US3924204A - Waveguide to microstrip coupler - Google Patents
Waveguide to microstrip coupler Download PDFInfo
- Publication number
- US3924204A US3924204A US467235A US46723574A US3924204A US 3924204 A US3924204 A US 3924204A US 467235 A US467235 A US 467235A US 46723574 A US46723574 A US 46723574A US 3924204 A US3924204 A US 3924204A
- Authority
- US
- United States
- Prior art keywords
- waveguide
- channel
- wall
- coupler
- rectangular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
Definitions
- a waveguide to microstrip coupler comprising a metal part fastened to one of the waveguide large walls in which a channel is machined and a strip line within said channel protruding through an opening in said waveguide large wall.
- the distance between the nonmetalized face of the strip line substrate and the channel wall is set to a value depending on the mid band frequency of the transmitted bandwidth in order to provide ahbandwidth equal to 40 percent of the mid band frequency value.
- the micros trip could also be a three plate line.
- the'conductor '12 is positioned between two dielectric substratesfilling the channel and the two earth planes are formed by the inner parts of the two large walls of the -said channel.
- the conductor 12 protrudes into the waveguide 10 and is terminated by an antenna 16 with stubssuch as 17 and 18.
- a coupler of this type made of a channel with a longitudinal axis perpendicular to a large wall of a rectangular guide and in which the said channel houses and insulating substrate carrying a strip conductor protruding into the guide through an opening in said large wall will be hereinafter called a coupler of the above type.
- the object of the present invention is to provide a means of achieving a waveguide-microstrip line coupler, of which the relative bandwidth is at least equal to 40 percent and the production of which does not require any high precision machining step in order that the reproducibility of the coupler characteristics be assured.
- the waveguide-microstrip line coupler with a relative bandwidth at least equal to 40 percent, centered on the frequency f is a coupler of the above type, comprising: a channel machined in a metal body the plane of symmetry of said channel coinciding with that of the large walls of the waveguide and the dimensions of which are such that the cut-out frequency of a TE wave being propagated therein is higher than the maximum frequency of the band to be transmitted and a microstrip line formed of a dielectric substrate carrying a conductive strip on a first of its large' faces, the second large face of which is packed on two metallic bars fast with one of the large walls of the said channel.
- the thickness e of the said packing pieces is at least equal to 5.10 cf where c being the speed of light and f the middleband frequency in hertz, which is equivalent to e 2 1.5 X 10 f DETAILED DESCRIPTION OF THE INVENTION
- a coupler has been developed according to the invention, having a standing wave ratio (26.5 to 40 GHz), with an insertion loss smaller than 0.3 dB.
- a coupler with a standing wave ratio smaller than 1.3 has also been designed, covering the whole K- band (12 to 18 GI-lz). In both cases, the relative bandwidth is 40 percent.
- FIG. 1 is aperspective view partially in section of-a prior art coupler
- FIG. 2 is a sectional view of the coupler according to the invention through a planewhich is medial to the large. wallsof the waveguide;
- FIG. 3 is a sectional view of the channel fixed laterally to the waveguide 'through the plane shown at A -A in FIG. 2;
- FIG. 4 represents thevariation in the standing wave ratio of a waveguide to microstrip line coupler as a function of the frequency for several thicknesses of the packing pieces;
- FIG. 5 represents the variation curves of the standing wave ratio of the coupler as a function of the frequency for two depth of penetration of the microstrip line into the waveguide.
- FIG. 2 represents a waveguide 21 and rectangular substrate 22 of a low loss dielectric in the millimetric frequency band ,v penetrating into the waveguide through a slot; the upper part of 22 extends through a channel 23 of rectangular section form in a metal body 24 fixed to the waveguide by any known means.
- One of the faces of this substrate supports a conductor or strip 25, designed according to any one of the processes used at present in the thick film technique, in the pattern of a narrow rectilinear ribbon.
- the strip 25 is terminated before the end of the substrate 22 which extends into the waveguide 21 in abutment with the opposite wall.
- the part of the strip 25 penetrating into the guide 21 forms a rectilinear antenna situated at approximately one quarter wave from the short-circuit plane 26.
- the dielectric constituting the substrate can be quartz, alumina of the quality usually used as a substrate for microwave integrated circuits or even nickel ferrite with low microwave losses.
- the rectangular channel 23 with a longitudinal axis perpendicular to the large sides of the waveguide 21 has large walls parallel to the longitudinal axis of the latter.
- the length of these sides is sufficiently small so that no guided mode within the frequency band propagated through the waveguide 21 can be transmitted along the channel 23 without considerable attenuation.
- the length of the channel 23 is sufficient so that, at its output end the attenuation of the guided modes be higher than a preset value, 20 dB for example. Under these conditions, the only mode which is propagated without attenuation is the TEM mode in the microstrip line 22-25.
- the wall 29 of the channel 23 carries a frame 28-28 against which the substrate 22 is placed.
- FIG. 3 represents a sectional view in a plane perpendicular to that of FIG. 2 and cutting the latter along the line AA.
- the width of the frame 28 and 28' along the wall 29 is so chosen that the bandwidth of the coupler is maximum and the S.W.R. is smaller than 1.3.
- the thickness e of the frame 28 and 28' above the channel wall 29 is chosen as follows. All other things being equal when the value of e is caused to increase from zero, it has been remarked that the lack of regularity of the variation curve of the S.W.R. as a function of the frequency diminishes to begin with.
- FIG. 4 represents at 40 a curve which is typical of the variation of the S.W.R.
- the length of conductor 25 within the waveguide 21 is close to one quarter wavelength. However, an experimental adjustment of this length makes it possible either to obtain a coupler with a large bandwidth, and a S.W.R. smaller than 1.3, or to design a coupler with a narrower bandwidth and a S.W.R. very close to 1.
- FIG. 5 represents two variation curves of the S.W.R. of the coupler, taken as an example for illustrative purposes, between a RG waveguide 96/U and a microstrip line, in which the frame 28 and 28' is 5.10 m thick.
- the curve 50 relates to a conductor 25 penetrating for 1.6 X 10 in into the waveguide, while the curve 51 relates to a conductor 25 penetrating for 1.25 X 10 m into the waveguide.
- a broadband coupler between a rectangular waveguide and a microstrip line comprising a rectangular channel formed in a metal body fixed on a first large wall of said waveguide and perpendicular thereto with the largest dimension of said channel parallel to the axis of said waveguide, a rectangular dielectric substrate plate within said channel extending into said waveguide through a slot in said first wall up to the second large wall, a conductor printed on a first face of said dielectric plate extending into said waveguide, in which packing means are provided on one inner wall of said channel to support the second face of said dielectric plate so that the distance e between the inner wall and said second face of said plate has a range of where:
- f is the midband frequency in hertz of the operating frequency band and e is measured in meters.
Landscapes
- Waveguide Aerials (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Waveguides (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7316269A FR2229147B1 (enrdf_load_stackoverflow) | 1973-05-07 | 1973-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3924204A true US3924204A (en) | 1975-12-02 |
Family
ID=9118870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US467235A Expired - Lifetime US3924204A (en) | 1973-05-07 | 1974-05-06 | Waveguide to microstrip coupler |
Country Status (3)
Country | Link |
---|---|
US (1) | US3924204A (enrdf_load_stackoverflow) |
FR (1) | FR2229147B1 (enrdf_load_stackoverflow) |
GB (1) | GB1467728A (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550296A (en) * | 1982-05-13 | 1985-10-29 | Ant Nachrichtentechnik Gmbh | Waveguide-microstrip transition arrangement |
US4562416A (en) * | 1984-05-31 | 1985-12-31 | Sanders Associates, Inc. | Transition from stripline to waveguide |
US4647878A (en) * | 1984-11-14 | 1987-03-03 | Itt Corporation | Coaxial shielded directional microwave coupler |
US4647882A (en) * | 1984-11-14 | 1987-03-03 | Itt Corporation | Miniature microwave guide |
US4675623A (en) * | 1986-02-28 | 1987-06-23 | Motorola, Inc. | Adjustable cavity to microstripline transition |
US4716386A (en) * | 1986-06-10 | 1987-12-29 | Canadian Marconi Company | Waveguide to stripline transition |
US4729510A (en) * | 1984-11-14 | 1988-03-08 | Itt Corporation | Coaxial shielded helical delay line and process |
US5017892A (en) * | 1989-05-16 | 1991-05-21 | Cornell Research Foundation, Inc. | Waveguide adaptors and Gunn oscillators using the same |
US5262739A (en) * | 1989-05-16 | 1993-11-16 | Cornell Research Foundation, Inc. | Waveguide adaptors |
US5327148A (en) * | 1993-02-17 | 1994-07-05 | Northeastern University | Ferrite microstrip antenna |
US5361049A (en) * | 1986-04-14 | 1994-11-01 | The United States Of America As Represented By The Secretary Of The Navy | Transition from double-ridge waveguide to suspended substrate |
US5515059A (en) * | 1994-01-31 | 1996-05-07 | Northeastern University | Antenna array having two dimensional beam steering |
EP0874415A3 (en) * | 1997-04-25 | 1999-01-13 | Kyocera Corporation | High-frequency package |
US5867073A (en) * | 1992-05-01 | 1999-02-02 | Martin Marietta Corporation | Waveguide to transmission line transition |
US20070229182A1 (en) * | 2006-03-31 | 2007-10-04 | Gaucher Brian P | Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8816276D0 (en) * | 1988-07-08 | 1988-08-10 | Marconi Co Ltd | Waveguide coupler |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3462713A (en) * | 1967-07-19 | 1969-08-19 | Bell Telephone Labor Inc | Waveguide-stripline transducer |
-
1973
- 1973-05-07 FR FR7316269A patent/FR2229147B1/fr not_active Expired
-
1974
- 1974-05-03 GB GB1964374A patent/GB1467728A/en not_active Expired
- 1974-05-06 US US467235A patent/US3924204A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3462713A (en) * | 1967-07-19 | 1969-08-19 | Bell Telephone Labor Inc | Waveguide-stripline transducer |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550296A (en) * | 1982-05-13 | 1985-10-29 | Ant Nachrichtentechnik Gmbh | Waveguide-microstrip transition arrangement |
US4562416A (en) * | 1984-05-31 | 1985-12-31 | Sanders Associates, Inc. | Transition from stripline to waveguide |
US4647878A (en) * | 1984-11-14 | 1987-03-03 | Itt Corporation | Coaxial shielded directional microwave coupler |
US4647882A (en) * | 1984-11-14 | 1987-03-03 | Itt Corporation | Miniature microwave guide |
US4729510A (en) * | 1984-11-14 | 1988-03-08 | Itt Corporation | Coaxial shielded helical delay line and process |
US4675623A (en) * | 1986-02-28 | 1987-06-23 | Motorola, Inc. | Adjustable cavity to microstripline transition |
US5361049A (en) * | 1986-04-14 | 1994-11-01 | The United States Of America As Represented By The Secretary Of The Navy | Transition from double-ridge waveguide to suspended substrate |
US4716386A (en) * | 1986-06-10 | 1987-12-29 | Canadian Marconi Company | Waveguide to stripline transition |
US5262739A (en) * | 1989-05-16 | 1993-11-16 | Cornell Research Foundation, Inc. | Waveguide adaptors |
US5017892A (en) * | 1989-05-16 | 1991-05-21 | Cornell Research Foundation, Inc. | Waveguide adaptors and Gunn oscillators using the same |
US5867073A (en) * | 1992-05-01 | 1999-02-02 | Martin Marietta Corporation | Waveguide to transmission line transition |
US5327148A (en) * | 1993-02-17 | 1994-07-05 | Northeastern University | Ferrite microstrip antenna |
US5515059A (en) * | 1994-01-31 | 1996-05-07 | Northeastern University | Antenna array having two dimensional beam steering |
EP0874415A3 (en) * | 1997-04-25 | 1999-01-13 | Kyocera Corporation | High-frequency package |
US6239669B1 (en) | 1997-04-25 | 2001-05-29 | Kyocera Corporation | High frequency package |
US20070229182A1 (en) * | 2006-03-31 | 2007-10-04 | Gaucher Brian P | Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications |
US7479842B2 (en) * | 2006-03-31 | 2009-01-20 | International Business Machines Corporation | Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications |
WO2008062311A3 (en) * | 2006-03-31 | 2009-04-23 | Ibm | Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications |
TWI414103B (zh) * | 2006-03-31 | 2013-11-01 | Ibm | 建構及包裝供毫米波應用的波導至平面傳輸線轉態之裝置及方法 |
Also Published As
Publication number | Publication date |
---|---|
FR2229147B1 (enrdf_load_stackoverflow) | 1977-04-29 |
DE2421795B2 (de) | 1976-06-16 |
DE2421795A1 (de) | 1974-11-21 |
FR2229147A1 (enrdf_load_stackoverflow) | 1974-12-06 |
GB1467728A (en) | 1977-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3924204A (en) | Waveguide to microstrip coupler | |
US3265995A (en) | Transmission line to waveguide junction | |
US4651115A (en) | Waveguide-to-microstrip transition | |
US4677404A (en) | Compound dielectric multi-conductor transmission line | |
CA1250353A (en) | Waveguide to stripline transition | |
US3863181A (en) | Mode suppressor for strip transmission lines | |
US3654573A (en) | Microwave transmission line termination | |
US4027253A (en) | Non-reciprocal broadband slot line device | |
US4139827A (en) | High directivity TEM mode strip line coupler and method of making same | |
JPS59230302A (ja) | 分布定数系プリント式フイルタの電気的特性の調整方法およびこれに用いるフイルタ装置 | |
US3671888A (en) | Wide band stop band filter including a ferrite region biased by a graded magnetic field | |
US2820206A (en) | Microwave filters | |
US3721921A (en) | Waveguide directional coupler | |
US3873949A (en) | Temperature stabilized resonator | |
US3825861A (en) | Coaxial line to strip line connector | |
EP0205570B1 (en) | A compound dielectric multi-conductor transmission line | |
US4297661A (en) | Ferrite substrate microwave filter | |
US3886498A (en) | Wideband, matched three port power divider | |
JP3522138B2 (ja) | 誘電体導波管線路と方形導波管との接続構造 | |
US5072202A (en) | Wideband power microwave window with improved mechanical and electrical behavior | |
US3857112A (en) | Broadband quarter-wave plate assembly | |
US5559480A (en) | Stripline-to-waveguide transition | |
US3405375A (en) | Stripline variable phase shifter having means to maintain a constant characteristic impedance | |
US2602857A (en) | Wave guide attenuator | |
US3748604A (en) | Tunable microwave bandstop resonant cavity apparatus |