US3918928A - Shank or back material for high speed steel tools - Google Patents

Shank or back material for high speed steel tools Download PDF

Info

Publication number
US3918928A
US3918928A US403441A US40344173A US3918928A US 3918928 A US3918928 A US 3918928A US 403441 A US403441 A US 403441A US 40344173 A US40344173 A US 40344173A US 3918928 A US3918928 A US 3918928A
Authority
US
United States
Prior art keywords
shank
tool
high speed
steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US403441A
Inventor
Kingo Kiyonaga
Haruki Hada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7995070A external-priority patent/JPS4916008B1/ja
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to US403441A priority Critical patent/US3918928A/en
Application granted granted Critical
Publication of US3918928A publication Critical patent/US3918928A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • ABSTRACT 1 Foreign pp Priority Data A shank or buck material for high speed steel tools. Sept. 14. 1970 Japan 4579951) consisting of an 11110 steel composed of (Ll-(1.6% of carbon (C). 3.0-7.0?4 of chromium (Cr). 0. [-1.0% of [52] US. Cl. 29/l96.1; 75/126 E; 75/126 F vanadium (V). not more than 0.8% of silicon (Si). not [51] Int. Cl 823p 15/18; CZZc 39/14 more than (1.8% of manganese (Mn) and the remain [58] Field of Search 75/126 E. 126 F; 29/1961 der of iron (F).
  • This invention relates to shank or back materials for high speed steel tools of the type in which a blade element consisting of high speed steel and a shank or back are welded together by various welding methods.
  • the shank or back material is required, as an essential condition, to be inexpensive, but in addition, it is required to satisfy such conditions (I) that decarburization or cementation does not occur at the welded portions of both materials during annealing which re sults from the activity difference of carbon contained in both materials, (2) that it will have a sufficient toughness when subjected to a heat treatment at elevated temperatures together with the high speed steel, (3) that it will have an HRC hardness of or higher when subjected to a heat treatment under the same tempering condition as that for the high speed steel, and (4) that it has good weldability and gives a crack-free weld.
  • the carbon diffuses from the shank or back material into the high speed steel material of the blade element, whereby the shank or back material tends to be decarburized and the high speed steel material tends to be cemented at the portions on both sides of the weld.
  • the structural strength of the product tool is degraded.
  • breakage of the tool occurs from the cemented portion of the high speed steel material adjacent to the weld, and in this view, it becomes necessary to add to the shank or back material such alloying elements which will restrain the diffusion of carbon at the welded portion, namely chromium, vanadium, etc., which are effective for lowering the activity of carbon.
  • the methods of heat-treating the welded tools are classified into two types, i.e. a method wherein the shank or back material and the high speed steel are concurrently subjected to quenching and tempering after they are welded together, and a method wherein the high speed steel only is subjected to quenching and tempering after the welding.
  • a method wherein the high speed steel blade and the shank or back are concurrently subjected to quenching and tempering, as in the case of metal band saw, the grain size of the crystals tends to become large, with the result that the tool has a degraded strength and insufficient toughness, and breakage of the shank or back frequently occurs during use of the tool. For avoiding such trouble, it is necessary to add a grain size refining element to the shank or back material.
  • An object of the present invention is to provide a shank or back material for high speed steel tools of the type having a high speed steel blade element and a shank or back welded together, which will not cause decarburization or cementation to occur at the welded portion in the production of such tools.
  • Another object of the invention is to provide a shank or back material for high speed steel tools of the type having a high speed steel blade element and a shank or back welded together, which will have a sufficient toughness and hardness even after the entire tool is subjected to quenching and tempering subsequent to the welding in the production of such tools.
  • Still another object of the invention is to provide a shank or back material for high speed steel tools of the type having a high speed steel blade element and a shank or back welded together, which completely prevents the carburization and cementation of the welded portion, will have sufficient toughness and hardness even after the entire tool is subjected to quenching and tempering subsequent to the welding, has good weldability and gives a crack-free weld, in the production of such tools.
  • the shank or back material according to the present invention consists of an alloy composed of 0.2-0.5 of carbon (C), 3.0-7.0 of chromium (Cr), 0. l-l .0 of vanadium (V), not more than 0.8 of silicon (Si), not more than 0.8 of manganese (Mn) and the remainder of iron (Fe) and impurities, or said alloy further containing 0.02O.3 of niobium (Nb).
  • FIGS. 1(a) and (b) are a set of microphotographs showing the grain size increasing tendency of the crystals during quenching;
  • FIGS. 2(a) and (b) are a set of microphotographs showing the structures of the blade material and the shank or back material at portions adjacent to the weld after both materials are welded together by the electron beam welding and subjected to a constant temperature annealing;
  • FIGS. Il a-c) are a set of microphotograph showing the quenched structures of both materials at the welded portions.
  • FIGS. 4-8 are graphic representations showing the hardness distribution actually measured of both materials at the portions adjacent to the weld.
  • invention c 0.35 0.10 022 0.009 0.009 0.09 4.98 0.02 0.20 009
  • invention A 0.30 0.10 0.29 0.008 0.010 0.07 9.92 0.02 0.29 0.01; Comparative steel E 0.35 0.12 0.20 0.009 0.009 0.09 4.97 0.02 0.27 0.09 0.09 Steclofthe invention F 0.36.
  • FIGS. 2(a) and (b) show microphotographic structration of C is reduced by the addition of Cr because Cr tures at the welded portion of a test piece comprising a has the effect of increasing the resistance to temper blade-constituting high speed steel (AlSl M2) and a softening and an HRC hardness of 45-47 suitable for shank material (comparative steel A welded together the shank or back material can be obtained even when by the electron beam welding method, shown in FIG.
  • FIGS. speed steel and the shank material of the invention 1(a) and (b) are a set of microphotographs of which (steel C) welded together by the same method, as seen FIG. 1(a) is the comparative steel A and FIG. 1(b) is in FIG. 2(b).
  • Each test piece was prepared by shaping the steel E of the present invention which were each material into a plate having thickness of 3 mm, a quenched at 1200C and l250C respectively.
  • the width of 30 mm and a length of 500 mm, welding the steel materials of the invention has the nature of preplates of the respective materials together by electron venting the grain size from becoming large and a rebeam welding, allowing the welded plate to cool, heatmarkable difference is noted between them and the ing it at 900C for 30 minutes, maintaining it at 700C comparative steel A particularly after quenching at for 5 hours and subjecting it to a isothermal annealing temperatures above l200 C which are used for high in air.
  • a ferritic decarurized layer is formed speed steels. in the comparative steel A FIG. 2(a) but such layer is Table 2 Symbol Ouenched at I200C., tempered at 560C. Quenched at I250C., tempered at 560C.
  • Table 2 given above shows the toughness of each manot formed in the steel C of the present invention
  • FIGS. 3(a-c) show micrographic structures at the on a test piece having a thickness of 3 mm, a width of boundary of the weld and the high speed steel of test 5 mm and a length of 30 mm.
  • Each test piece was heatpieces prepared in the manner described above by treated by immersing it in a salt bath held at I200C or using the comparative steel A in FIG. 3(a), the steel B in a salt bath held at 1250C, for 60 seconds, then of the invention in FIG. 3(b) and the steel C of the in quenched in oil, and tempered twice at 560C for l vention in FIG.
  • FIGS. 4-8 show the measured hardness distributions at the welded portion of the conventional steel, the comparative steel and the steel of the instant invention after said respective steels are quenched at l200C, maintained at 560C for 1 hour and tempered in air, and also quenched at 1250C and annealed in the same manner.
  • a curve a represents the hardness distribution of each steel which was tempered after the quenching at I200C
  • a curve I) represents the hardness distribution of the same which was tempered after quenched at 1250C.
  • the hatched portion shows the welded portion of the blade material and the shank material, and the left side of said hatched portion is the blade material and the right side thereof the shank material.
  • FIG. 4 shows the hardness distribution curves when the conventional steel A is used as the shank material. It will be seen that the hardness increases at the portion of the high speed steel adjacent to the weld and decreases at the portion of the shank material adjacent to the weld. This apparently results from the cementation of the high speed steel and decarburization of the shank material during the annealing due to diffusion of carbon from the shank material into the high speed material.
  • FIGS. 5-7 show the hardness distribution curves of the steels B, C and D according to the invention which contains 3 5 and 7 of chromium respectively. The curves in FIG. 5 show less tendency of cementation and decarburization, and the curves in FIG. 7 show uniform hardness distributions and no tendency of cementation and decarburization.
  • FIG. 8 shows the hardness distributions when the comparative steel A containing 10 of chromium is used as the shank material.
  • the activity of carbon in the shank material is excessively lower than that of carbon in the high speed steel, resulting in cementation of the shank material.
  • Carbon partially forms carbides with chromium, vanadium and niobium, and partially forms a solid solution with the matrix to increase the strength of said matrix after quench and tempering.
  • the carbon concentration is restricted in the range of 0.2-0.6 because a concentration lower than 0.2 results in an insufficient hardness of the shank or back material, while a concentration higher than 0.6 results in an extremely low toughness of the same.
  • Chromium partially forms a carbide and partially dissolved in the matrix improving the hardenability of the matrix.
  • the concentration of chromium is specified to be within the range of 3.0-7.0 in the present invention for the above reasons.
  • Vanadium is an element effective for lowering the activity of carbon since it forms a stable carbide. This carbide is hardly soluble in austenite and prevents the growth of grains, and vanadium also increases the resistance to softening of the material.
  • the concentration of vanadium should at least be 0.]
  • a concentration of vanadium exceeding 1 results in a lowering of hardness in relation with carbon and niobium.
  • the material becomes expensive. Therefore, the vanadium concentration is restricted within the range of 0. l-l .0
  • Niobium forms fine special carbides having a high melting point and therefore effectively prevents the grains from becoming large in size. This effect of Niobium is noted from a concentration of 0.02 70, and the grain size becomes smaller and the toughness is remarkably improved as the concentration increases, but is decreased at concentrations higher than 0.3 Pi.
  • Niobium concentration is restricted within the range of 002-03 70. Silicon and manganese are used as deoxidizers. The concentrations of these elements are restricted to be not higher than 0.8 because concentrations higher than the value adversely affect the weldability of the material.
  • the shank or back material according to the instant invention completely eliminate the decarburization and cementation of the weld between the blade material consisting of high speed steel and the shank or back material, by virtue of chromium and vanadium which serve to lower the activity of carbon, and has improved toughness and weldability by virtue of carbon or niobium incorporated therein at a suitable concentration.
  • a tool including a tool portion of known high speed steel material and a shank or back portion welded to said tool portion, the improvement comprising said shank or back portion being of a steel material consisting of 02-06% of carbon, 3.0-7.071 of chromium, 0.1-l of vanadium, 0-0.37c of niobium.
  • said steel material of said shank or back portion prevents decarburization or cementation in the weld between said shank or back portion and said tool portion respectively, said shank or back portion maintaining its toughness when the tool is subjected to heat treatment at high temperatures, and said steel material of the shank or back portion having an HRC hardness of more than 40 when subjected to said heat treatment under the same tempering conditions as for said high speed steel tool portion, said steel material of the shank or back portion having good, crack-free weldability with said high speed steel tool portion.
  • a tool including a tool portion of a known high speed steel material and a shank or back portion welded to said tool portion, the improvement comprising said shank or back portion being of a steel material consisting of 02-06% of carbon, 30-70% of chromium, 0.
  • said steel material of said shank or back portion prevents decarburization or cementation in the weld between said shank or back portion and said tool portion respectively, said shank or back portion maintaining its toughness when the tool is subjected to heat treatment at high temperatures, and said steel material of the shank or back portion having an HRC hardness of more than 40 when subjected to said heat treatment under the same tempering conditions as for said high speed steel tool portion, said steel material of the shank or back portion having good, crack-free weldability with said high speed steel tool portions.
  • a tool according to claim 2, wherein said steel ma terial has a composition consisting of 03-04% of carbon, 40-60% of chromium, 02-05% of vanadium, 0.020.3% of niobium, not more than 0.8% of silicon, not more than 0.8% of manganese and the remainder of iron and inevitable impurities.
  • a tool according to claim I wherein said steel material has a composition consisting of 03-04% of carbon, 37% of chromium, 02-03% of vanadium, not more than 0.2% of silicon, not more than 0.3% of manganese and the remainder of iron and inevitable impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

A shank or back material for high speed steel tools, consisting of an alloy steel composed of 0.2-0.6% of carbon (C), 3.0-7.0% of chromium (Cr), 0.1-1.0% of vanadium (V), not more than 0.8% of silicon (Si), not more than 0.8% of manganese (Mn) and the remainder of iron (F), or said alloy further containing 0.02-0.3% of niobium (Nb). By using the alloy of the invention, a defectfree weld can be obtained, and a strength and toughness degradation can be avoided.

Description

United States Patent 1 1 in] 3,918,928 Kiyonaga et a1. 1 I 51 Nov. 11, 1975 1 1 SHANK 0R BACK MATERIAL FOR HIGH 1.209.6 1 7/1940 Houdremont 75/1211 E SPEED STEEL TOOLS 2.414.211 1/1947 Krilus 29/195 A 7 S908 4/1953 Kirkh} 75/126 E [75] Inventors: Kingo Kiyonaga, Yonugo; Haruki 31191 m m piuson 75/136 E Hada. Yusugi. both of Japan 3.260.579 7/1966 Scales 29/195 A g cj Hit chi Metals Ltd Japan 311411.114 2/1972 Foley 75/116 1:
7') Filed 1973 Primary E.\'umiiwrL. Dewayne Rutledge [21] Appl. No; 403,441 .lszs'ismm Emminer-Arthur J. Steiner Related Us. Applicafion Data .41101'110). Agent. or Firm-Craig & Antonelli 162] Division of Ser No. 164.298. July 20. 1971.
abandoned. 1 ABSTRACT 1 Foreign pp Priority Data A shank or buck material for high speed steel tools. Sept. 14. 1970 Japan 4579951) consisting of an 11110 steel composed of (Ll-(1.6% of carbon (C). 3.0-7.0?4 of chromium (Cr). 0. [-1.0% of [52] US. Cl. 29/l96.1; 75/126 E; 75/126 F vanadium (V). not more than 0.8% of silicon (Si). not [51] Int. Cl 823p 15/18; CZZc 39/14 more than (1.8% of manganese (Mn) and the remain [58] Field of Search 75/126 E. 126 F; 29/1961 der of iron (F). or said alloy further containing 29/195 A (LUZ-(1.3% of niobium (Nb). 8 using the alloy of the invention. 21 defect-free weld can be obtained. and a [561 References Cited strength and toughness degradation can be avoided.
UNITED STATES PATENTS Cl u D I F 2.021.783 11/1935 Hildort... 75/126 E aims ravnng lgures U.S. Patent Nov. 11, 1975 X/OOJ QUE/VCH/NG TEMPERATURE 1200 "6 Sheet 1 /00 OUEA/CH/MG TEMPERATURE 1 /00 1 OUENCH/NG TEMPERATURE /250 "c lNVENTORS meo KIYONAGA and HARUKl HADA (Lrw' aMtmuQQc 5 H022 AWORNEYS US. Patent N0v.1l,1975 Sheet20f5 3,918,928
mvemons KINGO KIYONAGA cal HARUKI HADA cfw pMtomQfiw-nm ATTOR N EYS US. Patent Nov. 11, 1975 Sheet 3 of5 3,918,928
INVENTORS KINGO KIYONAGA an; HARUKI HADA om oMewnm Han ATTORNEYS U.S. Patent Nbv. 11, 1975 Sheet 4 of5 W ZONE 1000 f 5 0 '4 900' g g 35 800 SHA/VK 0- MATH/AL g 700 HIGH s a-0 g 600 STEEL UISTA/VCE FROM BOUNDARY (/7707) 900 i 1 a SHZWK MATERIAL 5 700 3 HIGH g SPEED m STEEL (j M1050 20xv5 [km/v05 FROM BOUNDARY (mm) HARD/V555 (HV) I SHA/VK MdTfR/Al.
DISM/VCE FROM BOUNDARY (/77/77) INVENTORS KINGO KIYONAGA a! HARUKI HADA BY cmi (Inflow 1, 1w
ATTORNEYS US. Patent FIG. 7
Nov. 11, 1975 Sheet 5 of5 3,918,928
/000 V WELOEQ ZONE 0 A 900 l 5 35 800 a SHANK 1 MATERIAL m 700 g l ag 600- E 0 STEEL 500 "i D/STA/VCE FROM BOUNDARY (mm) K WELDEOZOVE I I V HARD/V555 (Hv) HIGH SPEED $7EEL SHAW/f f MATERML 0.60.40.20a20405aa D/SMIVCE FROM BOUNDARY (/77/77) INVENTORS KINGO KlYONAG-A and HARUKI HADA BY Q-aigflktouQQ; H-LQQ ATTORNEY5 SHANK OR BACK MATERIAL FOR HIGH SPEED STEEL TOOLS This is a division of application Ser. No. l64,298 filed July 20, 197], now abandoned.
BACKGROUND OF THE INVENTION l. FIELD OF THE INVENTION This invention relates to shank or back materials for high speed steel tools of the type in which a blade element consisting of high speed steel and a shank or back are welded together by various welding methods.
2. DESCRIPTION OF THE PRIOR ART In the production of cutting tools or the like utilizing high speed steel, it has been practiced, with a view to saving the quantity of expensive high speed steel, to weld a shank or back of a low grade steel to a cutting blade element which is made of high speed steel. For instance, the cutting blade portion of high speed steel and the shank or back of low grade steel are welded by the friction welding or butt welding in case of an end mill cutter, and by the electron beam welding in case of a metal band saw.
The shank or back material is required, as an essential condition, to be inexpensive, but in addition, it is required to satisfy such conditions (I) that decarburization or cementation does not occur at the welded portions of both materials during annealing which re sults from the activity difference of carbon contained in both materials, (2) that it will have a sufficient toughness when subjected to a heat treatment at elevated temperatures together with the high speed steel, (3) that it will have an HRC hardness of or higher when subjected to a heat treatment under the same tempering condition as that for the high speed steel, and (4) that it has good weldability and gives a crack-free weld.
Speaking about the decarburization or cementation of the weld, when the cutting blade element of high speed steel and the shank or back of low grade steel are welded together and annealed at a temperature sufficiently high enough to cause a sufficient diffusion of carbon, the carbon diffuses from the shank or back material into the blade material at the welded portion clue to the activity difference of carbon in both materials, even when the welding is carried out in a protective atmosphere and under such a condition as will not induce decarburization or cementation externally, no matter what welding method is employed. Namely, regardless of the amount of carbon contained in the shank or back material, the carbon diffuses from the shank or back material into the high speed steel material of the blade element, whereby the shank or back material tends to be decarburized and the high speed steel material tends to be cemented at the portions on both sides of the weld. Thus, the structural strength of the product tool is degraded. In the actual tools, it has been acknowledged that breakage of the tool occurs from the cemented portion of the high speed steel material adjacent to the weld, and in this view, it becomes necessary to add to the shank or back material such alloying elements which will restrain the diffusion of carbon at the welded portion, namely chromium, vanadium, etc., which are effective for lowering the activity of carbon.
The methods of heat-treating the welded tools are classified into two types, i.e. a method wherein the shank or back material and the high speed steel are concurrently subjected to quenching and tempering after they are welded together, and a method wherein the high speed steel only is subjected to quenching and tempering after the welding. Where the high speed steel blade and the shank or back are concurrently subjected to quenching and tempering, as in the case of metal band saw, the grain size of the crystals tends to become large, with the result that the tool has a degraded strength and insufficient toughness, and breakage of the shank or back frequently occurs during use of the tool. For avoiding such trouble, it is necessary to add a grain size refining element to the shank or back material.
SUMMARY OF THE INVENTION An object of the present invention is to provide a shank or back material for high speed steel tools of the type having a high speed steel blade element and a shank or back welded together, which will not cause decarburization or cementation to occur at the welded portion in the production of such tools.
Another object of the invention is to provide a shank or back material for high speed steel tools of the type having a high speed steel blade element and a shank or back welded together, which will have a sufficient toughness and hardness even after the entire tool is subjected to quenching and tempering subsequent to the welding in the production of such tools.
Still another object of the invention is to provide a shank or back material for high speed steel tools of the type having a high speed steel blade element and a shank or back welded together, which completely prevents the carburization and cementation of the welded portion, will have sufficient toughness and hardness even after the entire tool is subjected to quenching and tempering subsequent to the welding, has good weldability and gives a crack-free weld, in the production of such tools.
The shank or back material according to the present invention consists of an alloy composed of 0.2-0.5 of carbon (C), 3.0-7.0 of chromium (Cr), 0. l-l .0 of vanadium (V), not more than 0.8 of silicon (Si), not more than 0.8 of manganese (Mn) and the remainder of iron (Fe) and impurities, or said alloy further containing 0.02O.3 of niobium (Nb).
BRIEF DESCRIPTION OF THE DRAWING FIGS. 1(a) and (b) are a set of microphotographs showing the grain size increasing tendency of the crystals during quenching;
FIGS. 2(a) and (b) are a set of microphotographs showing the structures of the blade material and the shank or back material at portions adjacent to the weld after both materials are welded together by the electron beam welding and subjected to a constant temperature annealing;
FIGS. Il a-c) are a set of microphotograph showing the quenched structures of both materials at the welded portions; and
FIGS. 4-8 are graphic representations showing the hardness distribution actually measured of both materials at the portions adjacent to the weld.
PREFERRED EMBODIMENTS OF THE INVENTION Examples of the composition of the steel material according to the invention are shown in Table l, in which symbol A, represents a high speed steel (equivalent to AlSl M2) used for the blade, A a steel similar to SAE 1055 which is commonly being used as a shank or back material, A and A, comparative steels and B, C, D, E, parative steel materials. It will also be seen that the F andGthe shank or back matenals of the invention. toughness increases as the concentration of Cr in- Table l Symbol C Si Mn P S Ni Cr Mn W V Co Cu Nb Remarks A. 0.201 0.22 0.12 0.022 0002 0.0x 4.0x 4.81: 0.20 [.84 0.43 0.07 131.010 material A1s1M2 A, 9 0.20 0.35 0.009 0.003 0.09 0.01 0.02 0.01 0.0x COI'IYUnllOmtI $1001 equivalent to SAE 1055 A 0.54 ().l6 0.37 0009 0.0]0 U.ll l.l6 0.03 0.32 0.l0 CompurutivcStcel B 0.40 0.19 0.31 0.001 1 0.0014 0.10 3.01 0.02 0.27 0.09 Slccltlflht? invention c 0.35 0.10 022 0.009 0.009 0.09 4.98 0.02 0.20 009 Stecloi'the invention 0.31 0.14 0.30 0.009 0.010 0.07 0.241 1 0.03 0.2x 0.03 SIBLIOflhC 1) invention A, 0.30 0.10 0.29 0.008 0.010 0.07 9.92 0.02 0.29 0.01; Comparative steel E 0.35 0.12 0.20 0.009 0.009 0.09 4.97 0.02 0.27 0.09 0.09 Steclofthe invention F 0.36. 0.14 0.28 0.010 0.009 0.09 4.92 0.02 0.2x 0.09 0.11; 51881011110 invention 0 0.35 0,14 027 0.010 0.009 0.0x 4.95 0.02 0.22 0.014 0.30 slcclfiflht.
invention A;,, B, C, D and A are materials in which the concencreases up to 5 but remains substantially the same tration of Cr is varied, and E, F and G are materials in over 5 which the concentration of Nb is varied. The concen- FIGS. 2(a) and (b) show microphotographic structration of C is reduced by the addition of Cr because Cr tures at the welded portion of a test piece comprising a has the effect of increasing the resistance to temper blade-constituting high speed steel (AlSl M2) and a softening and an HRC hardness of 45-47 suitable for shank material (comparative steel A welded together the shank or back material can be obtained even when by the electron beam welding method, shown in FIG. the shank or trunk material is subjected to a heat treat- 2(a) and that of a test piece comprising the same high ment concurrently with the high speed steel. FIGS. speed steel and the shank material of the invention 1(a) and (b) are a set of microphotographs of which (steel C) welded together by the same method, as seen FIG. 1(a) is the comparative steel A and FIG. 1(b) is in FIG. 2(b). Each test piece was prepared by shaping the steel E of the present invention which were each material into a plate having thickness of 3 mm, a quenched at 1200C and l250C respectively. The width of 30 mm and a length of 500 mm, welding the steel materials of the invention has the nature of preplates of the respective materials together by electron venting the grain size from becoming large and a rebeam welding, allowing the welded plate to cool, heatmarkable difference is noted between them and the ing it at 900C for 30 minutes, maintaining it at 700C comparative steel A particularly after quenching at for 5 hours and subjecting it to a isothermal annealing temperatures above l200 C which are used for high in air. As shown, a ferritic decarurized layer is formed speed steels. in the comparative steel A FIG. 2(a) but such layer is Table 2 Symbol Ouenched at I200C., tempered at 560C. Quenched at I250C., tempered at 560C.
Breaking Maximum deflection Absorbed Hardness Breaking Maximum deflection Absorbed Hardness load (kg) (mm) energy (kgm) (HRC) loud (kg) (mm) energy (kgm) (HRC) A, I89 [.08 O.l31 45.2 I82 0.93 0.092 44.9
A; I96 [.20 0188 45.6 184 L04 0.144 459 B I90 1.75 0.292 45.5 I78 L68 0.268 45.7
C' I90 2.11 0.376 45.5 I76 L86 0.312 45.4
D 206 I 94 0.364 45.0 I87 I90 0.314 45.4
A, 203 L93 0.350 45.] I86 L83 0.303 45.0
E 203 2.33 0.436 46.6 I95 2.l3 0.402 46.8
G 203 Z 66 0.499 46.4 I83 265 0.45] 46.4
Table 2 given above shows the toughness of each manot formed in the steel C of the present invention, FIG.
terial obtained by a transverse breaking test conducted 2(b). FIGS. 3(a-c) show micrographic structures at the on a test piece having a thickness of 3 mm, a width of boundary of the weld and the high speed steel of test 5 mm and a length of 30 mm. Each test piece was heatpieces prepared in the manner described above by treated by immersing it in a salt bath held at I200C or using the comparative steel A in FIG. 3(a), the steel B in a salt bath held at 1250C, for 60 seconds, then of the invention in FIG. 3(b) and the steel C of the in quenched in oil, and tempered twice at 560C for l vention in FIG. 3(c), which, after the annealing, were hour and cooled in air, and the transverse breaking test respectively immersed in a salt bath at l250C and subwas conducted by using an Amsler universal testing jected to quenching in oil. In these microphotographs, machine by supporting the test piece at two points (the the portions appearing in etched black color between span being 10 mm). the grains are intergranular fused layers. It will be seen It will be seen from Table 2 that the steel materials of that the intergranular fused layers are present in a large the invention, particularly those containing Nb, are number in the comparative steel A of FIG. 3(a) but greater in toughness than the conventional and comdecrease as the concentration of Cr increases, and are extremely decreased in the steel B of the invention containing 3 7? ofCr, FIG. 3(h) and not present at all in the steel C of the invention containing 5 7r of Cr, FIG. 3(0).
It has been known that the emergence of intergranular fused layers in high speed steel has a particularly close relation with excess carbon, and this substantiates the cementation of the high speed steel.
FIGS. 4-8 show the measured hardness distributions at the welded portion of the conventional steel, the comparative steel and the steel of the instant invention after said respective steels are quenched at l200C, maintained at 560C for 1 hour and tempered in air, and also quenched at 1250C and annealed in the same manner. In the diagrams, a curve a represents the hardness distribution of each steel which was tempered after the quenching at I200C and a curve I) represents the hardness distribution of the same which was tempered after quenched at 1250C. The hatched portion shows the welded portion of the blade material and the shank material, and the left side of said hatched portion is the blade material and the right side thereof the shank material.
FIG. 4 shows the hardness distribution curves when the conventional steel A is used as the shank material. It will be seen that the hardness increases at the portion of the high speed steel adjacent to the weld and decreases at the portion of the shank material adjacent to the weld. This apparently results from the cementation of the high speed steel and decarburization of the shank material during the annealing due to diffusion of carbon from the shank material into the high speed material. FIGS. 5-7 show the hardness distribution curves of the steels B, C and D according to the invention which contains 3 5 and 7 of chromium respectively. The curves in FIG. 5 show less tendency of cementation and decarburization, and the curves in FIG. 7 show uniform hardness distributions and no tendency of cementation and decarburization. FIG. 8 shows the hardness distributions when the comparative steel A containing 10 of chromium is used as the shank material. In this case, the activity of carbon in the shank material is excessively lower than that of carbon in the high speed steel, resulting in cementation of the shank material.
In order to compare the weldabilities of the respective shank materials with each other, with respect to the blade-constituting high speed steel, the transverse breaking load, the maximum deflection and the absorbed energy were measured on a test piece comprising the high speed steel and the respective shank material welded together by supporting said tests test on both sides of the weld and applying a concentrated load thereon. the results are shown in Table 3 given below.
Table 3-continued Breaking Maximum Absorbed HRC hardness load dellecenergy Sample (kg) tion lkgm) Shank Blade (mm) material material invention From Table 3, it will be seen that the steels of the present invention also excel the comparative steel in weldability. Each test piece was prepared by concur rently quenching the blade material and the shank material and subjecting the same to tempering.
Now, the reasons for which the concentrations of the respective elements in the steel materials of the invention are restricted, will be explained.
Carbon partially forms carbides with chromium, vanadium and niobium, and partially forms a solid solution with the matrix to increase the strength of said matrix after quench and tempering. In the present invention, the carbon concentration is restricted in the range of 0.2-0.6 because a concentration lower than 0.2 results in an insufficient hardness of the shank or back material, while a concentration higher than 0.6 results in an extremely low toughness of the same. Chromium partially forms a carbide and partially dissolved in the matrix improving the hardenability of the matrix.
An increasing concentration of chromium tends to lower the carbon activity, so that the diffusion of carbon from the shank or back material into the high speed steel is lessened and accordingly the decarburization of the shank or back material and cementation of the high speed steel are lessened. This tendency appears from the chromium concentration of 3 and the decarburization and cementation of the weld can be prevented at the chromium concentration of around 5 However, when the concentration of chromium exceeds 7 the self-hardening property of the weld is enhanced so highly that the hardness of the weld after the annealing increases, making the subsequent working difficult. At the same time, an instable retained austenite is formed at the weld by the quenching and tempering. Furthennore, because of the excessively low activity of carbon, diffusion of carbon from the high speed steel into the shank or back material takes place, with the result that said shank or back material tends to be carburized and the weldability becomes degraded. The concentration of chromium is specified to be within the range of 3.0-7.0 in the present invention for the above reasons. Vanadium is an element effective for lowering the activity of carbon since it forms a stable carbide. This carbide is hardly soluble in austenite and prevents the growth of grains, and vanadium also increases the resistance to softening of the material. Therefore, the concentration of vanadium should at least be 0.] However, a concentration of vanadium exceeding 1 results in a lowering of hardness in relation with carbon and niobium. In addition, the material becomes expensive. Therefore, the vanadium concentration is restricted within the range of 0. l-l .0 Niobium forms fine special carbides having a high melting point and therefore effectively prevents the grains from becoming large in size. This effect of Niobium is noted from a concentration of 0.02 70, and the grain size becomes smaller and the toughness is remarkably improved as the concentration increases, but is decreased at concentrations higher than 0.3 Pi. Thus,
the Niobium concentration is restricted within the range of 002-03 70. Silicon and manganese are used as deoxidizers. The concentrations of these elements are restricted to be not higher than 0.8 because concentrations higher than the value adversely affect the weldability of the material.
As described hereinabove, the shank or back material according to the instant invention completely eliminate the decarburization and cementation of the weld between the blade material consisting of high speed steel and the shank or back material, by virtue of chromium and vanadium which serve to lower the activity of carbon, and has improved toughness and weldability by virtue of carbon or niobium incorporated therein at a suitable concentration.
What we claim is:
I. In a tool including a tool portion of known high speed steel material and a shank or back portion welded to said tool portion, the improvement comprising said shank or back portion being of a steel material consisting of 02-06% of carbon, 3.0-7.071 of chromium, 0.1-l of vanadium, 0-0.37c of niobium. not more than 0,871 of silicon, not more than 0.8% of manganese and the remainder of iron and inevitable impurities, wherein said steel material of said shank or back portion prevents decarburization or cementation in the weld between said shank or back portion and said tool portion respectively, said shank or back portion maintaining its toughness when the tool is subjected to heat treatment at high temperatures, and said steel material of the shank or back portion having an HRC hardness of more than 40 when subjected to said heat treatment under the same tempering conditions as for said high speed steel tool portion, said steel material of the shank or back portion having good, crack-free weldability with said high speed steel tool portion.
2. In a tool including a tool portion of a known high speed steel material and a shank or back portion welded to said tool portion, the improvement comprising said shank or back portion being of a steel material consisting of 02-06% of carbon, 30-70% of chromium, 0. l-l.0% of vanadium, 0.02-0.3% of niobium, not more than 0.8% of silicon, not more than 0.8% of manganese and the remainder of iron and inevitable impurities, wherein said steel material of said shank or back portion prevents decarburization or cementation in the weld between said shank or back portion and said tool portion respectively, said shank or back portion maintaining its toughness when the tool is subjected to heat treatment at high temperatures, and said steel material of the shank or back portion having an HRC hardness of more than 40 when subjected to said heat treatment under the same tempering conditions as for said high speed steel tool portion, said steel material of the shank or back portion having good, crack-free weldability with said high speed steel tool portions.
3. A tool according to claim 2, wherein said steel ma terial has a composition consisting of 03-04% of carbon, 40-60% of chromium, 02-05% of vanadium, 0.020.3% of niobium, not more than 0.8% of silicon, not more than 0.8% of manganese and the remainder of iron and inevitable impurities.
4. A tool according to claim 2, wherein said steel material has a composition consisting of 03-04% of carbon, about 5% of chromium, 02-03% of vanadium, 0.09-O.3% of niobium, not more than 0.2% of silicon, not more than 0.3% of manganese and the remainder of iron and inevitable impurities.
5. A tool according to claim I, wherein said steel material has a composition consisting of 03-04% of carbon, 37% of chromium, 02-03% of vanadium, not more than 0.2% of silicon, not more than 0.3% of manganese and the remainder of iron and inevitable impurities.

Claims (5)

1. IN A TOOL INCLUDING A TOOL PORTION OF KNOWN HIGH SPEED STEEL MATERIAL AND A SHANK OR BACK PORTION WELDED TO SAID TOOL PORTION, THE IMPROVEMENT COMPRISING SAID SHANK OR BACK PORTION BEING OF STEEL MATERIAL CONSISTING OF 0.2-0.6% OF CARBON, 3.0-7.0% OF CHROMIUM, 0.1-1.0% OF VANADIUM 0-0.3% OF NIOBUIM, NOT MORE THAN 0.8% OF SILICON, NOT MORE THAN 0.8% OF MANGANESE AND THE REMAINDER OF IRON AND INEVITABLE IMPURITIES, WHEREIN SAID STEEL MATERIAL OF SAID SHANK OR BACK PORTION PREVENTS DECARBURIZATION OR CEMENTATION IN THE WELD BETWEEN SAID SHANK OR BACK PORTION AND SAID TOOL PORTION RESPECTIVELY, SAID SHANK OR BACK PORTION MAINTAINING ITS TOUGHNESS WHEN THE TOOL IS SUBJECTED TO HEAT TREATMENT AT HIGH TEMPERATURES, AND SAID STEEL MATERIAL OF THE SHANK OR BACK PORTION HAVING AN HRC HARDNESS OF MORE THAN 40 WHEN SUBJECTED TO SAID HEAT TREATMENT UNDER THE SAME TEMPERING CONDITIONS AS FOR SAID HIGH SPEED STEEL TOOL PORTION, SAID STEEL MATERIAL OF THE SHANK OR BACK PORTION HAVING GOOD, CRACK-FREE WELDABILITY WITH SAID HIGH SPEED TOOL PORTION.
2. In a tool including a tool portion of a known high speed steel material and a shank or back portion welded to said tool portion, the improvement comprising said shank or back portion being of a steel material consisting of 0.2-0.6% of carbon, 3.0-7.0% of chromium, 0.1-1.0% of vanadium, 0.02-0.3% of niobium, not more than 0.8% of silicon, not more than 0.8% of manganese and the remainder of iron and inevitable impurities, wherein said steel material of said shank or back portion prevents decarburization or cementation in the weld between said shank or back portion and said tool portion respectively, said shank or back portion maintaining its toughness when the tool is subjected to heat treatment at high temperatures, and said steel material of the shank or back portion having an HRC hardness of more than 40 when subjected to said heat treatment under the same tempering conditions as for said high speed steel tool portion, said steel material of the shank or back portion having good, crack-free weldability with said high speed steel tool portions.
3. A tool according to claim 2, wherein said steel material has a composition consisting of 0.3-0.4% of carbon, 4.0-6.0% of chromium, 0.2-0.5% of vanadium, 0.02-0.3% of niobium, not more than 0.8% of silicon, not more than 0.8% of manganese and the remainder of iron and inevitable impurities.
4. A tool according to claim 2, wherein said steel material has a composition consisting of 0.3-0.4% of carbon, about 5% of chromium, 0.2-0.3% of vanadium, 0.09-0.3% of niobium, not more than 0.2% of silicon, not more than 0.3% of manganese and the remainder of iron and inevitable impurities.
5. A tool according to claim 1, wherein said steel material has a composition consisting of 0.3-0.4% of carbon, 3-7% of chromium, 0.2-0.3% of vanadium, not more than 0.2% of silicon, not more than 0.3% of manganese and the remainder of iron and inevitable impurities.
US403441A 1970-09-14 1973-10-04 Shank or back material for high speed steel tools Expired - Lifetime US3918928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US403441A US3918928A (en) 1970-09-14 1973-10-04 Shank or back material for high speed steel tools

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7995070A JPS4916008B1 (en) 1970-09-14 1970-09-14
US16429871A 1971-07-20 1971-07-20
US403441A US3918928A (en) 1970-09-14 1973-10-04 Shank or back material for high speed steel tools

Publications (1)

Publication Number Publication Date
US3918928A true US3918928A (en) 1975-11-11

Family

ID=27303146

Family Applications (1)

Application Number Title Priority Date Filing Date
US403441A Expired - Lifetime US3918928A (en) 1970-09-14 1973-10-04 Shank or back material for high speed steel tools

Country Status (1)

Country Link
US (1) US3918928A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036640A (en) * 1977-01-06 1977-07-19 Carpenter Technology Corporation Alloy steel
US4058650A (en) * 1975-07-11 1977-11-15 Hitachi Metals, Ltd. Back material of metal band saw high in fatigue strength
US4178417A (en) * 1977-03-23 1979-12-11 The Japan Steel Works, Ltd. Clad steel
US5334459A (en) * 1992-07-06 1994-08-02 Sandvik Ab Compound body
US20050058517A1 (en) * 2003-07-25 2005-03-17 Marian Dziag Gear cutter with replaceable blades
EP1582288A1 (en) * 2004-04-02 2005-10-05 Ludger Weier Process and welding wire for the treatment of worn filling chambers for pressure casting
US20070023485A1 (en) * 2005-07-29 2007-02-01 Snecma Method of repairing a blade of a one-piece bladed disc of a turbomachine and test piece for implementing the method
US20160167150A1 (en) * 2013-07-29 2016-06-16 D.G. Weld S.R.L. Method for coating, with metallic material, bodies made of spheroidal cast iron, and plans for moulds of machines for aluminium die casting made with said method
EP3744458A1 (en) * 2019-05-28 2020-12-02 Voestalpine Precision Strip GmbH Cutting member for a chainsaw and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2021783A (en) * 1931-11-20 1935-11-19 Timken Roller Bearing Co Alloy steel and articles made therefrom
US2209623A (en) * 1940-07-30 Manufacture of high speed steels
US2414231A (en) * 1944-09-11 1947-01-14 Charles E Kraus Cutting tool and tip therefor
US2590835A (en) * 1948-12-16 1952-04-01 Firth Vickers Stainless Steels Ltd Alloy steels
US3092491A (en) * 1957-05-02 1963-06-04 Crucible Steel Co America High strength alloy steel for atmospheric and elevated temperature service
US3260579A (en) * 1962-02-14 1966-07-12 Hughes Tool Co Hardfacing structure
US3640114A (en) * 1967-07-27 1972-02-08 Teledyne Inc Method of hot rolling metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209623A (en) * 1940-07-30 Manufacture of high speed steels
US2021783A (en) * 1931-11-20 1935-11-19 Timken Roller Bearing Co Alloy steel and articles made therefrom
US2414231A (en) * 1944-09-11 1947-01-14 Charles E Kraus Cutting tool and tip therefor
US2590835A (en) * 1948-12-16 1952-04-01 Firth Vickers Stainless Steels Ltd Alloy steels
US3092491A (en) * 1957-05-02 1963-06-04 Crucible Steel Co America High strength alloy steel for atmospheric and elevated temperature service
US3260579A (en) * 1962-02-14 1966-07-12 Hughes Tool Co Hardfacing structure
US3640114A (en) * 1967-07-27 1972-02-08 Teledyne Inc Method of hot rolling metal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058650A (en) * 1975-07-11 1977-11-15 Hitachi Metals, Ltd. Back material of metal band saw high in fatigue strength
US4036640A (en) * 1977-01-06 1977-07-19 Carpenter Technology Corporation Alloy steel
US4178417A (en) * 1977-03-23 1979-12-11 The Japan Steel Works, Ltd. Clad steel
US5334459A (en) * 1992-07-06 1994-08-02 Sandvik Ab Compound body
US20050058517A1 (en) * 2003-07-25 2005-03-17 Marian Dziag Gear cutter with replaceable blades
EP1582288A1 (en) * 2004-04-02 2005-10-05 Ludger Weier Process and welding wire for the treatment of worn filling chambers for pressure casting
US20070023485A1 (en) * 2005-07-29 2007-02-01 Snecma Method of repairing a blade of a one-piece bladed disc of a turbomachine and test piece for implementing the method
US7825348B2 (en) * 2005-07-29 2010-11-02 Snecma Method of repairing a blade of a one-piece bladed disc of a turbomachine and test piece for implementing the method
US20160167150A1 (en) * 2013-07-29 2016-06-16 D.G. Weld S.R.L. Method for coating, with metallic material, bodies made of spheroidal cast iron, and plans for moulds of machines for aluminium die casting made with said method
EP3744458A1 (en) * 2019-05-28 2020-12-02 Voestalpine Precision Strip GmbH Cutting member for a chainsaw and method of manufacturing the same
WO2020239925A1 (en) * 2019-05-28 2020-12-03 Voestalpine Precision Strip Gmbh Cutting element for a saw chain and method for the production thereof

Similar Documents

Publication Publication Date Title
JP2956324B2 (en) Bearing steel with excellent workability and rolling fatigue
RO115276B1 (en) Improved workability martensitic stainless steel
US3918928A (en) Shank or back material for high speed steel tools
US4058650A (en) Back material of metal band saw high in fatigue strength
EP0236505A1 (en) Case-hardening steel and process for its production
US3926622A (en) Pitting resisting alloy steels
JPH0253506B2 (en)
JPH05214484A (en) High strength spring steel and its production
JPH06335712A (en) Wear-resistant and seizing-resistant roll for hot rolling
JPS59182952A (en) Case hardening steel
US3834897A (en) Low-carbon,high-strength structural steel with good weldability
JPH0555585B2 (en)
JPH04143253A (en) Bearing steel excellent in rolling fatigue characteristic
JP4377973B2 (en) Steel sheet with excellent local ductility and heat treatment
JP3716073B2 (en) Manufacturing method of hot forged parts with excellent machinability and fatigue characteristics
US4946645A (en) Steel for gears, having high strength, toughness and machinability
JPH0426739A (en) Steel for hot tube manufacturing tool and hot tube manufacturing tool thereof
US2585372A (en) Method of making low-alloy steel
JPS5910991B2 (en) Metal band saw body material with excellent labor strength and weldability
JPH04354852A (en) High hardness shank material or barrel material for high speed steel tool
JP2753998B2 (en) Carburizing steel with few carburized abnormal layers
JPS6112022B2 (en)
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPS61133366A (en) Case hardening steel for cold forging provided with free-machinability
JPH0811313B2 (en) TIG welding wire for Cr-Mo steel