US3915157A - Endoscope - Google Patents
Endoscope Download PDFInfo
- Publication number
- US3915157A US3915157A US480856A US48085674A US3915157A US 3915157 A US3915157 A US 3915157A US 480856 A US480856 A US 480856A US 48085674 A US48085674 A US 48085674A US 3915157 A US3915157 A US 3915157A
- Authority
- US
- United States
- Prior art keywords
- control member
- distal end
- tip portion
- slot
- tubular member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/012—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
- A61B1/018—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00098—Deflecting means for inserted tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
Definitions
- the control mechanism comprises a control member rockably disposed in a port provided in the end face of the distal end section of the endoscope for engagement with said tubular member and an actuating wire for rocking the control member from the original position to another position through the operation of a control unit, thereby to swing the tip portion of the tubular member from one swing limit to another.
- the control member has generally been referred to as a forceps raising member, where the elongated tubular member consists of forceps.
- the forward end portion of the channel through which an elongated tubular member is inserted is made substantially parallel with the axis of the distal end section, causing the tip portion of the tubular member to extend outwardly of the distal end section substantially parallel with the axis of said section.
- the direction of said extension constitutes one swing limit of the range through which the tip portion of the tubular member is later swung by the action of the actuating wire. Therefore the swing range of the tip portion of the tubular member is considerably liinited, namely, only accounts for half the area of the open portion of the port, failing freely to shift said tip portion over a broad region within the body cavity of a patient.
- control member of the prior art endoscope consists of a plate member provided in the distal end section so as to be made rockable at the base end by means of a pivot pin and engageable with the tip portion of the tubular member at the forward end.
- the control plate member raises the tip portion of the tubular member by the forward end.
- the forward end of the plate control member engages the tip portion of the tubular member at a point relatively apart from the open end of the channel, failing to attain the broad swing of said tip portion even by the rocking of said plate control member.
- an endoscope which is characterized in that the forward end portion open to the port of the channel formed in the endoscope for insertion of an elongated flexible tubular member is inclined relative to the axis of said distal end section; and the tip portion of the tubular member is made obliquely to extend through the inclined forward end portion of the channel outwardly of the distal end section, the direction of said oblique extension constituting one limit of the range through which the tip portion of one flexible tubular member is later swung.
- the endoscope of this invention enables the tip portion of an elongated flexible tubular member such as forceps to be swung far more broadly over substantially the whole area of the open portion of the port. Therefore, an operator or observer using the present endoscope can bring the tip portion of the tubular member to any desired affected part of the body cavity of a patient by shifting said tip portion over a broad region therein.
- the control member rockably disposed in the port is bored with a slot for insertion ofa tubular member.
- the slot is substantially aligned with the inclined forward portion of the channel enabling the tip portion of the tubular member to extend through the slot without any obstruction.
- the control member has a triangular form and can repeatedly rock through a broad angle in the distal end section with good durability.
- the base side of the triangular control member normally faces the bottom plane of the port.
- a support means for example, a pair of pivot pins for rockably holding the control member.
- the actuating wire Fitted near the opposite apex of the base side is theactuating wire. Accordingly the control member can rock through a very broad angle, enabling the tip portion of a flexible tubular member such as forceps to be swung over a wide range.
- an object of this invention to provide an endoscope capable of swinging the tip portion of an elongated flexible tubular member through a broad angle.
- Another object of the invention is to provide an endoscope equipped with a durable mechanism of simple construction for attaining the broad swing of the tip portion of said tubular member.
- FIG. 4 is a sectional view on line 44 of FIG. 3 as viewed in the direction of the indicated arrows;
- FIG. 5 is a similar longitudinal sectional view of the distal end section of the endoscope to that of FIG. 3, showing that the control member provided in the port of the endoscope is shifted to another position, causing the tip portion of the forceps to be swung out of the port in a different direction from FIG. 3.
- the endoscope of this invention whose whole view is given in FIG. 1 comprises a distal end section 10, control unit 11 positioned at the proximal end and tube section 12 whose ends are connected to said distal end section and control unit 11. As illustrated in FIG. 2, the distal end section 10 has an open port 13 formed in the end face 10a.
- the end face 100 is provided with a window 15 for an image guide 14 (FIG. 1) and a pair of windows 17 for illumination light guides 16 (FIG. 1).
- the control unit 11 controls the insertion of the distal end section 10 of the endoscope into the body cavity (not shown) ofa human being or patient while observation is made through an eyepiece member 11a.
- the control unit 11 is fitted with a knob 18 rotatable by an operator or observer.
- the tube section 12 should preferably be made of sufficiently pliant material to allow the free insertion of the distal end section 10 into the body cavity.
- the endoscope is, for example, a rectoscope, or cystoscope
- the tube section 12 may be formed of a straight metal tube difficult to bend.
- the distal end section 10 is provided with a base frame 19 defining the port 13.
- a cylindrical cover 20 is rigidly secured to the periphery of the base frame 19.
- Bored in the base frame 19 are a one end opening or a forward end portion 22a of a channel '22 through which an elongated flexible tubular member or forceps 21 is inserted and a one end opening 240 ofa channel 24 through which the later described actuating wire 23 is inserted.
- These openings 22a, 24a communicate with the port 13.
- the forceps channel 22 is formed of a tube 25 lengthwise extending through the tube section 12 into the control unit 11.
- the wire channel 24 is defined by a tube 26 extending lengthwise through the tube section 12 similarly into the control unit 11.
- a control member 27 disposed in the port 13 is rockably mounted on the base frame 19 by a pair of pivot pins 28 (FIG. 4) penetrating the control member 27 at right angles.
- the control member 27 rocks on a plane including the axial line 29 (FIG. 3) of the distal end section 10 from its original position in FIG. 3 to another position in FIG. 5.
- the control member 27 has its triangular surface made parallel with the plane on which it rotates, all the apices being rounded.
- One side 27a of the triangular control member 27 which normally faces the bottom of the port 13 is bored with an inlet 30 for insertion of forceps 21, which in turn faces the forward end opening or portion 22a of the forceps channel 22.
- One adjacent side 27b of the control member 27 is bored with an outlet 31 through which the forceps 21 are drawn outward.
- the control member 27 is further provided with a slot 32 (FIGS. 3 and 4) whose ends communicate with the inlet 30 and outlet 31.
- the upper and lower walls 33, 34 of the slot 32 define its height.
- the upper and lower inner walls 33, 34 of the control member 27 which constitute the lengthwise side walls 35 of the slot 32 define its width.
- the forceps channel 22 and slot 32 are aligned with each other, causing the tip portion 210 of the forceps 21 inserted into the forceps channel 22 to extend without any obstruction slightly downward to the left side (FIG. 3) out of the port 13 through the slot 32.
- the forward end portion 22a of the forceps channel 22 communicating with the port 13 is formed in a state slightly inclined relative to the axis 29 of the distal end section 10. Therefore, the tip portion 21a of the forceps 21 passing through said inclined forward end portion 22a of the channel 22 naturally extends obliquely downward as illustrated in FIG. 3.
- the direction of said extension represents one limit of the swing range through which the tip portion 21a makes the later described swing.
- the paired pivot pins 28 are provided in the neighborhood 270 of one rounded apex of the triangular control member 27 and penetrate said member substantially at right angles to the axis 29.
- the forward end 23a of the actuating wire 23 is secured to the proximity 27d of the adjacent apex of the triangular control member 27.
- the actuating wire 23 is slidably inserted into the channel 24 through its open end 24a with the rear end of said wire 23 mechanically connected to the knob 18 of the control unit 11 (not shown). When an operator or observer rotates the knob 18 in a certain direction, the wire 23 is pulled rearward. When the knob 18 is rotated in the opposite direction, the wire 23 slides forward through the channel 24.
- the tip portion 21a of the forceps 21 is forcefully swung obliquely upward from one limit position of FIG. 3 to another limit position of FIG. 5 through a very broad angle, because the tip portion 21a is urged by the neighborhoods of the outlet 31 and inlet 30 of the slot 32.
- the shifting of the control member 27 from one position to another carried out by the actuating wire 23 enables the tip portion 21a of the forceps 21 passing through the slot 32 to be swung in either way through a very broad angle fully over the open portion of the port 13. Further, where the extent of pushing and pulling the actuating wire 23 is controlled by regulating the rotation of the knob 18, then the control member 27 and consequently the tip portion 21a of the forceps 21 can be set at any desired swung point between the original and another positions.
- the movement of the outlet 31 of the slot 32 above and below the axial line 29 according to the position of the control member 27 causes the tip portion 21a of the forceps to be swung over a very broad range, thereby enabling any desired interior tissue of a human being or patient to be collected by the claws fitted to the tip portion 21a of the forceps 21 quickly over the broad region of the body cavity.
- the slot 32 formed in the control member 27 was defined by four side walls 33, 34, 35, 35.
- the slot 32 will sufficiently serve the purpose, if it has at least upper and lower walls.
- the side walls 35, 35 of the slot 32 may be substituted by the right and left walls of the port 13.
- the open portion of the port 13 of the distal end section through which an elongated flexible tubular member 21 such as forceps is inserted is inclined, as previously mentioned, relative to the axis 29 of the distal end section 10, causing the tip portion 21a of the tubular member 21 to extend obliquely out of the distal end section through the port 13.
- the direction of the extension constitutes one limit of the range through which said tubular member 21 is swung.
- the elongated flexible tubular member consisted of forceps. But this invention is also applicable to many other tubular members, for example that used to suck a liquid.
- An endoscope having a distal end section, control unit provided at the proximal end section, a tube section connecting the control unit with the distal end section, a port formed in the distal end section so as to be opened to the end face thereof, a channel the forward end portion of which communicates with the port and the oposite end of which reaches the interior of the control unit through the tube section, and an elongated flexible tubular member inserted into the channel so as to have its tip portion made to extend through the port out of the distal end section, a control member disposed in the port and having a slot for slidable insertion of the tip portion of the tubular member, said slot being defined by at least upper and lower walls; support means for rockably holding the control member within the port in a plane including the axial line of the distal end section; and an actuating wire one end of which is connected to the control member and the other end of which reaches the interior of the control unit through the tube section so as to be subjected to the pulling operation of said control unit,
- control member has a triangular shape as viewed from a plane including the axis of the distal end section and is provided on one side with an inlet communicating with one end of the slot and on the other side with an outlet communicating with the other end of the slot.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
An endoscope wherein a slotted control member is rockably disposed in a port provided in the distal end section of the endoscope; the forward end portion open to the port of the channel is inclined relative to the axis of the distal end section; a tubular member, for example, forceps inserted into the channel has its tip portion so guided by the inclined forward end portion of the channel as to extend outwardly of the distal end section to one swing limit of said tip portion by being conducted through the slot of the control member; and, where the control member rocks from one position to another by the pulling force of an actuating wire, the tubular member has its tip portion swung to the opposite limit.
Description
' United States Patent Mitsui Oct. 28, 1975 ENDOSCOPE 3,818,902 6/1974 Kinoshita et al 128/6 [75] Inventor. Kazulnko Mltsui, Tokyo, Japan Primary Examiner Richard A. Gaudet [73] Assignee: Olympus Optical Co., Ltd., Tokyo, Assistant Examiner-Henry S. Layton Japan 22 Filed: June 19, 1974 ABSTRACT An endoscope wherein a slotted control member is [21] Appl' 480856 rockably disposed in a port provided in the distal end section of the endoscope; the forward end portion [30] Foreign Application Priority Data open to the port of the channel is inclined relative to June 21, 1973 Japan 48-73590 the axis of the distal end Section; a tubular member, for example, forceps inserted into the channel has its 52 us. (:1. 128/6 tip Portion Se guided y the ihelined forward end P 51 Int. Cl. A61B 1/06 tieh 0f the ehehnel as to extend outwardly of the distal [58] Field of Search 128/4-9, 303 R, end section to one Swing limit of Said p Portion y 12 3 3 303 5 2 B being conducted through the slot of the control member; and, where the control member rocks from one [56] References Cited position to another by the pulling force of an actuating UNITED STATES PATENTS wire, the tubular member has its tip portion swung to the opposite limit. 3,561,432 2/1971 Yamaki et a1. 128/6 3,817,631 6/1974 Kawahara 128/6 4 Claims, 5 Drawing Figures U.S. Patent Oct.2 8,1975 Sheet 1 of2 3,915,157
US. Patent Oct. 28, 1975 Sheet 2 of 2 ENDOSCOPE BACKGROUND OF THE INVENTION This invention relates to an endoscope wherein an inserted elongated flexible tubular member such as forceps has its tip portion guided to any desired part of the body cavity of a human being or patient while observation is being made through the endoscope, because the tip portion of said tubular member can be freely swung outwardly of the distal end section of the endoscope.
With the above-mentioned endoscope provided with a channel for insertion of an elongated flexible tubular member, the direction in which an elongated tubular member inserted into the channel of the endoscope extends outward is controlled by an operator or observer. The control mechanism comprises a control member rockably disposed in a port provided in the end face of the distal end section of the endoscope for engagement with said tubular member and an actuating wire for rocking the control member from the original position to another position through the operation of a control unit, thereby to swing the tip portion of the tubular member from one swing limit to another. The control member has generally been referred to as a forceps raising member, where the elongated tubular member consists of forceps.
Where the actuating wire stops pulling, the control member regains its original position, and in consequence the tubular member has its tip portion swung to one limit by its own righting force to be engaged with the control member.
Further, with the prior art endoscope, the forward end portion of the channel through which an elongated tubular member is inserted is made substantially parallel with the axis of the distal end section, causing the tip portion of the tubular member to extend outwardly of the distal end section substantially parallel with the axis of said section. The direction of said extension constitutes one swing limit of the range through which the tip portion of the tubular member is later swung by the action of the actuating wire. Therefore the swing range of the tip portion of the tubular member is considerably liinited, namely, only accounts for half the area of the open portion of the port, failing freely to shift said tip portion over a broad region within the body cavity of a patient.
Moreover, the control member of the prior art endoscope consists of a plate member provided in the distal end section so as to be made rockable at the base end by means of a pivot pin and engageable with the tip portion of the tubular member at the forward end. When pulled by the actuating wire, the control plate member raises the tip portion of the tubular member by the forward end. Moreover, the forward end of the plate control member engages the tip portion of the tubular member at a point relatively apart from the open end of the channel, failing to attain the broad swing of said tip portion even by the rocking of said plate control member.
SUMMARY OF THE INVENTION It is accordingly the general object of this invention to provide an endoscope which is characterized in that the forward end portion open to the port of the channel formed in the endoscope for insertion of an elongated flexible tubular member is inclined relative to the axis of said distal end section; and the tip portion of the tubular member is made obliquely to extend through the inclined forward end portion of the channel outwardly of the distal end section, the direction of said oblique extension constituting one limit of the range through which the tip portion of one flexible tubular member is later swung. Accordingly, the endoscope of this invention enables the tip portion of an elongated flexible tubular member such as forceps to be swung far more broadly over substantially the whole area of the open portion of the port. Therefore, an operator or observer using the present endoscope can bring the tip portion of the tubular member to any desired affected part of the body cavity of a patient by shifting said tip portion over a broad region therein.
According to this invention, the control member rockably disposed in the port is bored with a slot for insertion ofa tubular member. When the control member is in its original position, the slot is substantially aligned with the inclined forward portion of the channel enabling the tip portion of the tubular member to extend through the slot without any obstruction. When the I control member rocks from its original position by the pulling action of the actuating wire, then the slot of said control member causes the tip portion of the tubular member to be forcefully swung to the opposite limit over a broader range than has been possible with the prior art endoscope.
According to a preferred embodiment of this invention, the control member has a triangular form and can repeatedly rock through a broad angle in the distal end section with good durability. The base side of the triangular control member normally faces the bottom plane of the port. Provided near one apex of the base side is a support means, for example, a pair of pivot pins for rockably holding the control member. Fitted near the opposite apex of the base side is theactuating wire. Accordingly the control member can rock through a very broad angle, enabling the tip portion of a flexible tubular member such as forceps to be swung over a wide range.
It is, therefore, an object of this invention to provide an endoscope capable of swinging the tip portion of an elongated flexible tubular member through a broad angle.
Another object of the invention is to provide an endoscope equipped with a durable mechanism of simple construction for attaining the broad swing of the tip portion of said tubular member.
Other features and objects of the invention will be easily understood from the description of the preferred embodiment and accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS line 3-3 of FIG. 2 as viewed in the direction of the indicated arrows, showing that the control member disposed in the port of the endoscope for controlling the movement of the tip portion of the forceps is held in an original position, causing the tip portion of the forceps to extend slightly downward out of the port of the distal end section;
FIG. 4 is a sectional view on line 44 of FIG. 3 as viewed in the direction of the indicated arrows; and
FIG. 5 is a similar longitudinal sectional view of the distal end section of the endoscope to that of FIG. 3, showing that the control member provided in the port of the endoscope is shifted to another position, causing the tip portion of the forceps to be swung out of the port in a different direction from FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The endoscope of this invention whose whole view is given in FIG. 1 comprises a distal end section 10, control unit 11 positioned at the proximal end and tube section 12 whose ends are connected to said distal end section and control unit 11. As illustrated in FIG. 2, the distal end section 10 has an open port 13 formed in the end face 10a. The end face 100 is provided with a window 15 for an image guide 14 (FIG. 1) and a pair of windows 17 for illumination light guides 16 (FIG. 1). The control unit 11 controls the insertion of the distal end section 10 of the endoscope into the body cavity (not shown) ofa human being or patient while observation is made through an eyepiece member 11a. The control unit 11 is fitted with a knob 18 rotatable by an operator or observer. The tube section 12 should preferably be made of sufficiently pliant material to allow the free insertion of the distal end section 10 into the body cavity. Where, however, the endoscope is, for example, a rectoscope, or cystoscope, the tube section 12 may be formed of a straight metal tube difficult to bend.
Referring to FIG. 3, the distal end section 10 is provided with a base frame 19 defining the port 13. A cylindrical cover 20 is rigidly secured to the periphery of the base frame 19. Bored in the base frame 19 are a one end opening or a forward end portion 22a of a channel '22 through which an elongated flexible tubular member or forceps 21 is inserted and a one end opening 240 ofa channel 24 through which the later described actuating wire 23 is inserted. These openings 22a, 24a communicate with the port 13. The forceps channel 22 is formed of a tube 25 lengthwise extending through the tube section 12 into the control unit 11. The wire channel 24 is defined by a tube 26 extending lengthwise through the tube section 12 similarly into the control unit 11.
A control member 27 disposed in the port 13 is rockably mounted on the base frame 19 by a pair of pivot pins 28 (FIG. 4) penetrating the control member 27 at right angles. The control member 27 rocks on a plane including the axial line 29 (FIG. 3) of the distal end section 10 from its original position in FIG. 3 to another position in FIG. 5. As apparent from FIGS. 3 and 5, the control member 27 has its triangular surface made parallel with the plane on which it rotates, all the apices being rounded. One side 27a of the triangular control member 27 which normally faces the bottom of the port 13 is bored with an inlet 30 for insertion of forceps 21, which in turn faces the forward end opening or portion 22a of the forceps channel 22. One adjacent side 27b of the control member 27 is bored with an outlet 31 through which the forceps 21 are drawn outward. The control member 27 is further provided with a slot 32 (FIGS. 3 and 4) whose ends communicate with the inlet 30 and outlet 31. The upper and lower walls 33, 34 of the slot 32 define its height. The upper and lower inner walls 33, 34 of the control member 27 which constitute the lengthwise side walls 35 of the slot 32 define its width.
While the control member 27 remains in its original position as shown in FIG. 3, the forceps channel 22 and slot 32 are aligned with each other, causing the tip portion 210 of the forceps 21 inserted into the forceps channel 22 to extend without any obstruction slightly downward to the left side (FIG. 3) out of the port 13 through the slot 32. As apparent from FIGS. 3 and 5, the forward end portion 22a of the forceps channel 22 communicating with the port 13 is formed in a state slightly inclined relative to the axis 29 of the distal end section 10. Therefore, the tip portion 21a of the forceps 21 passing through said inclined forward end portion 22a of the channel 22 naturally extends obliquely downward as illustrated in FIG. 3. The direction of said extension represents one limit of the swing range through which the tip portion 21a makes the later described swing.
The paired pivot pins 28 are provided in the neighborhood 270 of one rounded apex of the triangular control member 27 and penetrate said member substantially at right angles to the axis 29. The forward end 23a of the actuating wire 23 is secured to the proximity 27d of the adjacent apex of the triangular control member 27. The actuating wire 23 is slidably inserted into the channel 24 through its open end 24a with the rear end of said wire 23 mechanically connected to the knob 18 of the control unit 11 (not shown). When an operator or observer rotates the knob 18 in a certain direction, the wire 23 is pulled rearward. When the knob 18 is rotated in the opposite direction, the wire 23 slides forward through the channel 24.
When the wire 23 is pulled rearward, the control member 27 rocks clockwise about the pivot pins 28 from the original position in FIG. 3 to another position in FIG. 4. The clockwise rocking of the control member 27 causes that portion of the forceps 21 which is inserted into the slot 32 to be forcefully swung obliquely upward from the one limit position of FIG. 3 against the elasticity of the control member 27 in the neighborhood of the lower wall 34 of the slot 32, particularly near the outlet 31 of said slot 32 as shown in FIG. 5. Where the tip portion 21a of the forceps 21 is swung upward as shown in FIG. 5, the upper wall 33 of the slot 32, particularly, the neighborhood of the inlet 30 of the slot 32 is pressed against the forceps 21 to depress them downward. Accordingly, the tip portion 21a of the forceps 21 is forcefully swung obliquely upward from one limit position of FIG. 3 to another limit position of FIG. 5 through a very broad angle, because the tip portion 21a is urged by the neighborhoods of the outlet 31 and inlet 30 of the slot 32.
Where the knob 18 is rotated in the opposite direction to the above-mentioned case to retract the actuating wire 23 into the channel 24, then the control member 27 rocks counterclockwise from the position of FIG. 5 to the original position of FIG. 3. The counterclockwise rocking of the control member 27 causes that portion of the forceps 21 which is received in the slot 32 to be brought downward by the upper wall 33 of the slot 32, particularly the neighborhood of its outlet 31. As the result, the tip portion 21a of the forceps 21 is swung back to the original position of FIG. 3 by the joint action of the righting force of the forceps 21 and the urging force of the upper wall 33 of the slot 32. The withdrawal of the actuating wire 23 can be smoothly effected due to the righting force of the forceps 21, eliminating the possibility of the wire 23 being buckled during retraction.
The shifting of the control member 27 from one position to another carried out by the actuating wire 23 enables the tip portion 21a of the forceps 21 passing through the slot 32 to be swung in either way through a very broad angle fully over the open portion of the port 13. Further, where the extent of pushing and pulling the actuating wire 23 is controlled by regulating the rotation of the knob 18, then the control member 27 and consequently the tip portion 21a of the forceps 21 can be set at any desired swung point between the original and another positions.
The movement of the outlet 31 of the slot 32 above and below the axial line 29 according to the position of the control member 27 causes the tip portion 21a of the forceps to be swung over a very broad range, thereby enabling any desired interior tissue of a human being or patient to be collected by the claws fitted to the tip portion 21a of the forceps 21 quickly over the broad region of the body cavity.
According to the foregoing embodiment the slot 32 formed in the control member 27 was defined by four side walls 33, 34, 35, 35. However, the slot 32 will sufficiently serve the purpose, if it has at least upper and lower walls. In such case, the side walls 35, 35 of the slot 32 may be substituted by the right and left walls of the port 13.
With the endoscope of this invention, the open portion of the port 13 of the distal end section through which an elongated flexible tubular member 21 such as forceps is inserted is inclined, as previously mentioned, relative to the axis 29 of the distal end section 10, causing the tip portion 21a of the tubular member 21 to extend obliquely out of the distal end section through the port 13. The direction of the extension constitutes one limit of the range through which said tubular member 21 is swung. When set at one swing limit, the tip portion 21a is drawn near the lower end of the open portion of the port 13. But when the control member 27 rocks by the pulling action of the actuating wire 23, the tip portion 21a is forcefully swung to another limit to be brought near the upper end of the open portion of the port 13.
According to the preferred embodiment, the elongated flexible tubular member consisted of forceps. But this invention is also applicable to many other tubular members, for example that used to suck a liquid.
What is claimed is:
1. An endoscope having a distal end section, control unit provided at the proximal end section, a tube section connecting the control unit with the distal end section, a port formed in the distal end section so as to be opened to the end face thereof, a channel the forward end portion of which communicates with the port and the oposite end of which reaches the interior of the control unit through the tube section, and an elongated flexible tubular member inserted into the channel so as to have its tip portion made to extend through the port out of the distal end section, a control member disposed in the port and having a slot for slidable insertion of the tip portion of the tubular member, said slot being defined by at least upper and lower walls; support means for rockably holding the control member within the port in a plane including the axial line of the distal end section; and an actuating wire one end of which is connected to the control member and the other end of which reaches the interior of the control unit through the tube section so as to be subjected to the pulling operation of said control unit, said actuating wire rocking the control member from its original position to another position due to the pulling operation of said control unit, thereby swinging the tip portion of the tubular member from one swing limit to another the forward end portion of the channel for insertion of the tubular member being inclined relative to the axis of the distal end section, thereby enabling the tubular member passing through said forward end portion of the channel to be positively guided in the direction of said inclination, and when the control member is in the original position, said slot of the control member is brought into alignment with the inclined forward end portion of the channel thereby causing the tip portion of the tubular member to extend to one swing limit.
2. An endoscope according to claim 1, wherein the control member has a triangular shape as viewed from a plane including the axis of the distal end section and is provided on one side with an inlet communicating with one end of the slot and on the other side with an outlet communicating with the other end of the slot.
3. An endoscope according to claim 2, wherein said support means is a pivot pin secured to the proximity of one apex of the triangular control member, and said one end of the actuating wire is fitted to the proximity of another apex of the triangular control member.
4. An endoscope according to claim 1, wherein said slot of the control member is defined by a pair of side walls in addition to said upper and lower walls.
Claims (4)
1. An endoscope having a distal end section, control unit provided at the proximal end section, a tube section connecting the control unit with the distal end section, a port formed in the distal end section so as to be opened to the end face thereof, a channel the forward end portion of which communicates with the port and the opposite end of which reaches the interior of the control unit through the tube section, and an elongated flexible tubular member inserted into the channel so as to have its tip portion made to extend through the port out of the distal end section, a control member disposed in the port and having a slot for slidable insertion of the tip portion of the tubular member, said slot being defined by at least upper and lower walls; support means for rockably holding the control member within the port in a plane including the axial line of the distal end section; and an actuating wire one end of which is connected to the control member and the other end of which reaches the interior of the control unit through the tube section so as to be subjected to the pulling operation of said control unit, said actuating wire rocking the control member from its original position to another position due to the pulling operation of said control unit, thereby swinging the tip portion of the tubular member from one swing limit to another the forward end portion of the channel for insertion of the tubular member being inclined relative to the axis of the distal end section, thereby enabling the tubular member passing through said forward end portion of the channel to be positively guided in the direction of said inclination, and when the control member is in the original position, said slot of the control member is brought into alignment with the inclined forward end portion of the channel thereby causing the tip portion of the tubular member to extend to one swing limit.
2. An endoscope according to claim 1, wherein the control member has a triangular shape as viewed from a plane including the axis of the distal end section and is provided on one side with an inlet communicating with one end of the slot and on the other side with an outlet communicating with the other end of the slot.
3. An endoscope according to claim 2, wherein said support means is a pivot pin secured to the proximity of one apex of the triangular control member, and said one end of the actuating wire is fitted to the proximity of another apex of the triangUlar control member.
4. An endoscope according to claim 1, wherein said slot of the control member is defined by a pair of side walls in addition to said upper and lower walls.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1973073590U JPS574963Y2 (en) | 1973-06-21 | 1973-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3915157A true US3915157A (en) | 1975-10-28 |
Family
ID=13522668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US480856A Expired - Lifetime US3915157A (en) | 1973-06-21 | 1974-06-19 | Endoscope |
Country Status (2)
Country | Link |
---|---|
US (1) | US3915157A (en) |
JP (1) | JPS574963Y2 (en) |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2653661A1 (en) * | 1975-11-25 | 1977-06-08 | Olympus Optical Co | Endoscope with instrument insertion channel - has curved guide surfaces at distal and two possible positions |
EP0049851A2 (en) * | 1980-10-09 | 1982-04-21 | Olympus Optical Co., Ltd. | Endoscope |
EP0069942A2 (en) * | 1981-07-13 | 1983-01-19 | Olympus Optical Co., Ltd. | Driving device for an endoscopic-treatment instrument |
US4407273A (en) * | 1981-02-25 | 1983-10-04 | Kabushiki Kaisha Medos Kenkyusho | Raising means for guiding an implement of an endoscope |
DE3909290A1 (en) * | 1988-03-28 | 1989-10-12 | Asahi Optical Co Ltd | COVERED ENDOSCOPE |
US5507772A (en) * | 1993-05-25 | 1996-04-16 | Depuy Inc. | Cleanable, inspectable, and replaceable surgical instrument |
EP1003411A1 (en) * | 1997-08-21 | 2000-05-31 | Paul Stelzer | Minimally invasive surgery device |
US6352503B1 (en) * | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
US20030176766A1 (en) * | 2002-03-15 | 2003-09-18 | Long Gary L. | Apparatus for guiding an instrument used with an endoscope |
US20030176767A1 (en) * | 2002-03-15 | 2003-09-18 | Long Gary L. | Method for controlling position of medical instruments |
US20030176880A1 (en) * | 2002-03-15 | 2003-09-18 | Long Gary L. | Biopsy forceps device and method |
US20040172018A1 (en) * | 2003-02-28 | 2004-09-02 | Olympus Corporation | Endoscopic treatment instrument |
US20040230097A1 (en) * | 2003-05-16 | 2004-11-18 | David Stefanchik | Endcap for use with an endoscope |
US20040230095A1 (en) * | 2003-05-16 | 2004-11-18 | David Stefanchik | Medical apparatus for use with an endoscope |
US20040249367A1 (en) * | 2003-01-15 | 2004-12-09 | Usgi Medical Corp. | Endoluminal tool deployment system |
US20060258907A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Track for medical devices |
US20060258904A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Feeding tube and track |
US20060258910A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Method of positioning a device on an endoscope |
US20060258903A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Method of inserting a feeding tube |
US20060287572A1 (en) * | 2003-07-25 | 2006-12-21 | Wimmer Viktor J | Flexible endoscope with longitudinal axial channels |
US20070249898A1 (en) * | 2004-07-02 | 2007-10-25 | Olympus Corporation | Endoscope |
US20080009673A1 (en) * | 2006-05-15 | 2008-01-10 | Khachi Gerald J | Balloon endoscope device |
US20080188862A1 (en) * | 2007-02-01 | 2008-08-07 | Olymous Medical Systems Corp. | Method of treatment with endoscope |
US20080269557A1 (en) * | 2007-04-25 | 2008-10-30 | Jacques Francois Bernard Marescaux | Surgical Method Utilizing Transluminal Endoscope and Instruments |
US20090054733A1 (en) * | 2007-08-24 | 2009-02-26 | Jacques Francois Bernard Marescaux | Articulating Endoscope Instrument |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US7833156B2 (en) | 2006-04-24 | 2010-11-16 | Transenterix, Inc. | Procedural cannula and support system for surgical procedures |
US7857754B2 (en) | 2005-05-13 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Apparatus useful for positioning a device on an endoscope |
US7905830B2 (en) | 2005-05-13 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Sheath for use with an endoscope |
EP2294967A1 (en) * | 2009-09-14 | 2011-03-16 | Richard Wolf GmbH | Endoscopic instrument |
US20110077460A1 (en) * | 2008-07-11 | 2011-03-31 | Sociedade Beneficente De Senhoras Hospital Sirio E Libanes | Surgical endoscope and process for exchanging surgical tools in a surgical endoscope |
US20110112371A1 (en) * | 2007-09-12 | 2011-05-12 | Jeffrey A Smith | Multi-instrument access devices and systems |
US20110118545A1 (en) * | 2006-04-24 | 2011-05-19 | Williams Michael S | System and method for multi-instrument surgical access |
US7955340B2 (en) | 1999-06-25 | 2011-06-07 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US20110230723A1 (en) * | 2008-12-29 | 2011-09-22 | Salvatore Castro | Active Instrument Port System for Minimally-Invasive Surgical Procedures |
US8216252B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US8216260B2 (en) | 2002-12-11 | 2012-07-10 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US8298291B2 (en) | 2005-05-26 | 2012-10-30 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US8444657B2 (en) | 2004-05-07 | 2013-05-21 | Usgi Medical, Inc. | Apparatus and methods for rapid deployment of tissue anchors |
US8726909B2 (en) | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
CN104224092A (en) * | 2014-09-19 | 2014-12-24 | 珠海普生医疗科技有限公司 | Tip end part structure for endoscope |
US8926634B2 (en) | 2004-05-07 | 2015-01-06 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US9265514B2 (en) | 2012-04-17 | 2016-02-23 | Miteas Ltd. | Manipulator for grasping tissue |
US9585651B2 (en) | 2005-05-26 | 2017-03-07 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US9596980B2 (en) | 2007-04-25 | 2017-03-21 | Karl Storz Endovision, Inc. | Endoscope system with pivotable arms |
US20180078121A1 (en) * | 2016-09-21 | 2018-03-22 | Fujifilm Corporation | Endoscope |
US10194892B2 (en) | 2014-10-15 | 2019-02-05 | Karl Storz Endovision, Inc. | Detachable articulating endoscopic tool cartridge |
US10779708B2 (en) | 2017-08-08 | 2020-09-22 | Applied Endosolutions, Llc | Overtubes for endoscopes and related systems and methods |
US11234581B2 (en) * | 2014-05-02 | 2022-02-01 | Endochoice, Inc. | Elevator for directing medical tool |
US11330965B2 (en) | 2017-03-03 | 2022-05-17 | Boston Scientific Scimed, Inc. | Device tip |
US11445894B2 (en) * | 2017-07-05 | 2022-09-20 | Olympus Corporation | Insertion assisting system |
US11490796B2 (en) * | 2017-10-18 | 2022-11-08 | Olympus Corporation | Insertion assist system |
US11911005B2 (en) | 2021-10-29 | 2024-02-27 | Applied Endosolutions, Llc | Endoscopic retraction assist devices and related systems and methods |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5929682Y2 (en) * | 1976-05-27 | 1984-08-25 | 富士写真光機株式会社 | Endoscope forceps operating device |
JPS5481690A (en) * | 1977-12-11 | 1979-06-29 | Ouchi Teruo | Device for converting direction of living detector or like |
JP3914012B2 (en) * | 2001-08-13 | 2007-05-16 | オリンパス株式会社 | Endoscope |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561432A (en) * | 1967-07-29 | 1971-02-09 | Olympus Optical Co | Endoscope |
US3817631A (en) * | 1967-08-08 | 1974-06-18 | Olympus Optical Co | Device for measuring distance of objects from the forward end portion of an endoscope |
US3818902A (en) * | 1971-07-03 | 1974-06-25 | Olympus Optical Co | Endoscope assembly having its optical system provided with a direction shifter |
-
1973
- 1973-06-21 JP JP1973073590U patent/JPS574963Y2/ja not_active Expired
-
1974
- 1974-06-19 US US480856A patent/US3915157A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561432A (en) * | 1967-07-29 | 1971-02-09 | Olympus Optical Co | Endoscope |
US3817631A (en) * | 1967-08-08 | 1974-06-18 | Olympus Optical Co | Device for measuring distance of objects from the forward end portion of an endoscope |
US3818902A (en) * | 1971-07-03 | 1974-06-25 | Olympus Optical Co | Endoscope assembly having its optical system provided with a direction shifter |
Cited By (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2653661A1 (en) * | 1975-11-25 | 1977-06-08 | Olympus Optical Co | Endoscope with instrument insertion channel - has curved guide surfaces at distal and two possible positions |
EP0049851A2 (en) * | 1980-10-09 | 1982-04-21 | Olympus Optical Co., Ltd. | Endoscope |
EP0049851A3 (en) * | 1980-10-09 | 1982-05-19 | Olympus Optical Co., Ltd. | Endoscope |
US4407273A (en) * | 1981-02-25 | 1983-10-04 | Kabushiki Kaisha Medos Kenkyusho | Raising means for guiding an implement of an endoscope |
EP0069942A2 (en) * | 1981-07-13 | 1983-01-19 | Olympus Optical Co., Ltd. | Driving device for an endoscopic-treatment instrument |
EP0069942A3 (en) * | 1981-07-13 | 1984-02-01 | Olympus Optical Co., Ltd. | Driving device for an endoscopic-treatment instrument |
DE3909290A1 (en) * | 1988-03-28 | 1989-10-12 | Asahi Optical Co Ltd | COVERED ENDOSCOPE |
US5507772A (en) * | 1993-05-25 | 1996-04-16 | Depuy Inc. | Cleanable, inspectable, and replaceable surgical instrument |
US20050096501A1 (en) * | 1997-08-21 | 2005-05-05 | Paul Stelzer | Minimally invasive surgery device |
EP1003411A1 (en) * | 1997-08-21 | 2000-05-31 | Paul Stelzer | Minimally invasive surgery device |
EP1003411A4 (en) * | 1997-08-21 | 2005-12-07 | Paul Stelzer | Minimally invasive surgery device |
US6352503B1 (en) * | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
US7955340B2 (en) | 1999-06-25 | 2011-06-07 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US20030176880A1 (en) * | 2002-03-15 | 2003-09-18 | Long Gary L. | Biopsy forceps device and method |
US7261728B2 (en) | 2002-03-15 | 2007-08-28 | Ethicon Endo-Surgery, Inc. | Biopsy forceps device and method |
US7060024B2 (en) * | 2002-03-15 | 2006-06-13 | Ethicon Endo-Surgery, Inc. | Apparatus for guiding an instrument used with an endoscope |
US7060025B2 (en) * | 2002-03-15 | 2006-06-13 | Ethicon Endo-Surgery, Inc. | Method for controlling position of medical instruments |
US20030176767A1 (en) * | 2002-03-15 | 2003-09-18 | Long Gary L. | Method for controlling position of medical instruments |
US20030176766A1 (en) * | 2002-03-15 | 2003-09-18 | Long Gary L. | Apparatus for guiding an instrument used with an endoscope |
US8216260B2 (en) | 2002-12-11 | 2012-07-10 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US20040249367A1 (en) * | 2003-01-15 | 2004-12-09 | Usgi Medical Corp. | Endoluminal tool deployment system |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US7918845B2 (en) | 2003-01-15 | 2011-04-05 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US20040172018A1 (en) * | 2003-02-28 | 2004-09-02 | Olympus Corporation | Endoscopic treatment instrument |
US8192431B2 (en) * | 2003-02-28 | 2012-06-05 | Olympus Corporation | Endoscopic treatment instrument |
US7815565B2 (en) * | 2003-05-16 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Endcap for use with an endoscope |
US20040230095A1 (en) * | 2003-05-16 | 2004-11-18 | David Stefanchik | Medical apparatus for use with an endoscope |
US20040230097A1 (en) * | 2003-05-16 | 2004-11-18 | David Stefanchik | Endcap for use with an endoscope |
US7615005B2 (en) | 2003-05-16 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Medical apparatus for use with an endoscope |
US8066631B2 (en) * | 2003-07-25 | 2011-11-29 | Karl Storz Gmbh & Co. Kg | Flexible endoscope with longitudinal axial channels |
US20060287572A1 (en) * | 2003-07-25 | 2006-12-21 | Wimmer Viktor J | Flexible endoscope with longitudinal axial channels |
US8444657B2 (en) | 2004-05-07 | 2013-05-21 | Usgi Medical, Inc. | Apparatus and methods for rapid deployment of tissue anchors |
US8216252B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US8828027B2 (en) | 2004-05-07 | 2014-09-09 | U.S.G.I. Medical, Inc. | Tissue manipulation and securement system |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US8926634B2 (en) | 2004-05-07 | 2015-01-06 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US20070249898A1 (en) * | 2004-07-02 | 2007-10-25 | Olympus Corporation | Endoscope |
US7914441B2 (en) * | 2004-07-02 | 2011-03-29 | Olympus Corporation | Endoscope |
US20060258904A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Feeding tube and track |
US20060258910A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Method of positioning a device on an endoscope |
US20060258903A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Method of inserting a feeding tube |
US20060258907A1 (en) * | 2005-05-13 | 2006-11-16 | David Stefanchik | Track for medical devices |
US7857754B2 (en) | 2005-05-13 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Apparatus useful for positioning a device on an endoscope |
US7615003B2 (en) | 2005-05-13 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Track for medical devices |
US7905830B2 (en) | 2005-05-13 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Sheath for use with an endoscope |
US7648457B2 (en) | 2005-05-13 | 2010-01-19 | Ethicon Endo-Surgery, Inc. | Method of positioning a device on an endoscope |
US8298291B2 (en) | 2005-05-26 | 2012-10-30 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US9585651B2 (en) | 2005-05-26 | 2017-03-07 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US8726909B2 (en) | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
US20110118545A1 (en) * | 2006-04-24 | 2011-05-19 | Williams Michael S | System and method for multi-instrument surgical access |
US8518024B2 (en) | 2006-04-24 | 2013-08-27 | Transenterix, Inc. | System and method for multi-instrument surgical access using a single access port |
US7833156B2 (en) | 2006-04-24 | 2010-11-16 | Transenterix, Inc. | Procedural cannula and support system for surgical procedures |
US8919348B2 (en) | 2006-04-24 | 2014-12-30 | Transenterix Surgical, Inc. | System and method for multi-instrument surgical access |
US8038598B2 (en) | 2006-05-15 | 2011-10-18 | Baystate Health, Inc. | Balloon endoscope device |
US20080009673A1 (en) * | 2006-05-15 | 2008-01-10 | Khachi Gerald J | Balloon endoscope device |
US20080188862A1 (en) * | 2007-02-01 | 2008-08-07 | Olymous Medical Systems Corp. | Method of treatment with endoscope |
US8591399B2 (en) | 2007-04-25 | 2013-11-26 | Karl Storz Endovision, Inc. | Surgical method utilizing transluminal endoscope and instruments |
US20080269557A1 (en) * | 2007-04-25 | 2008-10-30 | Jacques Francois Bernard Marescaux | Surgical Method Utilizing Transluminal Endoscope and Instruments |
US9596980B2 (en) | 2007-04-25 | 2017-03-21 | Karl Storz Endovision, Inc. | Endoscope system with pivotable arms |
US9107572B2 (en) | 2007-04-25 | 2015-08-18 | Karl Storz Endovision, Inc. | Surgical method utilizing transluminal endoscope and instruments |
US20090054733A1 (en) * | 2007-08-24 | 2009-02-26 | Jacques Francois Bernard Marescaux | Articulating Endoscope Instrument |
US8137263B2 (en) | 2007-08-24 | 2012-03-20 | Karl Storz Endovision, Inc. | Articulating endoscope instrument |
US20110112371A1 (en) * | 2007-09-12 | 2011-05-12 | Jeffrey A Smith | Multi-instrument access devices and systems |
US11337592B2 (en) | 2008-07-11 | 2022-05-24 | Sociedade Beneficente De Senhoras Hospital Sirio Libanes | Surgical endoscope and process for exchanging surgical tools in a surgical endoscope |
US10555663B2 (en) | 2008-07-11 | 2020-02-11 | Sociedade Beneficente De Senhoras Hospital Sirio Libanes | Surgical endoscope and process for exchanging surgical tools in a surgical endoscope |
US20110077460A1 (en) * | 2008-07-11 | 2011-03-31 | Sociedade Beneficente De Senhoras Hospital Sirio E Libanes | Surgical endoscope and process for exchanging surgical tools in a surgical endoscope |
US10154776B2 (en) | 2008-07-11 | 2018-12-18 | Sociedade Beneficente De Senhoras Hospital Sirio Libanes | Surgical endoscope and process for exchanging surgical tools in a surgical endoscope |
US20110230723A1 (en) * | 2008-12-29 | 2011-09-22 | Salvatore Castro | Active Instrument Port System for Minimally-Invasive Surgical Procedures |
EP2294967A1 (en) * | 2009-09-14 | 2011-03-16 | Richard Wolf GmbH | Endoscopic instrument |
CN102018493A (en) * | 2009-09-14 | 2011-04-20 | 理查德·沃尔夫有限公司 | Endoscopic instrument |
US20110065985A1 (en) * | 2009-09-14 | 2011-03-17 | Richard Wolf Gmbh | Endoscopic instrument |
US9265514B2 (en) | 2012-04-17 | 2016-02-23 | Miteas Ltd. | Manipulator for grasping tissue |
US9610088B2 (en) | 2012-04-17 | 2017-04-04 | A-Base Korlatolt Felelossegu Tarsasag | Manipulator for grasping tissue |
US10441302B2 (en) | 2012-04-17 | 2019-10-15 | A-Base Korlatolt Felelossegu Tarsasag | Manipulator for grasping tissue |
US11633203B2 (en) | 2012-04-17 | 2023-04-25 | A-Base Korlatolt Felelossegu Tarsasag | Manipulator for grasping tissue |
US12053155B2 (en) * | 2014-05-02 | 2024-08-06 | Endochoice, Inc. | Elevator for directing medical tool |
US11234581B2 (en) * | 2014-05-02 | 2022-02-01 | Endochoice, Inc. | Elevator for directing medical tool |
WO2016041300A1 (en) * | 2014-09-19 | 2016-03-24 | 珠海普生医疗科技有限公司 | Endoscope tip structure |
CN104224092A (en) * | 2014-09-19 | 2014-12-24 | 珠海普生医疗科技有限公司 | Tip end part structure for endoscope |
CN104224092B (en) * | 2014-09-19 | 2016-08-17 | 珠海普生医疗科技有限公司 | Elder generation of endoscope end construction |
US10194892B2 (en) | 2014-10-15 | 2019-02-05 | Karl Storz Endovision, Inc. | Detachable articulating endoscopic tool cartridge |
US10786140B2 (en) * | 2016-09-21 | 2020-09-29 | Fujifilm Corporation | Endoscope having operation wire with stretchable coating member |
US20180078121A1 (en) * | 2016-09-21 | 2018-03-22 | Fujifilm Corporation | Endoscope |
US11330965B2 (en) | 2017-03-03 | 2022-05-17 | Boston Scientific Scimed, Inc. | Device tip |
US11751751B2 (en) | 2017-03-03 | 2023-09-12 | Boston Scientific Scimed, Inc. | Device tip |
US11445894B2 (en) * | 2017-07-05 | 2022-09-20 | Olympus Corporation | Insertion assisting system |
US10779708B2 (en) | 2017-08-08 | 2020-09-22 | Applied Endosolutions, Llc | Overtubes for endoscopes and related systems and methods |
US11490796B2 (en) * | 2017-10-18 | 2022-11-08 | Olympus Corporation | Insertion assist system |
US11911005B2 (en) | 2021-10-29 | 2024-02-27 | Applied Endosolutions, Llc | Endoscopic retraction assist devices and related systems and methods |
Also Published As
Publication number | Publication date |
---|---|
DE2429476B2 (en) | 1976-11-18 |
DE2429476A1 (en) | 1975-01-09 |
JPS5022694U (en) | 1975-03-13 |
JPS574963Y2 (en) | 1982-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3915157A (en) | Endoscope | |
US5343853A (en) | Side-looking type electronic endoscope which allows manipulating tool to be inserted thereinto | |
US4427000A (en) | Endoscope having a temperature sensitive memory alloy plate as the treatment instrument driving device | |
US1727495A (en) | Beinhold h | |
US5456258A (en) | Catheter type ultrasound probe | |
US5964747A (en) | Lighting instrument, in particular for use in ophthalmologic microsurgery | |
US3924608A (en) | Endoscope | |
US20090054727A1 (en) | Endoscope | |
JPH0431251B2 (en) | ||
WO1998019608A1 (en) | Medical instrument with extendable snare | |
JP4450873B2 (en) | Endoscopic puncture needle operation assist device | |
US3703169A (en) | Endoscope | |
ES2967605T3 (en) | Multidirectional guided endoscope | |
JP4812457B2 (en) | Body cavity inspection device | |
US2067031A (en) | Instrument for insertion into constricted body cavities | |
WO1998019732A1 (en) | Steerable instrument for use in medical procedures | |
JPS64887Y2 (en) | ||
JPH02271817A (en) | Endoscope | |
JP2002253484A (en) | Distal end of duodenoscope | |
JP2005254002A (en) | Endoscope | |
JP2751118B2 (en) | Bending operation device | |
JPH027525Y2 (en) | ||
CN213721844U (en) | Angle-adjustable neuroendoscopy | |
EP0049851A2 (en) | Endoscope | |
JPH0340245Y2 (en) |