKER WITH CONVEX MEMBRANE
US20170171663A1 (en) * 2013-12-05 2017-06-15 Devialet Compact electrodynamic loudspeaker having a convex diaphragm
US9967675B2 (en) * 2013-12-05 2018-05-08 Devialet Compact electrodynamic loudspeaker having a convex diaphragm
USD864917S1 (en) * 2017-09-12 2019-10-29 Pioneer Corporation Speaker for automobile
US11588097B2 (en) 2017-10-24 2023-02-21 Purdue Research Foundation Piezoelectric transducers based on vertically aligned PZT and graphene nanoplatelets
WO2023072781A1 (en) 2021-10-25 2023-05-04 Pss Belgium Nv Loudspeaker

Similar Documents

Publication Publication Date Title
US3925626A (en) Dynamic speaker having dome diaphragm and basket frequency
US4239943A (en) Adjustable dual spider for a loudspeaker
CN210225743U (en) Single-magnetic double-sound-path coaxial loudspeaker
US3931867A (en) Wide range speaker system
US3796839A (en) Loud speaker system
US2084945A (en) Loudspeaker
US6597798B1 (en) Loudspeaker
US3351719A (en) Loudspeaker assembly
US4313040A (en) Electro-acoustic transducer with free edge diaphragm
US3780232A (en) Loudspeaker diaphragm
US4466505A (en) Sound reproducing combination
US3130811A (en) Loudspeaker cone suspension
US2238741A (en) Electrodynamic transducer
US2549091A (en) Diaphragm for electroacoustic transducers
US3114429A (en) Loudspeaker
US20050008188A1 (en) Loudspeaker with a double spider centering system
US3329777A (en) Dynamic ear phone
US2084944A (en) Acoustic device
US3669215A (en) Passive radiator for use in a bass reflex loudspeaker system
JPH02170795A (en) Panel type loudspeaker
KR102346606B1 (en) Dynamic speaker
CN212259325U (en) Novel loudspeaker with centering support sheet
US2717047A (en) Wide-band loudspeaker
JPH0974599A (en) Speaker device
US1711514A (en) Electromagnetic driving unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: STALLINGS, ROBERT J. SR. AND BRYAN, J. DAN, AND WA

Free format text: ASSIGNS 50% TO ROBERT J. STALLINGS, S. AND 25% TO J. DAN BRYAN AND GARY H. WALTERS;ASSIGNOR:R.J. STALLINGS COMPANY, INC.;REEL/FRAME:003959/0699

Effective date: 19811216