US3911384A - Increasing the dielectric strength in metal electrodes - Google Patents
Increasing the dielectric strength in metal electrodes Download PDFInfo
- Publication number
- US3911384A US3911384A US480929A US48092974A US3911384A US 3911384 A US3911384 A US 3911384A US 480929 A US480929 A US 480929A US 48092974 A US48092974 A US 48092974A US 3911384 A US3911384 A US 3911384A
- Authority
- US
- United States
- Prior art keywords
- layer
- dielectric constant
- increasing
- field strength
- metal electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002184 metal Substances 0.000 title abstract description 4
- 229910052751 metal Inorganic materials 0.000 title abstract description 4
- 239000011347 resin Substances 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims abstract description 11
- 238000007590 electrostatic spraying Methods 0.000 claims abstract description 6
- 239000004020 conductor Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 230000005684 electric field Effects 0.000 abstract description 10
- 238000010276 construction Methods 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007592 spray painting technique Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/324—Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
- H01B17/62—Insulating-layers or insulating-films on metal bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/005—Impregnating or encapsulating
Definitions
- electrodes must here be taken in its broad sense, and in this context it comprises construction parts for electric machines and apparatus which have high voltage to earth or other live parts or earth-connected parts which are located in the vicinity of live parts. As examples of what is meant may be mentioned the iron core with relevant parts, splash rings for live parts and the like.
- the sheets will display small irregularities in the cut edges. Even such construction parts as press beams, lifting devices and the like cannot be made absolutely smooth, and even after a normal grinding there will be irregularities which, in normal cases, are of no significance.
- a conductor with high voltage passes in the vicinity of an earthed object displaying such insignificant irregularities on the surface, the electric field between the conductor and the earthed object will be affected very strongly quite close to the irregularities, and the insulating material just outside even an almost microscopic elevation will be exposed to a considerably increased field strength with a resultant risk of glow discharge appearing there.
- Such a seemingly insignificant partial discharge can easily increase and will eventually give rise to a flash-over in the liquid insulating agent between the earthed object and the live conductor.
- the problem of avoiding partial discharges on the electrode surfaces referred to above has been solved by applying a layer of a resin with a dielectric constant which is high in comparison with the dielectric constant of the transformer oil to the electrode by means of electrostatic spraying.
- Electrostatic spray painting as such is well-known, but so far it has not been known to employ this method for strengthening the capacity of the electrodes to endure strong electrical fields in electrical apparatus.
- the method according to the invention makes use of the tendency of the applied material to accumulate mostly where the electrical field strength is highest, which is where the strongest insulation is required.
- FIG. 1 shows a sharp corner 'in a metallic construction part coated with an insulating-agent according to the invention
- FIG. 2 shows a vertical section through a toroidal splash ring on the line II-II of FIG. 3.
- FIG. 3 is a view from above of the splash ring accord- 0 ing to FIG. 2.
- FIG. 4 shows an enlarged cross-section of the area IV in FIG. 2 and also an enlarged view of the encircled area II in FIG. 6.
- FIG. 5 shows a time-temperature curve for the application of a coating according to the invention.
- FIG. 6 shows a schematic view of a transformer to which the invention is applied.
- FIG. 1 shows a sharp corner in a metallic construction part 1 in an electrical apparatus.
- This may be, for example, the iron core in a transformer.
- burrs will always appear and these will have a particular importance at the corners of the construction, with a resultant risk of glow phenomena.
- an insulating layer 2 is applied by means of electrostatic spraying of a powdered resin or a resinous solution. Because of the increased field strength at the corner 3, an extra thick coating will appear there. This means that a coating is obtained, the thickness of which is related to the risk of flash-over between the construction part and a live conductor in the vicinity thereof.
- FIG. 2 shows a vertical section through a toroidal splash ring 4, which is placed on that end of a transformer bushing which is located in the oil in a transformer tank. The lower end of the bushing is indicated at 5. The splash ring is supported by the bushing by means of stays 6.
- FIG. 3 shows the splash ring from above.
- Such splash rings are manufactured of a thin material, and the field strength will thus be high along the edges 7 with a subsequent risk of glow discharge.
- FIG. 4 shows a section through the edge 7 on an enlarged scale, after the splash ring has been treated according to the invention. The figure shows that the said edge is coated with a layer 8 of insulating material so that the otherwise sharp edge has a considerably increased radius of curvature. The risk of glow discharge and flash-over at the edge is thus considerably reduced.
- the treatment with resin according to the invention causes all sharp edges to acquire a smooth curvature with a definable radius. This decreases the field strength and reduces the risk of glow discharge and flash-over.
- FIG. 5 shows the time temperature curve during the process of coating an object.
- the straight part 10 indicates the temperature of the object before the start of the spraying.
- the object is removed from the heating furnace and the spraying commences. While the spraying is going on, the temperature decreases, which is marked by the downward curve part 12.
- the spraying is finished and the applied resin must be cured and this curing can be performed under a continuing temperature drop in the object according to one of the curve parts 14 or 15. It is also possible to place the object in a furnace so that the curing continues at constant temperature, as shown by the curve part 16. In any event it mustbe ensured that the temperature does not rise after the spraying has been finished.
- FIG. 6 shows a transformer having a tank filled with oil.
- An iron core 21 with windings 22 is in the tank.
- the lower end of each bushing situated in the tank has a splash ring 4, and each bushing is connected to a winding by a conductor 24.
- the encircled area II at the lower end of the bushing is shown on an enlarged scale in FIG. 2.
- the encircled area I at the upper righthand corner is shown in FIG, 1 and explained in connection with the description of said Figure,
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Holders For Apparel And Elements Relating To Apparel (AREA)
- Insulating Bodies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7308658A SE382715B (sv) | 1973-06-20 | 1973-06-20 | Forfarande for okning av den elektriska overslaghallfastheten hos metalliska elektroder. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3911384A true US3911384A (en) | 1975-10-07 |
Family
ID=20317824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US480929A Expired - Lifetime US3911384A (en) | 1973-06-20 | 1974-06-19 | Increasing the dielectric strength in metal electrodes |
Country Status (7)
Country | Link |
---|---|
US (1) | US3911384A (enrdf_load_stackoverflow) |
BR (1) | BR7405004A (enrdf_load_stackoverflow) |
CA (1) | CA1049338A (enrdf_load_stackoverflow) |
DE (1) | DE2427474B2 (enrdf_load_stackoverflow) |
NO (1) | NO134885C (enrdf_load_stackoverflow) |
SE (1) | SE382715B (enrdf_load_stackoverflow) |
ZA (1) | ZA743884B (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320437A (en) * | 1980-06-23 | 1982-03-16 | General Electric Company | Capacitor with edge coated electrode |
WO1998022958A1 (en) * | 1996-11-22 | 1998-05-28 | Abb Research Ltd. | Electrode for field control |
CN104634898A (zh) * | 2013-11-08 | 2015-05-20 | 中国石油天然气股份有限公司 | 电热混合场下评定变压器油产气趋势的试验方法及装置 |
US10449648B2 (en) | 2016-08-04 | 2019-10-22 | Robert Bosch Tool Corporation | Transferring rotation torque through isolator for table saw |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030806A1 (de) * | 1990-09-28 | 1992-04-02 | Siemens Ag | Verfahren zur erhoehung der spannungsfestigkeit und verbesserung des kriechstromverhaltens von isolationsstrecken und anwendung dieses verfahrens auf vakuumschalter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2730461A (en) * | 1953-02-19 | 1956-01-10 | Ransburg Electro Coating Corp | Electrostatic coating method |
US3265998A (en) * | 1964-04-14 | 1966-08-09 | Charles W Park | Compact high voltage transformer having more uniform equipotential line spacing |
-
1973
- 1973-06-20 SE SE7308658A patent/SE382715B/xx unknown
-
1974
- 1974-06-07 DE DE2427474A patent/DE2427474B2/de not_active Withdrawn
- 1974-06-17 NO NO742180A patent/NO134885C/no unknown
- 1974-06-18 ZA ZA00743884A patent/ZA743884B/xx unknown
- 1974-06-19 BR BR5004/74A patent/BR7405004A/pt unknown
- 1974-06-19 US US480929A patent/US3911384A/en not_active Expired - Lifetime
- 1974-06-19 CA CA202,879A patent/CA1049338A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2730461A (en) * | 1953-02-19 | 1956-01-10 | Ransburg Electro Coating Corp | Electrostatic coating method |
US3265998A (en) * | 1964-04-14 | 1966-08-09 | Charles W Park | Compact high voltage transformer having more uniform equipotential line spacing |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320437A (en) * | 1980-06-23 | 1982-03-16 | General Electric Company | Capacitor with edge coated electrode |
WO1998022958A1 (en) * | 1996-11-22 | 1998-05-28 | Abb Research Ltd. | Electrode for field control |
US6432524B1 (en) | 1996-11-22 | 2002-08-13 | Abb Research Ltd. | Electrode for field control |
CN104634898A (zh) * | 2013-11-08 | 2015-05-20 | 中国石油天然气股份有限公司 | 电热混合场下评定变压器油产气趋势的试验方法及装置 |
US10449648B2 (en) | 2016-08-04 | 2019-10-22 | Robert Bosch Tool Corporation | Transferring rotation torque through isolator for table saw |
Also Published As
Publication number | Publication date |
---|---|
ZA743884B (en) | 1975-06-25 |
CA1049338A (en) | 1979-02-27 |
DE2427474B2 (de) | 1979-07-19 |
NO134885B (enrdf_load_stackoverflow) | 1976-09-20 |
SE382715B (sv) | 1976-02-09 |
SE7308658L (enrdf_load_stackoverflow) | 1974-12-23 |
DE2427474A1 (de) | 1975-01-23 |
NO742180L (enrdf_load_stackoverflow) | 1975-01-13 |
NO134885C (enrdf_load_stackoverflow) | 1976-12-29 |
BR7405004A (pt) | 1976-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0888628B1 (en) | Transformer/reactor | |
US4500745A (en) | Hybrid electrical insulator bushing | |
US4333900A (en) | Process for manufacture of high voltage transformers and the like | |
US3911384A (en) | Increasing the dielectric strength in metal electrodes | |
CN108831716A (zh) | 一种干式变压器绝缘结构 | |
JP2012033386A (ja) | 電線、巻き線、および電気部品 | |
US3842186A (en) | Static plate for power transformers | |
US3376531A (en) | Electrical inductive apparatus with wire cloth shielding means | |
US2993183A (en) | Transformer structures | |
CN116171480A (zh) | 初级线圈和用于制造初级线圈的方法 | |
US3686600A (en) | Potential transformer | |
US3621426A (en) | Transformer with bushing compartment | |
US3543205A (en) | Electrical windings | |
US2322353A (en) | Dielectric material | |
US2381278A (en) | Inductive heating coil shielding | |
CN108736672A (zh) | 空冷水轮发电机真空压力浸渍定子线棒制造方法 | |
US3376530A (en) | Axially spaced transformer pancake coils having static plate | |
US1567797A (en) | Electrical induction apparatus | |
US3456224A (en) | Transformer with a laminated core | |
JPS58116035A (ja) | 回転電機の固定子 | |
US3210704A (en) | Electrical inductive apparatus having interleaved windings | |
CN104347194A (zh) | 一种耐高压超厚漆膜电磁线的生产方法 | |
US2880401A (en) | Means for controlling crack formations | |
JPS6259450B2 (enrdf_load_stackoverflow) | ||
TWI652705B (zh) | Static sensor |