US3915626A - Oxy-oil burner - Google Patents
Oxy-oil burner Download PDFInfo
- Publication number
- US3915626A US3915626A US463010A US46301074A US3915626A US 3915626 A US3915626 A US 3915626A US 463010 A US463010 A US 463010A US 46301074 A US46301074 A US 46301074A US 3915626 A US3915626 A US 3915626A
- Authority
- US
- United States
- Prior art keywords
- nozzle
- oil
- housing
- burner
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 230000001590 oxidative effect Effects 0.000 claims abstract description 30
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 238000002485 combustion reaction Methods 0.000 claims abstract description 10
- 239000012809 cooling fluid Substances 0.000 claims description 8
- 239000000446 fuel Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 abstract description 19
- 238000000889 atomisation Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 description 19
- 238000010168 coupling process Methods 0.000 description 19
- 238000005859 coupling reaction Methods 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102220488234 Uromodulin-like 1_F23D_mutation Human genes 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 oil under pressure Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
- F23D11/12—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour characterised by the shape or arrangement of the outlets from the nozzle
Definitions
- Appl' 463010 A burner having a nozzle end for producing a flame by combustion of oil and an oxidizing fluid.
- the burner [52] US. Cl. 431/354; 239/ 1323; 239/4245 nozzle contains a plurality of mixing ports wherein the [51] Int. Cl. B05B 15/00; F23D 15/02 Oil and i izing fl i r mbined to ff miza- [58] Field of Search 239/1321, 132.3, 424, n f h oil n mixing f h oil and oxi izing fl id.
- This invention pertains to an oxy-oil burner of the type used in melting vessels for melting primary metals and nonmetallic materials, such as glass and ceramics. Such burners are commonly employed to melt large volumes of a metallurgical material, such as copper or copper-bearing ore, that is to be subsequently refined. The burners are normally placed in the wall or in the roof of a furnace and employ an oxy-oil mixture that is combusted and directed at the metals being heated.
- Oxy-oil burners that have found acceptance in the metallurgical industry are shown in US. Pat. Nos. 3,224,679, 3,644,076, and 3,663,153. These patents show generally a single orifice burner wherein an oxidizing fluid, e.g oxygen, is combined with a hydrocarbon liquid, e.g. oil, to produce a flame. The flame is directed outwardly of the burner and towards the articles to be heated.
- the burners are characterized in that the mixing of the oxidizing fluid and the oil is accomplished by a bluff body or doorknob-type affair at the discharge end of the burner to assure that atomization of the oil and mixing of the oil and oxygen take place. Burners of this type generally have significant cooling problems because of the projecting bluff body and tend to operate at high noise levels and provide only a limited size of flame envelope.
- the present invention relates to an oxy-oil burner that can produce melting temperatures for primary metal refining vessels using oil and an oxidizing fluid to provide a flame.
- the burners according to the present invention are fluid cooled and provided with a plurality of mixing ports on the outward end of the burner nozzle to significantly decrease the operating noise level of the burners.
- the mixing ports together with a novel method of introducing the oil to the ports provide for rapid atomization of the oil and mixing of the oil and oxidizing fluid, with the net effect being to help retain the base of the flame front at or inwardly of the mouth of the ports, and, thus the flame appears to be on the front surface of the nozzle to minimize operating noise levels.
- Burners according to the present invention are readily fabricated and can be made in two sections with a quick-change capability so that the nozzle end can be replaced.
- FIG. 1 there is shown a burner 10 having a two-piece housing 12 and 14.
- the housing sections 12-14 are secured together by a quick-disconnect coupling 16 such as manufactured and sold under the trademark VICTAULIC by the Victaulic Company of America.
- Such couplings 16 are well known in the industry and which lock the two sections 12-14 together by means of a pair of circumferential grooves 18 and 20 disposed in housing sections 12-l4.
- As an integral part of the coupling there is a gasket or sealing member 22 to prevent fluid leaks from the burner.
- the upper section 12 of the burner 10 has an end cap 24 affixed thereto as by a circumferential weld 26.
- the cap 24 contains a central opening 28 for receiving a longitudinal conduit 30, the purpose of which will be explained hereinafter.
- a recess on surface 28 contains an O-ring-type sealing member 32 to insure fluidtight sealing of the cap 24 to the conduit 30.
- Cap 24 has attached thereto a fitting 34, such as an elbow, which fitting is suitable for receiving a threaded connection as by threads 36.
- Housing section 12 contains a large circular opening 38 over which is fastened a coupling 40 for receiving a mating threaded fluid conduit not shown.
- Coupling 40 contains suitable threads 42 and can be flange welded to housing section 12 as by circumferential weld 44.
- Housing section 12 of burner 10, also called the service end of the burner 10, includes a second smaller diameter aperture 46.
- Aperture 46 has in communication outwardly of the housing a coupling 48 which coupling has a series of threads 50 for receiving a fluid conduit not shown.
- Coupling 48 can be flange welded to housing section 12 as by a circumferential weld 52.
- Housing section 14 contains an aperture 54 and a suitable mating coupling 56.
- Coupling 56 has a series of threads 58 for receiving a fluid conduit and can be flange welded to housing section 14 as by weld 60.
- Disposed inwardly from housing section 14 and concentrically thereto is an annular sleeve 62.
- the annular sleeve 62 is spaced apart at the service end of the housing from the housing section 14 by a spacer ring member 64; ring member 64 is regidly affixed to housing section 12.
- Spacer ring 64 contains an annular groove facing sleeve 62, the annular groove containing a suitable sealing member such as O-ring 66.
- the spacer ring 64 and O-ring seal 66 provide means by which the burner can be readily disassembled and also assures a fluidtight seal between the annulus defined by the sleeve 62 and housing section 14 at the service end of the burner.
- a plurality of spacers 68 position the central conduit 30 and hold it rigidly in place.
- the forward end of housing section 14 of burner has a nozzle 70.
- the nozzle 70 is rigidly fixed to housing 14 and sleeve 62 as by circumferential welds 72, 74 respectively and helps space sleeve 62 from the housing section 14 at the nozzle end of the burner.
- the nozzle 70 has a central chamber 76 which chamber communicates with the projecting end of conduit 30.
- Nozzle 70 includes a plurality of cylindrical ports 78 and between the ports 78 radial passages 80.
- the radial passages 80 are made to communicate with the annulus defined by the outer surface of sleeve 62 and the inner surface of housing section 14 thereby defining a continuous passage between conduit 30, nozzle 70, the water jacket defined by the sleeve, and housing (62-14 respectively), and coupling 56.
- the nozzle ports 78 open on the tapered conical portion 81 of the face (81-82) of the nozzle 70, extending inwardly-to the interior of the burner 10 which interior is a torus shaped (cross-section) passage extending the length of the burner and defined by the sleeve 62 and the conduit 30.
- the end of the port 78 opening onto surface 81 is generally referred to as the mouth of the port.
- Mounted at the inward surface 84 of nozzle 70 is an oil ring 86.
- the oil ring 86 contains a plurality of generally rectangular apertures 88 with one aperture for each port.
- the apertures 88 as shown in FIG.
- the oil ring 86 has a central hollow portion 92 and is closed by a cap 94 in the shape of a flat washer.
- Cap 94 contains a pair of conduits 96, 98 which are fastened to the cap 94 and provide access to the interior 92 of the ring 86.
- Conduits 96, 98 are connected to an adaptor such as the legs of a T-joint 100.
- the depending leg of T-joint 100 is fixed to conduit 102 which in turn is connected to a length of flexible hose 104 by coupling 106, the hose in turn through a suitable removable coupling 108 is affixed to a short length of conduit 110, conduit 110 projecting into coupling 48 and being sealed to housing section 12 by circumferential weld 112.
- Flexible hose 104 is included so that the burner can be readily taken apart for service.
- the mixing ports 78 generally have a length-todiameter ratio of between 0.4 to 1.4. This ratio was established and is shown in U.S. Pat. No. 3,680,785 owned by the Assignee of the present invention and filed in the name of the present Applicant and when observed for an oxy-fuel, e.g. natural gas burner, resulted in reduced operating noise level. This same technique used in an oxy-oil burner results in helping to anchor the flame front to the face (81-82) of nozzle 70 when the burner is in operation and thus minimizing the operating noise level of the oxy-oil burner.
- the ratio of the cross-sectional area (A of the oxidizing fluid passage (90-90) to the cross-sectional area (A of the oil fluid passage 88 (FIG.
- the configuration of oil passage and port shown in FIG. 4 provide a means by which the oxidizing fluid can aid in atomizing (breaking up) the oil and provide for adequate mixing of the oil and oxidizing fluid because the oil discharges in a fan-shaped pattern which aids in the intimate mixing of the oil and oxidizing fluid.
- the arrangement shown provides for high pressure oxidizing fluid, e.g. oxygen, operating at velocity on either side of the oil slot 88 so that the oxygen and oil are intimately mixed, thus providing more efficient combustion.
- elbow 34 is connected to a source of coolant such as water.
- Coupling 56 is connected to a hose or other device for removing the fluid coolant and disposing thereof or causing the same to be cooled and recirculated.
- the fluid coolant entering adapter 34 flows down to conduit 30 through passages in nozzle 70 then into the annulus defined by sleeve 62 and housing 14 and outwardly of the burner 10 through coupling 56.
- Coupling 48 is connected to a source of liquid hydrocarbon, such as oil under pressure, and the oil is conducted from coupling 48 through conduit through flexible conduit 104 down through conduit 102 to the interior of ring 86 and outwardly through slots (fuel apertures) 88 into the ports 78.
- Coupling 40 is connected to a source of oxidizing fluid under pressure such as oxygen and the oxidizing fluid is conducted down the burner through the passage defined by the inner surface of sleeve 62 and the outer surface of conduit 30, past ring 86 into the ports 78.
- the high pressure flowing oxygen causes mixing and atomization of the oil in the ports 78 so that combustion takes place at or inwardly of the mouth of ports 78 of nozzle 70. Maintaining the base of the flame front at or inwardly of the outer end of mixing cups 78 of nozzle 70 significantly reduces the operating noise level of the burner because the flame front has no aerial path between it and the face (81-82) of the burner nozzle 70.
- Another method of constructing the burner would be to provide the oil slots 88 along a diameter defined by the midpoint of the ring 86. This construction is more difficult to achieve and adds to the cost of the burner.
- an oil burner has advantages in that the available radiation is much greater than from an oxyfuel (natural gas) burner because of the carbon particles present in the flame. With a bright luminous flame, there is more heat available to be directed at the furnace walls of the furnace charge.
- An oxy-oil burner comprising in combination:
- a generally cylindrical elongated housing having a covered service end and a nozzle end;
- a fluid cooling jacket including inlet and outlet means attached to the housing for continuously cooling a major portion of the housing when the burner is in service;
- a nozzle on the nozzle end of the housing containing a plurality of generally cylindrical ports extending inwardly from the outer surface of the nozzle and communicating with an internal passage defined by the inside of the housing;
- said means comprising a ring-shaped member containing a plurality of oil discharge ports positioned on the center line of each of the ports so that oxidizing fluid can flow around the oil to vaporize the oil and mix with the oil for combusiton at the outer surface of said nozzle;
- ports have a generally rectangular shape and are positioned on and perpendicular to the longitudinal center line of the port.
- a burner according to claim 1 wherein the cooling fluid is admitted inside said housing through a central conduit to the nozzle and is conducted through a plurality of passages across the face of the nozzle to the sides thereof where it enters the housing cooling jacket and is conducted along the housing to a discharge conduit.
- An oxy-oil burner comprising in combination:
- a generally cylindrical housing having a covered service end and a nozzle end;
- a nozzle on the nozzle end of the housing containing a plurality of generally cylindrical ports extending inwardly from the outer surface of the nozzle and communicating with the interior of the housing;
- a central fluid conduit extending through the covered service end to the nozzle and communicating with a plurality of passages across the face of the nozzle, the nozzle passages further communicating with a fluid cooling jacket constructed to conduct a cooling fluid down the central fluid conduit across the face of the nozzle to the fluid cooling jacket and then along a substantial length of the housing;
- a burner according to claim 6 wherein the ratio of the cross-sectional area of oxidizing fluid passage to the replacement of the nozzle and oil ring.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US463010A US3915626A (en) | 1974-04-22 | 1974-04-22 | Oxy-oil burner |
CA216,657A CA1027470A (en) | 1974-04-22 | 1974-12-23 | Oxy-oil burner |
FR7500614A FR2268226B1 (enrdf_load_stackoverflow) | 1974-04-22 | 1975-01-03 | |
ZA00750117A ZA75117B (en) | 1974-04-22 | 1975-01-07 | Oxy-oil burner |
GB1978/75A GB1491302A (en) | 1974-04-22 | 1975-01-16 | Oxy-oil burner |
BE152638A BE824695A (fr) | 1974-04-22 | 1975-01-23 | Bruleur a mazout, en particulier pour la fusion de meteaux, verre et ceramique |
BR1316/75A BR7501008A (pt) | 1974-04-22 | 1975-02-19 | Queimador a oxi-oleo |
DE2516772A DE2516772C3 (de) | 1974-04-22 | 1975-04-16 | ölbrenner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US463010A US3915626A (en) | 1974-04-22 | 1974-04-22 | Oxy-oil burner |
Publications (1)
Publication Number | Publication Date |
---|---|
US3915626A true US3915626A (en) | 1975-10-28 |
Family
ID=23838566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US463010A Expired - Lifetime US3915626A (en) | 1974-04-22 | 1974-04-22 | Oxy-oil burner |
Country Status (8)
Country | Link |
---|---|
US (1) | US3915626A (enrdf_load_stackoverflow) |
BE (1) | BE824695A (enrdf_load_stackoverflow) |
BR (1) | BR7501008A (enrdf_load_stackoverflow) |
CA (1) | CA1027470A (enrdf_load_stackoverflow) |
DE (1) | DE2516772C3 (enrdf_load_stackoverflow) |
FR (1) | FR2268226B1 (enrdf_load_stackoverflow) |
GB (1) | GB1491302A (enrdf_load_stackoverflow) |
ZA (1) | ZA75117B (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155702A (en) * | 1977-11-30 | 1979-05-22 | Air Products And Chemicals, Inc. | Burner |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070826A (en) * | 1975-12-24 | 1978-01-31 | General Electric Company | Low pressure fuel injection system |
CN112619917B (zh) * | 2020-11-19 | 2024-11-15 | 上海齐耀热能工程有限公司 | 一种高粘度废液雾化喷枪 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3220716A (en) * | 1961-06-14 | 1965-11-30 | Union Carbide Corp | Roof jet |
US3266552A (en) * | 1959-02-21 | 1966-08-16 | Siderurgie Fse Inst Rech | Burner for producing a stable flame with a high concentration of heat stabilized by a shock wave |
US3644076A (en) * | 1969-05-08 | 1972-02-22 | Shell Oil Co | Liquid fuel burner |
US3680785A (en) * | 1970-06-29 | 1972-08-01 | Air Prod & Chem | Oxy-fuel burner for reducing the level of operating noise |
US3685740A (en) * | 1969-10-29 | 1972-08-22 | Air Reduction | Rocket burner with flame pattern control |
-
1974
- 1974-04-22 US US463010A patent/US3915626A/en not_active Expired - Lifetime
- 1974-12-23 CA CA216,657A patent/CA1027470A/en not_active Expired
-
1975
- 1975-01-03 FR FR7500614A patent/FR2268226B1/fr not_active Expired
- 1975-01-07 ZA ZA00750117A patent/ZA75117B/xx unknown
- 1975-01-16 GB GB1978/75A patent/GB1491302A/en not_active Expired
- 1975-01-23 BE BE152638A patent/BE824695A/xx not_active IP Right Cessation
- 1975-02-19 BR BR1316/75A patent/BR7501008A/pt unknown
- 1975-04-16 DE DE2516772A patent/DE2516772C3/de not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3266552A (en) * | 1959-02-21 | 1966-08-16 | Siderurgie Fse Inst Rech | Burner for producing a stable flame with a high concentration of heat stabilized by a shock wave |
US3220716A (en) * | 1961-06-14 | 1965-11-30 | Union Carbide Corp | Roof jet |
US3644076A (en) * | 1969-05-08 | 1972-02-22 | Shell Oil Co | Liquid fuel burner |
US3685740A (en) * | 1969-10-29 | 1972-08-22 | Air Reduction | Rocket burner with flame pattern control |
US3680785A (en) * | 1970-06-29 | 1972-08-01 | Air Prod & Chem | Oxy-fuel burner for reducing the level of operating noise |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155702A (en) * | 1977-11-30 | 1979-05-22 | Air Products And Chemicals, Inc. | Burner |
FR2410784A1 (fr) * | 1977-11-30 | 1979-06-29 | Air Prod & Chem | Perfectionnements aux dispositifs et procedes pour realiser la combustion de fluides a base d'hydrocarbures |
Also Published As
Publication number | Publication date |
---|---|
DE2516772A1 (de) | 1975-10-30 |
GB1491302A (en) | 1977-11-09 |
CA1027470A (en) | 1978-03-07 |
BR7501008A (pt) | 1976-03-09 |
FR2268226A1 (enrdf_load_stackoverflow) | 1975-11-14 |
ZA75117B (en) | 1976-01-28 |
FR2268226B1 (enrdf_load_stackoverflow) | 1980-06-06 |
BE824695A (fr) | 1975-05-15 |
DE2516772C3 (de) | 1980-03-27 |
DE2516772B2 (de) | 1979-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2911035A (en) | Polymix gas burner | |
US5431559A (en) | Oxygen-fuel burner with staged oxygen supply | |
US3856457A (en) | Burner of the oxy-fuel type | |
US3638932A (en) | Combined burner-lance for fume suppression in molten metals | |
JPH06101820A (ja) | オキシ・燃料燃焼装置 | |
US3224679A (en) | Combustion device for hydrocarbon fuel | |
US2807506A (en) | Gas-discharge nozzle for use in furnaces | |
EP0733187B1 (en) | Oxygen-fuel burner with integral staged oxygen supply | |
US3823929A (en) | Nozzle for fuel and oxygen lance assembly | |
TW354361B (en) | Burner | |
US3139138A (en) | Furnace burner system | |
US3915626A (en) | Oxy-oil burner | |
US2571336A (en) | Gaseous fuel burner for furnace walls | |
US3680785A (en) | Oxy-fuel burner for reducing the level of operating noise | |
US2417670A (en) | Porous disc type gas mixer | |
US3050112A (en) | Radiant gas burner | |
CN112432507B (zh) | 侧吹喷枪 | |
US3809523A (en) | Method and apparatus for cooling the flame of an industrial gas burner | |
US3247884A (en) | Burner means for furnaces | |
JP3210043B2 (ja) | バーナー | |
CA1103574A (en) | Burner for very low pressure gases | |
US7146937B2 (en) | Combustion chamber design with water injection for direct-fired steam generator and for being cooled by the water | |
US3424542A (en) | Radiant spiral flame gas burner | |
US1024347A (en) | Oil-fed furnace. | |
US3260301A (en) | Igniter |