US3921707A - Means for forming metal parts - Google Patents

Means for forming metal parts Download PDF

Info

Publication number
US3921707A
US3921707A US449912A US44991274A US3921707A US 3921707 A US3921707 A US 3921707A US 449912 A US449912 A US 449912A US 44991274 A US44991274 A US 44991274A US 3921707 A US3921707 A US 3921707A
Authority
US
United States
Prior art keywords
die
housing
passageway
piston
metal parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US449912A
Inventor
Leonard H Killion
E J Blair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00150467A external-priority patent/US3802483A/en
Application filed by Individual filed Critical Individual
Priority to US449912A priority Critical patent/US3921707A/en
Application granted granted Critical
Publication of US3921707A publication Critical patent/US3921707A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging

Definitions

  • ABSTRACT Relaed Application Dam A method for forming metal parts wherein molten liq- [62] Division of Ser, No. 150,467, June 7, 197i, Patv No, uid men is injected into a Cavity The Cavity is cuted in size compressing the metal. The cavity is cooled, cooling the metal. The metal is held in the [52] 164/305; 646m? [64/348 cavity until solidified, The cavity is opened for re- [51] P B22D 17/12 moval of the forming part.
  • Apparatus for forming [58] Fleld of Search metal parts comprises a die housing containing a die 164/319 348 with apparatus to connect and separate same and to inject molten liquid metal into the die, The liquid mol- [56] References cued ten metal under pressure is held in the die, Same is UNITED STATES PATENTS cooled simultaneously. An apparatus removes the l,633,088 6/1927 Fullilove l64/3D5 formed part- 1,717,254 6/1929 Polak 4 l64/l20 X 2,867,869 1/1959 Hodler.
  • the extrusion process also can substantially alter the grain structure of the stock to such an extent that its final orientation is an undesirable side effect of the process.
  • the reason for changing the grain structure in these prior art methods is the metal is worked in the solid state, after it has an established grain pattern, and changing its shape then reshapes the grain pattern of course depending on the amount of reshaping done.
  • the means to form the metal parts by these above described methods varies with the methods; however, with the exception of the casting method the metal is pressed or formed when cool or warm and after it has substantially solidified establishing a grain structure pattern.
  • a method for forming metal parts includes placing liquid molten metal in a shaped cavity, closing and compressing the cavity, cooling the filled cavity and the metal, then removing the formed metal part when the metal is cool.
  • a preferred specific embodiment of this invention is a means for forming metal parts including a die housing enclosing a die that can be cooled with the die in the compressed and closed position and opened for removal of the formed part.
  • the die and die housing are mountable in a conventional type die press machine and usable with a vacuum ladling system or other die filling systems.
  • the die has removable die face members mounted on cooling block members which in operation shape the metal and cool it.
  • One object of this invention is to provide a method for forming metal parts overcoming the aforementioned disadvantages of the prior art methods and to provide a means of forming metal parts overcoming the disadvantages of the prior art devices.
  • one other object of this invention is to provide a method for forming metal parts wherein liquid molten metal is shaped by compression and cooled to a solid state.
  • Another object of this invention is to provide a method for forming metal parts which produces parts of substantially the finished size and shape which have 2 a uniform grain structure and is not deformed by the shaping process.
  • an additional object of this invention is to provide a means for forming metal parts having a die assembly adapted to receive a shot of liquid molten metal, compress it to conform to the shape of the die face and cool it to a solid state while in compression.
  • one further object of this invention is to provide a means for making metal parts that has a coolablc die assembly and can be used with conventional die casting machines and conventional molten metal ladling and die filling systems.
  • FIG. I is a partially cut away perspective view taken from above of a die casting machine having the die of this invention in place;
  • FIG. 2 is a side elevation view of the die casting machine shown in FIG. I having one side thereof removed for clarity;
  • FIG. 3 is a front elevation view of the die casting machine shown in FIG. 1;
  • FIG. 4 is a partial cross sectional view of the die assembly with the die in the open position
  • FIG. 5 is a partially cross sectional view of the die assembly in the closed position with a part therein;
  • FIG. 6 is a partially cross sectional view of the die assembly in the open position with a part held between the separate die portions by the part ejectors.
  • FIG. 1 showing a conventional type die casting machine, indicated at 10, and adapted to accommodate the means for forming metal parts of this invention.
  • the means for forming metal parts in a preferred specific embodiment of this invention is a die assembly I4 including a die housing 16 with an internal die assembly 18 and having cavities in the die housing 16 used to heat and cool the die assembly 14.
  • the die casting machine 10 has jaws forming a clamp to hold the die assembly 14 that are hydraulically operable to open and close the major portions of the die housing 16.
  • the die casting machine 10 has an upper hydraulic cylinder 20 and a lower hydraulic cylinder 22 which are adapted to operate the internal die assembly I8.
  • the die casting machine 10 is operated by a pump and reservoir, indicated at 24 and controlled by a separate control system, not shown. Additionally, the die casting machine 10 is equipped to heat and cool the die assembly 14 as will be described.
  • the die casting machine I0 and other apparatus of the herein described invention is described as being used with a vacuum ladling system to fill the die, however, it is to be understood that it is not to limit the use of the invention to that die filling system alone.
  • the die housing 16 is shown in detail in FIGS. 4, 5, and 6. As can be seen, it has two separate outer members 28 and 30 that enclose the internal die assembly 18.
  • the outer housing members 28 and 30 are mounted with the opposing jaws 32 and 34 of the die casting machine so they can be opened and closed as necessary.
  • the die assembly 14 as shown in FIG. 1 is enclosed in a protective and thermally insulative jacket 35 and thus does not have the same outward appearance as the die assembly 14 shown in the other figures.
  • the internal die assembly 18 moves in an elongated cavity between the outer housing members 28 and 30.
  • the internal die assembly 18 includes a pair ofopposing pistons 36 and 38 which extend from the outer ends of the die housing memebers 28 and 30. respectively.
  • the pistons 36 and 38 are preferably sealed with the cavity by O'rings 40, as shown. and are thrcadedly attached to die block members 42 and 44. It is to be noted that the pistons 36 and 38 can be sealed by means other than O-rings. so long as the die cavity is sealed closably.
  • the die block members 42 and 44 are smaller than the inner ends ofthe pistons 36 and 38 and extend coaxially from them.
  • the innermost surfaces of the die blocks 42 and 44 are the faces of the die. These die faces 46 and 48 are the surfaces against which the liquid molten metal is pressed when in operation.
  • the die face members 46 and 48 are shaped to the actual size and shape of the desired part for reasons to be explained in the hereinafter.
  • Part ejector members 54 and 56 extend through the plungers. die blocks and die faces.
  • One part ejector 54 extends through plunger 36, die block 42 and die face 46; and the other part ejector 56 extends through the plunger 38, die block 44 and the die face 48.
  • Both part ejectors 54 and 56 extend so as to be flush with the die faces 46 and 48 for the forming operations then extend past them to remove the formed part as indicated in FIG. 6.
  • a sleeve member 58 surrounds the matching ends of the die block members 42 and 44 and has apertures for access to the shot receiving cavity 60.
  • the opposite end members 28 and of the die housing 16 have apertures 62 and 64, respectively, that connect the portion of the cavity behind the pistons 36 and 38 to the outside of the housing. Additional apertures 66 and 68 through the enlarged portion of the pistons 36 and 38 provide access from the cavity behind the pistons to the cavities 37 and 39 inside the die blocks 42 and 44. These passageways are used to transfer fluid to heat and cool the die assembly 18; they are connected to conduits 70 on the outside of the die housing 16.
  • the conduits 70 are attached to one side of the die assembly 14 and connect it to a separate heat source.
  • the lower conduit 72 is preferably flexible so the lower portion ofthe die assembly 18 can be lowered for opening the die housing for operation.
  • the center portion of the die housing 16 has two apertures thcrethrough its opposite sides with the apertures being partially formed partially in the segments of the housing.
  • the inlet aperture 74 is adapted to receive the molten metal and pass it through a tapered aperture 76 in the sleeve member 58.
  • the inlet aperture 74 is connectible to a molten metal conduit 78 which in operation supplies molten metal to the die assembly.
  • the other aperture 80 is adapted to be connected to a vacuum source.
  • the vacuum aperture 80 is connected to a passageway 82 in the sleeve member 58.
  • a vacuum source is connected to the aperture 80 by a conduit 84.
  • the inner end of the passageway 82 is at one of the highest points in the shot cavity 60; this is necessary in order to evacuate air that may become trapped in the cavity 60 as the molten metal comes into 4 it.
  • the center portion of the die housing 16 has a series of pasageways from the outside to the die block cavities 37 and 39 that are used to transfer heating fluid from the cavities.
  • the upper housing member 30 has a pas sageway 86 therethrough adjacent to the vacuum aperture connecting to an aperture 88 in the sleeve member 58 and connecting the passageway 90 in the die block 44.
  • the lower housing member 28 has a passageway 92 thcrethrough adjacent to the vacuum apei ture 80 connecting to an aperture 94 in the sleeve member 58 that connects to the passageway 96 in the die block member 42.
  • the passageways 86 and 92 are attached to a conduit 98 extending from the side of the die assembly 14.
  • One additional aperture 98 in the center portion of the die housing 16 is provided spaced above the vacuum aperture 80.
  • the aperture 98 is provided in the housing member 30 as a place for a ther mocouple to be mounted; it is positioned sufficiently near the shot cavity 60 to provide a place to measure the temperature of the internal die assembly 18.
  • the operation of the die assembly 14 in the die casting machine 10 is as follows:
  • the die housing 16 is in the position shown in FIG. 4 and the internal die assembly 18 is heated by steam or the like passing through the cavities 100 and 102 behind the pistons 36 and 38, through passageways 66 and 68 into the cavities 37 and 39 of the die blocks 42 and 44 and exiting through the passageways 96, 94 and 92, and 90. 88 and 96.
  • the internal die assembly 18 can be heated by other means than steam heat. such as electrical resistance or induction through the die housing 16. With the shot cavity 60 open a precise quantity of molten metal is injected into it through the tapered aperture 76.
  • the shot cavity 60 is evacuated by the vacuum source having access to it by the passageway 82; this removes any air which may be trapped in the cavity 60.
  • the passage of steam through the internal die assembly 18 can be increased by raising the flow to the inlets 62 and 64; this causes pressure to build up in the cavities 100 and I02 behind the pistons 36 and 38 and they move inward to exert a forging pressure to form the metal part.
  • the forging pressure is held on the part for a period of time until it is cooled sufficiently to be removed from the die assembly 18. While the forging pressure is applied.
  • the die assembly 14 is in the position shown in FIG. 5 with the part shown in double crossed lines.
  • the formed part H0 is cooled by the steam flowing through the internal die assembly 18.
  • the temperature of the internal die assent bly 18 can be controlled by the temperature of the fluid flowing through it; also, the fluid need not be steam; it can be any fluid that can be supplied in a sufficient quantity to maintain the forging pressure on the part 110.
  • Forging pressure is accomplished by fluid pressure behind the pistons and force exerted on the pistons from outside the die housing 16 transmitted through the attached sleeve shown around the part ejectors 54 and 56. For instance. if the part 110 is desired to be cooled quickly then steam could be used to heat the internal die assembly 18 then a cryogenic fluid such as liquid oxygen could be introduced to rapidly chill the die 18. Or if a less extreme cooling effect is desired.
  • freon or other gaseous fluids or other liquids could be used.
  • the die housing 16 is opened by the die casting machine and the housing members 28 and 30 are separated as shown in FIG. 6.
  • the part ejectors 54 and 56 press the part 110 from the die faces 46 and 48. Once the part 110 is removed from the internal die assembly, the part ejectors 54 and 56 can be retracted releasing the part 110 for removal.
  • the method for forming metal parts of this invention necessarily requires the use of a die apparatu' constructed with the specific structural components necessary to accomplish it.
  • the die assembly 14 as described supra has all the necessary structural features to carry out the method for forming metal parts of this invention and for purposes of illustration will be used in description ofthe method.
  • the die assembly 14 has a shot cavity 60 in which molten metal can be placed, die faces 46 and 48 to shape the molten metal, pistons 36 and 38 which are used to exert forging pressure on the molten metal, a plurality of passageways and cavities usable to pass fluid to heat and cool the die assembly and other elements.
  • the die assembly 14 is preferably operated by a die press machine 10 which has the feature of performing the forming operation consistently and repeatedly.
  • the method of forming metal parts of this invention initially requires the die assembly to be generally in the position shown in FIG. 1 with no material in the forging cavity 60.
  • the die assembly is heated by high temperature fluid being circulated through it.
  • the fluid passes into the die housing through the apertures 62 and 64, through the apertures 66 and 68 in the pistons 36 and 38, through the cavities 37 and 39 in the die blocks 42 and 44 and passes from the die assembly by connected passageways 96, 94, 92 and 90, 88, 86.
  • a quantity of molten metal is ladled into the cavity through the apertures 74 and 76.
  • the quantity of molten metal is equal to the volume of the part which is to be formed plus an amount to allow for shrinkage so the volume when the metal is cool is the volume of the desired part.
  • the amount a specific material will shrink depends on the material itself and the temperature range involved.
  • a vacuum system is used to ladle the molten metal into the forging cavity 60; it is basically a vacuum acting on one side of the forging chamber through an aperture 82 which removes entrapped air in the cavity and pulls the molten metal into the forging cavity 60.
  • the use of vacuum Iadling systems such as this one have been found in practice to be highly desirable because of the trapped air removal feature.
  • Other die filling systems which are also highly desirable use a combination of vacuum on one side of the die and molten metal under pressure on the other side to fill the die.
  • the specific quantity of molten metal has been introduced into the forging cavity 60, the cavity is reduced in size to exert the forging pressure on the molten metal. Also. simultaneously the temperature of the die assembly is reduced which cools the molten metalv In the die assembly 14 the flow of fluid is increased a substantial amount; this builds up pressure behind the pistons 36 and 38 urging them toward each other. the die faces 46 and 48 press into the molten metal and it forms around them. Forging pressure exerted on the metal is created by the fluid pressure build up behind the pistons 36 and 38 and the forging pressure can be varied by varying the amount of fluid flowing through the pistons and die blocks. The flowing fluid is used to cool the die assembly 14.
  • Changing the temperature of the fluid from a high temperature to a lower temperature will change the temperature of the die assembly.
  • steam can be used as the cooling fluid, particularly high temperature stream can be used to heat the die assembly and lower temperature steam can be used to lower the temperature of the die assembly.
  • the temperature range desired to be controlled is necessarily dependent on the specific metal to be formed. It should be noted there are other fluids than steam which can be used to control the temperature ofthe die assembly l4. For instance, where rapid and extreme chilling of the die assembly is desired, steam could be used to heat it and a cryogenic fluid such as liquid oxygen could be used to cool it.
  • the die assembly I4 is cooled to the desired temperature. it is held at that temperature and the forg ing pressure is maintained until the metal has solidfied sufficiently to be removed from the die assembly I4.
  • the position of the die assembly 14 when exerting the forging pressure on the metal is shown in FIG. 5.
  • the formed metal part is indicated at I10 and shown in the cross-hatched lines.
  • the die press machine 10 When the metal part is sufficiently solidified to be removed from the die assembly 14, the fluid flow is stopped to relieve the forging pressure.
  • the die press machine 10 then opens the die housing 16, retracts the pistons 36 and 38 and the sleeve member 58. Because of the metal part 110 has been pressed around the die faces 46 and 48, it will usually adhere to one or the other.
  • part ejectors 54 and 56 are provided to extend from the die blocks 42 and 44 and press the formed part I10 from the die faces.
  • the die assembly I4 When open for removal of the formed part, the die assembly I4 is in the position shown in FIG. 6.
  • the part 110 is pressed from the die faces and held between the separated portions of the die assembly by the part ejectors 54 and 56. Once the part 110 is removed from the die faces, the part ejectors can be retracted and the part removed by hand or other means.
  • the method for forming metal parts of this invention provides a method by which metal parts can be formed to their precise flnished size and shape.
  • the method of this invention provides a method of forming metal parts which produces parts that do not have the heretofore stress concentrations and disturbed grain structures of prior art forgings; it produces metal parts with a more uniform grain structure and less stress concentrations due to forging.
  • the method of forming metal parts of this invention can be practiced with a conventional type die press machine and molten metal ladling system utilizing a specially constructed die assembly.
  • the die assembly 14 and die housing 16 can be constructed of typical die materials and by typical die making processes.
  • the die assembly 14 can be constructed of sufficient size and strength to be used with commonly forged materials and accommodated in conventional die press machines 10.
  • the die assembly 14 can be used with conventional die press machines and vacuum ladling systems and only requires a separate fluid system for heating and cooling the die.
  • the means of forming metal parts can be used in continuous pouring type operations where a die assembly is used to repeatedly form metal parts in a manufacturing type environment.
  • Apparatus for forming metal parts comprising:
  • a separable die housing means containing a separable die means having a piston member having in an end portion a die block member having an especially shaped die face.
  • said means to separate and connect said die housing means and said die means is a die press means having means to separately move said die housing means, said die means and said means to remove a formed part.
  • said die means being adapted to receive a quantity of molten metal in said die means. form same under pressure. cool same simultaneously and hold same until solidified then open for removal of the formed part.
  • said die housing means has two members mountable in the jaws of the die press means.
  • said piston is translatably mounted in said die housing and extends from said die housing means connectible to the die press means. said piston is adapted to be displaced within said die housing means,
  • said means to heat and cool said die means has a first passageway through a die housing member behind said piston, a second passageway through said piston into said die block. a third passageway from said die block through said housing member.
  • said means to remove a formed part is a part ejector member extendable through said piston. dis placeable by the die press means. said part ejector member is extendable to press the formed part and remove same and retractable into said die means so the formed part can be removed from said die means generally.
  • said die face is the end surface of said die block.
  • said die means has a pair of said piston members translatably mounted in said die housing means adapted.
  • said die block members have a cavity therein behind said face thereof adapted to contain a quantity of fluid of said means to heat and cool said die means
  • said piston members have a sleeve member translatably mounted adapted to be positioned therearound the inner end portions of same when said die faces are close together.
  • said sleeve member has a passageway therethrough adapted to pass the molten metal.
  • a passagewy adaped to communicate the vacuum pressure of said means to ladle the molten metal and passageways adapted to pass the fluid of said means to heat and cool said die means from said die block members to said housing members.

Abstract

A method for forming metal parts wherein molten liquid metal is injected into a cavity. The cavity is reduced in size compressing the metal. The cavity is cooled, cooling the metal. The metal is held in the cavity until solidified. The cavity is opened for removal of the forming part. Apparatus for forming metal parts comprises a die housing containing a die with apparatus to connect and separate same and to inject molten liquid metal into the die. The liquid molten metal under pressure is held in the die. Same is cooled simultaneously. An apparatus removes the formed part.

Description

United States Patent Killion et al.
[ Nov. 25, 1975 [54] MEANS FOR FORMING METAL PARTS 3,387,646 6/1968 Lauth l64/l20 3,472,308 I0 1969 L th I64 19 [76] Inventors: Leonard H. Killion, PO. Box 608, au [3 X Derby, Kansas 67037; E. J. Blair, 9010 woman Rd. Kansas City Pnr nary ExaminerFranc1s S. Husar Kansas 6706] Assistant Exammer-John E, Roethel Attorney, Agent, or FirmJohn H. Widdowson [22] Filed: Mar. 11, 1974 [2]] Appl. No.: 449,912 [57] ABSTRACT Relaed Application Dam A method for forming metal parts wherein molten liq- [62] Division of Ser, No. 150,467, June 7, 197i, Patv No, uid men is injected into a Cavity The Cavity is duced in size compressing the metal. The cavity is cooled, cooling the metal. The metal is held in the [52] 164/305; 646m? [64/348 cavity until solidified, The cavity is opened for re- [51] P B22D 17/12 moval of the forming part. Apparatus for forming [58] Fleld of Search metal parts comprises a die housing containing a die 164/319 348 with apparatus to connect and separate same and to inject molten liquid metal into the die, The liquid mol- [56] References cued ten metal under pressure is held in the die, Same is UNITED STATES PATENTS cooled simultaneously. An apparatus removes the l,633,088 6/1927 Fullilove l64/3D5 formed part- 1,717,254 6/1929 Polak 4 l64/l20 X 2,867,869 1/1959 Hodler. 164/305 x 4 (Jams, 6 Drawmg Figures 3,IO6,002 lO/l963 Bauer t l l [64/120 3,268,960 8/1966 Morton l64/305 X "40 40- 90 4e 96 66 P, K 44 j 7\ 47 m i u 2. 4a ZZ 56 92 ea 54 U.S. Patent Nov. 25, 1975 Sheet 1 of3 3,921,707
U.S. Patent Nov. 25, 1975 Sheet 2 of3 3,921,707
I 'LITI T1 Sheet 3 of 3 Nov. 25, 1975 U.S. Patent MEANS FOR FORMING METAL PARTS This is a division of application Ser. No. I50,467, filed June 7, l97l, now Pat. No. 3,802,483.
Numerous means and methods are well known in the prior art to form metal into parts. Some principal methods of forming metal parts are generally forging, casting and extrusion. Each of these methods has its own peculiar quality which makes it advantageous to use in different situations. However, they all have a substantial and different effect on the grain orientation of the metal formed in each of the processes. The casting method can produce a more uniform grain structure than the other; however, it generally will only produce a part of rough dimensions which must be finished by another process. Forging can produce finished quality parts, but it will reshape the grain structure of the metal slug or piece of metal stock which it uses and this rearrangement can produce undesirable side effects such as decrease in fatigue life. The extrusion process also can substantially alter the grain structure of the stock to such an extent that its final orientation is an undesirable side effect of the process. Primarily the reason for changing the grain structure in these prior art methods is the metal is worked in the solid state, after it has an established grain pattern, and changing its shape then reshapes the grain pattern of course depending on the amount of reshaping done. The means to form the metal parts by these above described methods varies with the methods; however, with the exception of the casting method the metal is pressed or formed when cool or warm and after it has substantially solidified establishing a grain structure pattern.
In the herein described method and means of this invention a method is provided whereby liquid molten metal is pressure formed while liquid, simultaneously cooled then removed, and a means is provided to carry out the method. The method and means of this invention provide a way to produce metal parts without the above identified undesirable characteristics and side effects of the prior art.
In a preferred specific embodiment of this invention, a method for forming metal parts includes placing liquid molten metal in a shaped cavity, closing and compressing the cavity, cooling the filled cavity and the metal, then removing the formed metal part when the metal is cool. Also, a preferred specific embodiment of this invention is a means for forming metal parts including a die housing enclosing a die that can be cooled with the die in the compressed and closed position and opened for removal of the formed part. The die and die housing are mountable in a conventional type die press machine and usable with a vacuum ladling system or other die filling systems. The die has removable die face members mounted on cooling block members which in operation shape the metal and cool it.
One object of this invention is to provide a method for forming metal parts overcoming the aforementioned disadvantages of the prior art methods and to provide a means of forming metal parts overcoming the disadvantages of the prior art devices.
Still, one other object of this invention is to provide a method for forming metal parts wherein liquid molten metal is shaped by compression and cooled to a solid state.
Still, another object of this invention is to provide a method for forming metal parts which produces parts of substantially the finished size and shape which have 2 a uniform grain structure and is not deformed by the shaping process.
Yet, an additional object of this invention is to provide a means for forming metal parts having a die assembly adapted to receive a shot of liquid molten metal, compress it to conform to the shape of the die face and cool it to a solid state while in compression.
Yet, one further object of this invention is to provide a means for making metal parts that has a coolablc die assembly and can be used with conventional die casting machines and conventional molten metal ladling and die filling systems.
Various other objects, advantages, and features of the invention will become apparent to those skilled in the art from the following discussion, taken in conjunction with the accompanying drawings, in which:
FIG. I is a partially cut away perspective view taken from above of a die casting machine having the die of this invention in place;
FIG. 2 is a side elevation view of the die casting machine shown in FIG. I having one side thereof removed for clarity;
FIG. 3 is a front elevation view of the die casting machine shown in FIG. 1;
FIG. 4 is a partial cross sectional view of the die assembly with the die in the open position;
FIG. 5 is a partially cross sectional view of the die assembly in the closed position with a part therein; and
FIG. 6 is a partially cross sectional view of the die assembly in the open position with a part held between the separate die portions by the part ejectors.
The following is a discussion and description of preferred specific embodiments of the method and means for forming metal parts of this invention. such being made with reference to the drawings, whereupon the same reference numerals are used to indicate the same or similar parts and/or structure. It is to be understood that such discussion and description is not to unduly limit the scope of the invention.
Referring to the drawings in detail and in particular to FIG. 1 showing a conventional type die casting machine, indicated at 10, and adapted to accommodate the means for forming metal parts of this invention. The means for forming metal parts in a preferred specific embodiment of this invention is a die assembly I4 including a die housing 16 with an internal die assembly 18 and having cavities in the die housing 16 used to heat and cool the die assembly 14.
The die casting machine 10 has jaws forming a clamp to hold the die assembly 14 that are hydraulically operable to open and close the major portions of the die housing 16. The die casting machine 10 has an upper hydraulic cylinder 20 and a lower hydraulic cylinder 22 which are adapted to operate the internal die assembly I8. The die casting machine 10 is operated by a pump and reservoir, indicated at 24 and controlled by a separate control system, not shown. Additionally, the die casting machine 10 is equipped to heat and cool the die assembly 14 as will be described. The die casting machine I0 and other apparatus of the herein described invention is described as being used with a vacuum ladling system to fill the die, however, it is to be understood that it is not to limit the use of the invention to that die filling system alone.
The die housing 16 is shown in detail in FIGS. 4, 5, and 6. As can be seen, it has two separate outer members 28 and 30 that enclose the internal die assembly 18. The outer housing members 28 and 30 are mounted with the opposing jaws 32 and 34 of the die casting machine so they can be opened and closed as necessary. The die assembly 14 as shown in FIG. 1 is enclosed in a protective and thermally insulative jacket 35 and thus does not have the same outward appearance as the die assembly 14 shown in the other figures. lnside the die housing 16 the internal die assembly 18 moves in an elongated cavity between the outer housing members 28 and 30. The internal die assembly 18 includes a pair ofopposing pistons 36 and 38 which extend from the outer ends of the die housing memebers 28 and 30. respectively. and are movable by the hydraulic cylinders of the die casting machine 10. The pistons 36 and 38 are preferably sealed with the cavity by O'rings 40, as shown. and are thrcadedly attached to die block members 42 and 44. It is to be noted that the pistons 36 and 38 can be sealed by means other than O-rings. so long as the die cavity is sealed closably. The die block members 42 and 44 are smaller than the inner ends ofthe pistons 36 and 38 and extend coaxially from them. The innermost surfaces of the die blocks 42 and 44 are the faces of the die. These die faces 46 and 48 are the surfaces against which the liquid molten metal is pressed when in operation. The die face members 46 and 48 are shaped to the actual size and shape of the desired part for reasons to be explained in the hereinafter. Part ejector members 54 and 56 extend through the plungers. die blocks and die faces. One part ejector 54 extends through plunger 36, die block 42 and die face 46; and the other part ejector 56 extends through the plunger 38, die block 44 and the die face 48. Both part ejectors 54 and 56 extend so as to be flush with the die faces 46 and 48 for the forming operations then extend past them to remove the formed part as indicated in FIG. 6. A sleeve member 58 surrounds the matching ends of the die block members 42 and 44 and has apertures for access to the shot receiving cavity 60.
The opposite end members 28 and of the die housing 16 have apertures 62 and 64, respectively, that connect the portion of the cavity behind the pistons 36 and 38 to the outside of the housing. Additional apertures 66 and 68 through the enlarged portion of the pistons 36 and 38 provide access from the cavity behind the pistons to the cavities 37 and 39 inside the die blocks 42 and 44. These passageways are used to transfer fluid to heat and cool the die assembly 18; they are connected to conduits 70 on the outside of the die housing 16. The conduits 70 are attached to one side of the die assembly 14 and connect it to a separate heat source. The lower conduit 72 is preferably flexible so the lower portion ofthe die assembly 18 can be lowered for opening the die housing for operation.
The center portion of the die housing 16 has two apertures thcrethrough its opposite sides with the apertures being partially formed partially in the segments of the housing. The inlet aperture 74 is adapted to receive the molten metal and pass it through a tapered aperture 76 in the sleeve member 58. The inlet aperture 74 is connectible to a molten metal conduit 78 which in operation supplies molten metal to the die assembly. The other aperture 80 is adapted to be connected to a vacuum source. The vacuum aperture 80 is connected to a passageway 82 in the sleeve member 58. A vacuum source is connected to the aperture 80 by a conduit 84.
lt is to be noted the inner end of the passageway 82 is at one of the highest points in the shot cavity 60; this is necessary in order to evacuate air that may become trapped in the cavity 60 as the molten metal comes into 4 it. With the die assembly 14 as shown in the figures. it fits into the die casting machine 10 with the die housing 16 vertically and the outer housing member 30 on top. This vertical orientation of the die assembly 14 will place the innermost end of the vacuum aperture 82 at a highest point in the shot cavity 60.
The center portion of the die housing 16 has a series of pasageways from the outside to the die block cavities 37 and 39 that are used to transfer heating fluid from the cavities. The upper housing member 30 has a pas sageway 86 therethrough adjacent to the vacuum aperture connecting to an aperture 88 in the sleeve member 58 and connecting the passageway 90 in the die block 44. The lower housing member 28 has a passageway 92 thcrethrough adjacent to the vacuum apei ture 80 connecting to an aperture 94 in the sleeve member 58 that connects to the passageway 96 in the die block member 42. The passageways 86 and 92 are attached to a conduit 98 extending from the side of the die assembly 14. One additional aperture 98 in the center portion of the die housing 16 is provided spaced above the vacuum aperture 80. The aperture 98 is provided in the housing member 30 as a place for a ther mocouple to be mounted; it is positioned sufficiently near the shot cavity 60 to provide a place to measure the temperature of the internal die assembly 18.
In brief, the operation of the die assembly 14 in the die casting machine 10 is as follows: The die housing 16 is in the position shown in FIG. 4 and the internal die assembly 18 is heated by steam or the like passing through the cavities 100 and 102 behind the pistons 36 and 38, through passageways 66 and 68 into the cavities 37 and 39 of the die blocks 42 and 44 and exiting through the passageways 96, 94 and 92, and 90. 88 and 96. it is to be noted the internal die assembly 18 can be heated by other means than steam heat. such as electrical resistance or induction through the die housing 16. With the shot cavity 60 open a precise quantity of molten metal is injected into it through the tapered aperture 76. The shot cavity 60 is evacuated by the vacuum source having access to it by the passageway 82; this removes any air which may be trapped in the cavity 60. The passage of steam through the internal die assembly 18 can be increased by raising the flow to the inlets 62 and 64; this causes pressure to build up in the cavities 100 and I02 behind the pistons 36 and 38 and they move inward to exert a forging pressure to form the metal part. The forging pressure is held on the part for a period of time until it is cooled sufficiently to be removed from the die assembly 18. While the forging pressure is applied. the die assembly 14 is in the position shown in FIG. 5 with the part shown in double crossed lines. The formed part H0 is cooled by the steam flowing through the internal die assembly 18. It is to be noted the temperature of the internal die assent bly 18 can be controlled by the temperature of the fluid flowing through it; also, the fluid need not be steam; it can be any fluid that can be supplied in a sufficient quantity to maintain the forging pressure on the part 110. Forging pressure is accomplished by fluid pressure behind the pistons and force exerted on the pistons from outside the die housing 16 transmitted through the attached sleeve shown around the part ejectors 54 and 56. For instance. if the part 110 is desired to be cooled quickly then steam could be used to heat the internal die assembly 18 then a cryogenic fluid such as liquid oxygen could be introduced to rapidly chill the die 18. Or if a less extreme cooling effect is desired.
cooler steam. freon or other gaseous fluids or other liquids could be used.
When the part 110 is cooled sufficiently to be removed or to the desired temperature, the die housing 16 is opened by the die casting machine and the housing members 28 and 30 are separated as shown in FIG. 6. The part ejectors 54 and 56 press the part 110 from the die faces 46 and 48. Once the part 110 is removed from the internal die assembly, the part ejectors 54 and 56 can be retracted releasing the part 110 for removal.
In reference to the method for forming metal parts of this invention, it is easily described in conjunction with the above described means for forming metal parts. However. it is to be understood that the herein described method for forming metal parts is not to be restricted by the herein described means for forming metal parts. It is to be further understood the method for forming metal parts of this invention can be accomplished by means other than the herein described means for forming metal parts.
The method for forming metal parts of this invention necessarily requires the use of a die apparatu' constructed with the specific structural components necessary to accomplish it. The die assembly 14 as described supra has all the necessary structural features to carry out the method for forming metal parts of this invention and for purposes of illustration will be used in description ofthe method. The die assembly 14 has a shot cavity 60 in which molten metal can be placed, die faces 46 and 48 to shape the molten metal, pistons 36 and 38 which are used to exert forging pressure on the molten metal, a plurality of passageways and cavities usable to pass fluid to heat and cool the die assembly and other elements. The die assembly 14 is preferably operated by a die press machine 10 which has the feature of performing the forming operation consistently and repeatedly.
The method of forming metal parts of this invention initially requires the die assembly to be generally in the position shown in FIG. 1 with no material in the forging cavity 60. The die assembly is heated by high temperature fluid being circulated through it. The fluid passes into the die housing through the apertures 62 and 64, through the apertures 66 and 68 in the pistons 36 and 38, through the cavities 37 and 39 in the die blocks 42 and 44 and passes from the die assembly by connected passageways 96, 94, 92 and 90, 88, 86. When the die assembly 14 has reached an appropriate predetermined temperature. a quantity of molten metal is ladled into the cavity through the apertures 74 and 76. The quantity of molten metal is equal to the volume of the part which is to be formed plus an amount to allow for shrinkage so the volume when the metal is cool is the volume of the desired part. The amount a specific material will shrink depends on the material itself and the temperature range involved. A vacuum system is used to ladle the molten metal into the forging cavity 60; it is basically a vacuum acting on one side of the forging chamber through an aperture 82 which removes entrapped air in the cavity and pulls the molten metal into the forging cavity 60. The use of vacuum Iadling systems such as this one have been found in practice to be highly desirable because of the trapped air removal feature. Other die filling systems which are also highly desirable use a combination of vacuum on one side of the die and molten metal under pressure on the other side to fill the die.
.Vhen the specific quantity of molten metal has been introduced into the forging cavity 60, the cavity is reduced in size to exert the forging pressure on the molten metal. Also. simultaneously the temperature of the die assembly is reduced which cools the molten metalv In the die assembly 14 the flow of fluid is increased a substantial amount; this builds up pressure behind the pistons 36 and 38 urging them toward each other. the die faces 46 and 48 press into the molten metal and it forms around them. Forging pressure exerted on the metal is created by the fluid pressure build up behind the pistons 36 and 38 and the forging pressure can be varied by varying the amount of fluid flowing through the pistons and die blocks. The flowing fluid is used to cool the die assembly 14. Changing the temperature of the fluid from a high temperature to a lower temperature will change the temperature of the die assembly. For instance, steam can be used as the cooling fluid, particularly high temperature stream can be used to heat the die assembly and lower temperature steam can be used to lower the temperature of the die assembly. The temperature range desired to be controlled is necessarily dependent on the specific metal to be formed. It should be noted there are other fluids than steam which can be used to control the temperature ofthe die assembly l4. For instance, where rapid and extreme chilling of the die assembly is desired, steam could be used to heat it and a cryogenic fluid such as liquid oxygen could be used to cool it.
Once the die assembly I4 is cooled to the desired temperature. it is held at that temperature and the forg ing pressure is maintained until the metal has solidfied sufficiently to be removed from the die assembly I4. The position of the die assembly 14 when exerting the forging pressure on the metal is shown in FIG. 5. The formed metal part is indicated at I10 and shown in the cross-hatched lines.
When the metal part is sufficiently solidified to be removed from the die assembly 14, the fluid flow is stopped to relieve the forging pressure. The die press machine 10 then opens the die housing 16, retracts the pistons 36 and 38 and the sleeve member 58. Because of the metal part 110 has been pressed around the die faces 46 and 48, it will usually adhere to one or the other. In order to remove the formed part 110 from the die faces, part ejectors 54 and 56 are provided to extend from the die blocks 42 and 44 and press the formed part I10 from the die faces. When open for removal of the formed part, the die assembly I4 is in the position shown in FIG. 6. The part 110 is pressed from the die faces and held between the separated portions of the die assembly by the part ejectors 54 and 56. Once the part 110 is removed from the die faces, the part ejectors can be retracted and the part removed by hand or other means.
In the use of the method for forming metal parts of this invention, it is seen that same provides a method by which metal parts can be formed to their precise flnished size and shape. The method of this invention provides a method of forming metal parts which produces parts that do not have the heretofore stress concentrations and disturbed grain structures of prior art forgings; it produces metal parts with a more uniform grain structure and less stress concentrations due to forging. The method of forming metal parts of this invention can be practiced with a conventional type die press machine and molten metal ladling system utilizing a specially constructed die assembly.
in the manufacture of the means for forming metal parts of this invention. it is obvious the die assembly 14 and die housing 16 can be constructed of typical die materials and by typical die making processes. The die assembly 14 can be constructed of sufficient size and strength to be used with commonly forged materials and accommodated in conventional die press machines 10.
In the use and operation of the means for forming metal parts of this invention, it is seen the die assembly 14 can be used with conventional die press machines and vacuum ladling systems and only requires a separate fluid system for heating and cooling the die. The means of forming metal parts can be used in continuous pouring type operations where a die assembly is used to repeatedly form metal parts in a manufacturing type environment.
As will be apparent from the foregoing description of the applicant's method and means for forming metal parts. relatively simple method and means have been provided to form metal parts. The method and means accomplish the forming of metal parts which are adaptable to manufacturing processes and existing type manufacturing machines.
While the invention has been described in conjunction with preferred specific embodiments thereof. it will be understood that this description is intended to illustrate and not to limit the scope of the invention, which is defined by the following claims.
I claim:
1. Apparatus for forming metal parts comprising:
a. a separable die housing means containing a separable die means having a piston member having in an end portion a die block member having an especially shaped die face.
b. means to separate and connect said die housing means and said die means,
c. means to fill said die means with molten metal having a vacuum pressure filling means having a passageway into said die means for the molten metal to pass and a passageway from said die means to remove by vacuum pressure air entrapped in said die means when in a closed position,
d. means to exert forging pressure to form the molten metal in said die means.
e. means to heat and cool said die means. and
f. means to remove a formed part from said die means,
g. said means to separate and connect said die housing means and said die means is a die press means having means to separately move said die housing means, said die means and said means to remove a formed part. and
h. said means to heat and cool said die means in a passageway through said die housing means and said die means adapted to pass fluid.
said die means being adapted to receive a quantity of molten metal in said die means. form same under pressure. cool same simultaneously and hold same until solidified then open for removal of the formed part.
2. The means of forming metal parts as described in claim I, wherein:
a. said die housing means has two members mountable in the jaws of the die press means.
b. said piston is translatably mounted in said die housing and extends from said die housing means connectible to the die press means. said piston is adapted to be displaced within said die housing means,
c. said means to heat and cool said die means has a first passageway through a die housing member behind said piston, a second passageway through said piston into said die block. a third passageway from said die block through said housing member.
d. said means to remove a formed part is a part ejector member extendable through said piston. dis placeable by the die press means. said part ejector member is extendable to press the formed part and remove same and retractable into said die means so the formed part can be removed from said die means generally. and
c. said die face is the end surface of said die block.
3. The means of forming metal parts as described in claim 2, wherein:
a. said die means has a pair of said piston members translatably mounted in said die housing means adapted.
4. The means of forming metal parts as described in claim 3, wherein:
a. said die block members have a cavity therein behind said face thereof adapted to contain a quantity of fluid of said means to heat and cool said die means,
b. said piston members have a sleeve member translatably mounted adapted to be positioned therearound the inner end portions of same when said die faces are close together. and
c. said sleeve member has a passageway therethrough adapted to pass the molten metal. a passagewy adaped to communicate the vacuum pressure of said means to ladle the molten metal and passageways adapted to pass the fluid of said means to heat and cool said die means from said die block members to said housing members.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 1 3,921,707
DATED November 25, 1975 rnvemorus) Leonard H. Killion, E. J. Blair It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 4, line 13, after "connecting" insert to.
Claim 1, Column 8, line I, delete "in" and insert therefor is--.
Claim 4, Column 8, line 47, delete "passagewy" and Insert therefor passageway--- Signed and Sealed this thirteenth Day Of April 1976 [SEAL] Arrest:
RUTH C. MASON C. MARSHALL DANN AIM ffitfl' (rnnmissimrcr nj'lau'ms and Trademarks

Claims (4)

1. Apparatus for forming metal parts comprising: a. a separable die housing means containing a separable die means having a piston member having in an end portion a die block member having an especially shaped die face, b. means to separate and connect said die housing means and said die means, c. means to fill said die means with molten metal having a vacuum pressure filling means having a passageway into said die means for the molten metal to pass and a passageway from said die means to remove by vacuum pressure air entrapped in said die means when in a closed position, d. means to exert forging pressure to form the molten metal in said die means, e. means to heat and cool said die means, and f. means to remove a formed part from said die means, g. said means to separate and connect said die housing means and said die means is a die press means having means to separately move said die housing means, said die means and said means to remove a formed part, and h. said means to heat and cool said die means in a passageway through said die housing means and said die means adapted to pass fluid, said die means being adapted to receive a quantity of molten metal in said die means, form same under pressure, cool same simultaneously and hold same until solidified then open for removal of the formed part.
2. The means of forming metal parts as described in claim 1, wherein: a. said die housing means has two members mountable in the jaws of the die press means, b. said piston is translatably mounted in said die housing and extends from said die housing means connectible to the die press means, said piston is adapted to be displaced within said die housing means, c. said means to heat and cool said die means has a first passageway through a die housing member behind said piston, a second passageway through said piston into said die block, a third passageway from said die block through said housing member, d. said means to remove a formed part is a part ejector member extendable through said piston, displaceable by the die press means, said part ejector member is extendable to press the formed part and remove same and retractable into said die means so the formed part can be removed from said die means generally, and e. said die face is the end surface of said die block.
3. The means of forming metal parts as described in claim 2, wherein: a. said die means has a pair of said piston members translatably mounted in said die housing means adapted.
4. The means of forming metal parts as described in claim 3, wherein: a. said die block members have a cavity therein behind said face thereof adapted to contain a quantity of fluid of said means to heat and cool said die means, b. said piston members have a sleeve member translatably mounted adapted to be positioned therearound the inner end portions of same when said die faces are close together, and c. said sleeve member has a passageway therethrough adapted to pass the molten metal, a passagewy adaped to communicate the vacuum pressure of said means to ladle the molten metal and passageways adapted to pass the fluid of said means to heat and cool said die means from said die block members to said housing members.
US449912A 1971-06-07 1974-03-11 Means for forming metal parts Expired - Lifetime US3921707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US449912A US3921707A (en) 1971-06-07 1974-03-11 Means for forming metal parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00150467A US3802483A (en) 1971-06-07 1971-06-07 Method of forming metal parts
US449912A US3921707A (en) 1971-06-07 1974-03-11 Means for forming metal parts

Publications (1)

Publication Number Publication Date
US3921707A true US3921707A (en) 1975-11-25

Family

ID=26847694

Family Applications (1)

Application Number Title Priority Date Filing Date
US449912A Expired - Lifetime US3921707A (en) 1971-06-07 1974-03-11 Means for forming metal parts

Country Status (1)

Country Link
US (1) US3921707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637451A (en) * 1984-02-22 1987-01-20 Dbm Industries Limited Die casting mold
CN109773158A (en) * 2019-03-22 2019-05-21 杭州圣檀服饰有限公司 A kind of metal casting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1633088A (en) * 1924-08-06 1927-06-21 Fullilove John Alfred Machine for casting boxes and other hollow metal articles
US1717254A (en) * 1927-09-01 1929-06-11 Polak Josef Casting machine
US2867869A (en) * 1957-10-01 1959-01-13 Hodler Fritz Venting device for die casting machines
US3106002A (en) * 1960-08-08 1963-10-08 Nat Lead Co Die-casting method
US3268960A (en) * 1964-09-08 1966-08-30 Glenn R Morton Method of and means for producing dense articles from molten materials
US3387646A (en) * 1963-09-18 1968-06-11 Multifastener Corp Method and apparatus for highpressure permanent molding
US3472308A (en) * 1966-08-29 1969-10-14 Multifastener Corp Method and apparatus for permanent mold casting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1633088A (en) * 1924-08-06 1927-06-21 Fullilove John Alfred Machine for casting boxes and other hollow metal articles
US1717254A (en) * 1927-09-01 1929-06-11 Polak Josef Casting machine
US2867869A (en) * 1957-10-01 1959-01-13 Hodler Fritz Venting device for die casting machines
US3106002A (en) * 1960-08-08 1963-10-08 Nat Lead Co Die-casting method
US3387646A (en) * 1963-09-18 1968-06-11 Multifastener Corp Method and apparatus for highpressure permanent molding
US3268960A (en) * 1964-09-08 1966-08-30 Glenn R Morton Method of and means for producing dense articles from molten materials
US3472308A (en) * 1966-08-29 1969-10-14 Multifastener Corp Method and apparatus for permanent mold casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637451A (en) * 1984-02-22 1987-01-20 Dbm Industries Limited Die casting mold
CN109773158A (en) * 2019-03-22 2019-05-21 杭州圣檀服饰有限公司 A kind of metal casting device

Similar Documents

Publication Publication Date Title
US3268960A (en) Method of and means for producing dense articles from molten materials
US3106002A (en) Die-casting method
US20060151138A1 (en) Semi-solid molding method
US4633931A (en) Method of producing fiber-reinforced composite body
US3810505A (en) Die casting method
CA2068058C (en) Closed shot die casting system
US2356338A (en) Extrusion-molding method
US3921707A (en) Means for forming metal parts
US3802483A (en) Method of forming metal parts
US4779666A (en) Die casting process and apparatus comprising in-die plunger densification
US2244816A (en) Die casting apparatus
US2411999A (en) Pressure extrusion molding
US6901991B2 (en) Semi-solid molding apparatus and method
JPH0561026B2 (en)
US2454961A (en) Method and apparatus for casting aluminum
US3356131A (en) Die casting apparatus
JP2743789B2 (en) Non-porous die casting equipment
US3951200A (en) Vapor casting method and apparatus
DE2417318C3 (en) Device for the liquid pressing of one-piece metal moldings
CN106694846A (en) Multi-pouring-gate die-casting die
CN207873073U (en) A kind of thin-wall Mg alloy workpiece die casting molding system
US3760864A (en) Method of casting in thin-walled molds
US20050109479A1 (en) Semi-solid metal casting process
US3258818A (en) Method of casting metals
CN104815974B (en) A kind of molten metal forging shaped device and its application method