US3909245A - Process for lowering the iron content in nickel melts - Google Patents

Process for lowering the iron content in nickel melts Download PDF

Info

Publication number
US3909245A
US3909245A US456412A US45641274A US3909245A US 3909245 A US3909245 A US 3909245A US 456412 A US456412 A US 456412A US 45641274 A US45641274 A US 45641274A US 3909245 A US3909245 A US 3909245A
Authority
US
United States
Prior art keywords
mixture
iron
nickel
melt
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US456412A
Inventor
Karl Brotzmann
Hans Georg Fassbinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisenwerke Gesellschaf Maximilianshuette mbH
Original Assignee
Eisenwerke Gesellschaf Maximilianshuette mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19732316110 external-priority patent/DE2316110C2/en
Application filed by Eisenwerke Gesellschaf Maximilianshuette mbH filed Critical Eisenwerke Gesellschaf Maximilianshuette mbH
Application granted granted Critical
Publication of US3909245A publication Critical patent/US3909245A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor

Definitions

  • Field 5 7 ABSTRACT A process for increasing the relative proportion of nickel in a nickel melt which originally contains as little as 20% nickel and the balance principally iron and non-metal contaminants, which comprise blowing a stream of oxygen mixed with a cooling agent into said melt through at least one double pipe tuyere, the oxygen and cooling medium being blown in through the center pipe and a stream of hydrocarbon being blown into the melt through the space between both of said pipes, the refining, cooling and protecting materials all being injected below the surface of said melt.
  • the invention relates to a process fordiminishingthe content of iron and other contaminants present in nickel melts containing over %nick el, by blowing a refining gas into the melt whileit is'in "a converter.
  • Nickel is of considerable significance as an alloying element in the metallurgy of iron; especially when melting high grade steels. it is frequently used as ferronickel which' is'requi'red'to contain 'a specific minimum content of nickel-.Therefore it is oftennecessar'y to increase the nickel content of nickelous pig iron or nickelous slag melts byremoving iron from the melts along with other undesired-elements such as carbon, silicon, phosphorus and sulfur which may 'be present in the melt.
  • the present invention is directed to a process for diminishing the iron content and the content of other undesired contaminations in nickel-iron melts, whereby the nickel content is raised appreciably by a procedure which does not jeopardize the converter lining.
  • the desired results are obtained by introducing a mixture of oxygen and of a cooling medium both surrounded by hydrocarbon, into the melt and below the bath surface.
  • This is achieved, preferably by means of a double-pipe tuyeres wherein the mixture of oxygen and cooling medium passes through the center pipe while gaseous or liquid hydrocarbons, for instance natural gas, propane, methane, butane, light fuel oil, fuel oil or mixtures thereof pass through the annular gap between the two concentric pipes of said tuyeres.
  • the tuyere pipes may be made of ordinary steel, copper or high grade steel.
  • the oxygen supply pipe consists of stainless steel and the outer pipe of ordinary steel.
  • the hydrocarbons used in the process of the invention serve to protect the tuyeres and the surrounding converter masonry, so that there will be essentially an even burn-off of tuyeres and masonry.
  • the percentage proportion of the cooling medium should be at least 50% by weight during the iron slagging or scorification phase since the cooling medium essentially is used principally to take up the large amounts of heat generated during iron slagging from the melt and slag and from the converter and so to avoid the harmful effects of such heat. This can be accomplished particularly effectively if the mixture of oxygen and cooling medium includes a decomposable coolant. For example, a mixture of 20% oxygen and 80% water vapor or carbon dioxide has been found particularly effective in the process.
  • the large amounts of the cooling medium ensure that, there will bethorough bath mixing, leading to rapid equalizationof concentration and henceto a reaction aproaching chemiealequilibrium. It is particulary advantageous to. use limestone dust as the cooling medium, since limestone is of high specific heat capacity andwill dissociate into carbon dioxide and lime endo-f thermallyjin the. melt. The carbon dioxide will then decompose endothermally in ⁇ the melt to carbon monoxide and oxygen, .calcium oxide being transferred into the slag and contributing to the formation of a highbasic slag which is compatible with the durability of the converter lining.
  • the amount of hydrocarbon will be not more than about 10% of the weight of the mixture of oxygen and cooling medium; since larger quantities frequentlylead to deposit formation at the tuyere tips and to wear of the tuyeres.
  • the cooling medium also contributes to protecting the tuyere mouths and the surrounding converter masonry, the quantity of hydrocarbon preferably will be raised or lowered depending on the proportion of cooling means in the mixture.
  • Refining in the process of the invention with respect to the nickel-iron melt first takes place with an oxygen stream containing only a minor amount of cooling medium, until the undesired non-metallic elements (C, Si, P, Etc.) have been eliminated and the temperature of the bath is of the order of l,600C. Ordinarily this stage will be reached within a few minutes, whereupon iron slagging will begin, during which the proportion of cooling medium in the mixture is increased to at least 50%, preferably 80%, and the amount of hydrocarbon is lowered down to 6-7% by weight, of the total mixture, or even less, and thus refining continues until the melt has reached its desired iron content.
  • iron Zl nickel 2 carbon 1.4 silicon (l. l() phosphorus 0.04 sulfur was charged at a temperature of l.300C into a 5-ton bottom blown converter.
  • Five tuyeres, arranged in a circle each tuyere consisting of two concentric pipes with diameters of 12 and 22 mm respectively were disposed to extend through the converter bottom.
  • oxygen and limestone dust were injected into the melt at a rate of 2,000 standard cubic meters/hour and 4,000 kg/hour respectively, through the inside pipes and 3% by weight of propane (based on the weight of the mixture) was blown into the melt in the converter through the annular gap between the inner and outer tuyere pipes.
  • cooling agent is a decomposable substance selected from the group consisting of limestone, water vapor and carbon dioxide and mixtures thereof.
  • cooling medium includes water vapor or carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

A process for increasing the relative proportion of nickel in a nickel melt which originally contains as little as 20% nickel and the balance principally iron and non-metal contaminants, which comprise blowing a stream of oxygen mixed with a cooling agent into said melt through at least one double pipe tuyere, the oxygen and cooling medium being blown in through the center pipe and a stream of hydrocarbon being blown into the melt through the space between both of said pipes, the refining, cooling and protecting materials all being injected below the surface of said melt.

Description

United States Patent 1191 Brotzmann et al.
PROCESS FOR LOWERING THE IRON CONTENT IN NICKEL MELTS Inventors:
Assignee:
Filed:
Appl. No.:
Karl Brotzmann; Hans Georg Fassbinder, both of Sulzbach-Rosenberg, Germany Eisenwerk-Gesellschaft Maximilianshutte mbl-l, Sulzbach-Rosenburg, Germany Mar. 29, 1974 Foreign Application Priority Data Mar. 30, 1973 Germany 2316110 US. Cl. 75/60; 75/52; 75/59 Int. Cl. C21C 5/34 Field of Search 75/59, 60, 52
References Cited UNITED STATES PATENTS 3,706,549 12/1972 Knuppcl 75/60 3,726,665 4/1973 Minnick 75/52 3,751,242 8/1973 Knuppel 75/60 3,771,998 11/1973 Knuppel 75/60 3,773,496 11/1973 Knuppel 75/60 Primary Examiner'Peter D. Rosenberg Attorney, Agent, or FirmLawrence 1. Field 5 7 ABSTRACT A process for increasing the relative proportion of nickel in a nickel melt which originally contains as little as 20% nickel and the balance principally iron and non-metal contaminants, which comprise blowing a stream of oxygen mixed with a cooling agent into said melt through at least one double pipe tuyere, the oxygen and cooling medium being blown in through the center pipe and a stream of hydrocarbon being blown into the melt through the space between both of said pipes, the refining, cooling and protecting materials all being injected below the surface of said melt.
7 Claims, No Drawings PROCESS FOR LowE Nc THE iRoN CONTENT IN NICKEL ELTs j I The invention relates to a process fordiminishingthe content of iron and other contaminants present in nickel melts containing over %nick el, by blowing a refining gas into the melt whileit is'in "a converter.
Nickel is of considerable significance as an alloying element in the metallurgy of iron; especially when melting high grade steels. it is frequently used as ferronickel which' is'requi'red'to contain 'a specific minimum content of nickel-.Therefore it is oftennecessar'y to increase the nickel content of nickelous pig iron or nickelous slag melts byremoving iron from the melts along with other undesired-elements such as carbon, silicon, phosphorus and sulfur which may 'be present in the melt.
This may be achieved for instance by blowing oxygen onto the nickelous iron melt whereby the iron and the.
other undesired elements are oxidized. in view of the relatively low nickel contents. of the,initial melt, in.
order to raise the nickelcontent appreciably, it -is necessary to achieve asubstantial diminution in the iron content, which is accomplished by oxidizing large amounts of iron. l-lo'wever such slagging of iron releases heat to such an extent that the life of a converter lining is seriously affected, "and furthermore the large contents of ferrous oxide in the slag at temperatures above l,650C will strongly attack the usual converter lining. Also, this oxidation of large amounts of iron is inevitably accomplished only by oxidizing a large percentage of the nickel, along with the iron.
The present invention is directed to a process for diminishing the iron content and the content of other undesired contaminations in nickel-iron melts, whereby the nickel content is raised appreciably by a procedure which does not jeopardize the converter lining.
The desired results are obtained by introducing a mixture of oxygen and of a cooling medium both surrounded by hydrocarbon, into the melt and below the bath surface. This is achieved, preferably by means of a double-pipe tuyeres wherein the mixture of oxygen and cooling medium passes through the center pipe while gaseous or liquid hydrocarbons, for instance natural gas, propane, methane, butane, light fuel oil, fuel oil or mixtures thereof pass through the annular gap between the two concentric pipes of said tuyeres. The tuyere pipes may be made of ordinary steel, copper or high grade steel. In a preferred embodiment of the invention, the oxygen supply pipe consists of stainless steel and the outer pipe of ordinary steel.
The hydrocarbons used in the process of the invention serve to protect the tuyeres and the surrounding converter masonry, so that there will be essentially an even burn-off of tuyeres and masonry. The percentage proportion of the cooling medium should be at least 50% by weight during the iron slagging or scorification phase since the cooling medium essentially is used principally to take up the large amounts of heat generated during iron slagging from the melt and slag and from the converter and so to avoid the harmful effects of such heat. This can be accomplished particularly effectively if the mixture of oxygen and cooling medium includes a decomposable coolant. For example, a mixture of 20% oxygen and 80% water vapor or carbon dioxide has been found particularly effective in the process.
The large amounts of the cooling medium ensure that, there will bethorough bath mixing, leading to rapid equalizationof concentration and henceto a reaction aproaching chemiealequilibrium. It is particulary advantageous to. use limestone dust as the cooling medium, since limestone is of high specific heat capacity andwill dissociate into carbon dioxide and lime endo-f thermallyjin the. melt. The carbon dioxide will then decompose endothermally in {the melt to carbon monoxide and oxygen, .calcium oxide being transferred into the slag and contributing to the formation of a highbasic slag which is compatible with the durability of the converter lining.
Loading limestone dust into the oxygen provides spatterless blowing; no foaming of the slag or ejection of slag or metal occurs, because the amount of gas introduced into the melt is significantly smaller. In addition the calcium oxide entering the melt after decomposition physically contributes to calming the refining process. Thus, while durability of the converter lining is being improved, there will also be short refining times and economical refining. Another economic benefit is that the refining slag, containing for'instance' 30% iron oxide and 50% calcium oxide, may be used when makingsteel or as a basic fluxing material in the blast furnace. I V v Preferably the amount of hydrocarbon will be not more than about 10% of the weight of the mixture of oxygen and cooling medium; since larger quantities frequentlylead to deposit formation at the tuyere tips and to wear of the tuyeres. However, because the cooling medium also contributes to protecting the tuyere mouths and the surrounding converter masonry, the quantity of hydrocarbon preferably will be raised or lowered depending on the proportion of cooling means in the mixture.
Refining in the process of the invention with respect to the nickel-iron melt first takes place with an oxygen stream containing only a minor amount of cooling medium, until the undesired non-metallic elements (C, Si, P, Etc.) have been eliminated and the temperature of the bath is of the order of l,600C. Ordinarily this stage will be reached within a few minutes, whereupon iron slagging will begin, during which the proportion of cooling medium in the mixture is increased to at least 50%, preferably 80%, and the amount of hydrocarbon is lowered down to 6-7% by weight, of the total mixture, or even less, and thus refining continues until the melt has reached its desired iron content.
By way of example, 5 tons of a nickel-iron melt of the following composition, in percent by weight,
iron Zl nickel 2 carbon 1.4 silicon (l. l() phosphorus 0.04 sulfur was charged at a temperature of l.300C into a 5-ton bottom blown converter. Five tuyeres, arranged in a circle each tuyere consisting of two concentric pipes with diameters of 12 and 22 mm respectively were disposed to extend through the converter bottom. During the first six minutes of refining, oxygen and limestone dust were injected into the melt at a rate of 2,000 standard cubic meters/hour and 4,000 kg/hour respectively, through the inside pipes and 3% by weight of propane (based on the weight of the mixture) was blown into the melt in the converter through the annular gap between the inner and outer tuyere pipes. Upon onset of iron slagging, the limestone rate in the oxygen was raised to 4Kg/std. m and simultaneously the proportion of hydrocarbon blown in around the mixture was reduced to 2% by weight. Refining was continued without further changes in proportions of limestone, oxygen or hydrocarbon, and the melt was tapped at a temperature of l,650C. Analysis of the refined melt showed:
59 iron 41 nickel carbon 0.004 phosphorus 0.010 sulfur The slag contained 52% of ferrous oxide, 45% of calcium oxide and only 3% of NiO. From this it will be seen that by practice of the process of the invention, it is possible to raise the nickel content of a nickelous iron melt, without sacrificing the nickel yield and without exceeding the permissible bath or slag temperatures.
Having now described a preferred embodiment of the invention it is not intended that it be limited except as may be required by the appended claims,
We claim:
1. in a process for diminishing the content of iron and other contaminants in iron-nickel melts containing more than of nickel, in which an oxygencontaining refining gas is blown into a converter, to oxidize the iron and other contaminants in said melt, thereby enriching the nickel content of the melt, the improvement which comprises:
blowing into said convertor a mixture of oxygen and cooling medium and a separate stream of hydrocarbon surrounding said mixture, said mixture and said hydrocarbon being blown into the converter beneath the bath surface,
wherein said cooling agent is a decomposable substance selected from the group consisting of limestone, water vapor and carbon dioxide and mixtures thereof.
2. A process as defined in claim 1, characterized in that the proportion by weight of the cooling medium in the mixture will amount to at least during the stage of the process in which iron is being oxidized.
3. A process as defined in claim 1, wherein cooling medium includes water vapor or carbon dioxide.
- 4. A process as defined in claim 1 wherein the mixture comprises oxygen loaded with limestone dust.
5. A process as defined in claim 1 wherein the hydrocarbon surrounds the mixture of oxygen and cooling medium concentrically.
6. A process as defined in claim 1 wherein the proportion of hydrocarbon does not exceed 10% by weight with respect to the mixture of oxygen and cooling medium.
' 7. A process as defined in claim 1 wherein the proportion of hydrocarbon is varied inversely in relation to the amounts of cooling medium in the mixture.

Claims (7)

1. IN A PROCESS FOR DIMINISHING THE CONTENT OF IRON AND OTHER CONTAMINANTS IN IRON-NICKEL MELTS CONTAINING MORE THAN 20% OF NICKEL, IN WHICH AN OXYGEN-CONTAINING REFINING GAS IS BLOWN INTO A CONVERTOR, TO OXIDIZE THE IRON AND OTHER CONTAMINANTS IN SAID MELT, THEREBY ENRICHING THE NICKEL CONTENT OF THE MELT, THE IMPROVEMENT WHICH COMPRISES: BLOWING INTO SAID CONVERTOR A MIXTURE OF OXYGEN AND COOLING MEDIUM AND A SEPERATE STREAM OF HYDROCARBON SURROUNDING SAID MIXTURE, SAID MIXTURE AND SAID HYDROCARBON BEING BLOWN INTO THE CONVERTOR BENEATH THE BATH SURFACE, WHEREIN SAID COOLING AGENT IS A DECOMPOSABLE SUBSTANCE SELECTED FROM THE GROUP CONSISTING OF LIMESTONE, WATER VAPOR AND CARBON DIOXIDE AND MIXTURES THEREOF.
2. A process as defined in claim 1, characterized in that the proportion by weight of the cooling medium in the mixture will amount to at least 50% during the stage of the process in which iron is being oxidized.
3. A process as defined in claim 1, wherein cooling medium includes water vapor or carbon dioxide.
4. A process as defined in claim 1 wherein the mixture comprises oxygen loaded with limestone dust.
5. A process as defined in claim 1 wherein the hydrocarbon surrounds the mixture of oxygen and cooling medium concentrically.
6. A process as defined in claim 1 wherein the proportion of hydrocarbon does not exceed 10% by weight with respect to the mixture of oxygen and cooling medium.
7. A process as defined in claim 1 wherein the proportion of hydrocarbon is varied inversely in relation to the amounts of cooling medium in the mixture.
US456412A 1973-03-30 1974-03-29 Process for lowering the iron content in nickel melts Expired - Lifetime US3909245A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19732316110 DE2316110C2 (en) 1973-03-30 Process for reducing the iron content of nickel-iron melts

Publications (1)

Publication Number Publication Date
US3909245A true US3909245A (en) 1975-09-30

Family

ID=5876582

Family Applications (1)

Application Number Title Priority Date Filing Date
US456412A Expired - Lifetime US3909245A (en) 1973-03-30 1974-03-29 Process for lowering the iron content in nickel melts

Country Status (3)

Country Link
US (1) US3909245A (en)
BR (1) BR7402524D0 (en)
CA (1) CA1014753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130417A (en) * 1975-07-11 1978-12-19 Gfe Gesellschaft Fur Elektrometallurgie Mit Beschrankter Haftung Process for refining high-carbon ferro-alloys
US4139370A (en) * 1972-01-13 1979-02-13 Gesellschaft Fur Elektrometallurgie Mbh Method of refining ferro-alloys
US4200453A (en) * 1977-10-29 1980-04-29 Larco, Societe Miniere Et Metallurgique De Larymna S.A. Process for the production of nickel alloys

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330645A (en) * 1962-08-07 1967-07-11 Air Liquide Method and article for the injection of fluids into hot molten metal
US3706549A (en) * 1968-02-24 1972-12-19 Maximilianshuette Eisenwerk Method for refining pig-iron into steel
US3726665A (en) * 1969-10-15 1973-04-10 C & W Corson H Inc Slagging in basic steel-making process
US3751242A (en) * 1969-04-02 1973-08-07 Eisenwerk Gmbh Sulzbach Rosenb Process for making chrimium alloys
US3771998A (en) * 1969-02-27 1973-11-13 Maximilianshuette Eisenwerk Method and converter for refining pig iron
US3773496A (en) * 1970-02-18 1973-11-20 Maximilianshuette Eisenwerk Process for producing chrome steels and a converter for carrying out the process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330645A (en) * 1962-08-07 1967-07-11 Air Liquide Method and article for the injection of fluids into hot molten metal
US3706549A (en) * 1968-02-24 1972-12-19 Maximilianshuette Eisenwerk Method for refining pig-iron into steel
US3771998A (en) * 1969-02-27 1973-11-13 Maximilianshuette Eisenwerk Method and converter for refining pig iron
US3751242A (en) * 1969-04-02 1973-08-07 Eisenwerk Gmbh Sulzbach Rosenb Process for making chrimium alloys
US3726665A (en) * 1969-10-15 1973-04-10 C & W Corson H Inc Slagging in basic steel-making process
US3773496A (en) * 1970-02-18 1973-11-20 Maximilianshuette Eisenwerk Process for producing chrome steels and a converter for carrying out the process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139370A (en) * 1972-01-13 1979-02-13 Gesellschaft Fur Elektrometallurgie Mbh Method of refining ferro-alloys
US4130417A (en) * 1975-07-11 1978-12-19 Gfe Gesellschaft Fur Elektrometallurgie Mit Beschrankter Haftung Process for refining high-carbon ferro-alloys
US4200453A (en) * 1977-10-29 1980-04-29 Larco, Societe Miniere Et Metallurgique De Larymna S.A. Process for the production of nickel alloys

Also Published As

Publication number Publication date
DE2316110A1 (en) 1974-04-11
DE2316110B1 (en) 1974-04-11
BR7402524D0 (en) 1974-11-19
AU6737274A (en) 1975-10-02
CA1014753A (en) 1977-08-02

Similar Documents

Publication Publication Date Title
SU727153A3 (en) Method of convertor reprocessing of high-phosphorus cast iron into steel
EP0017963B1 (en) Converter steelmaking process
US4410360A (en) Process for producing high chromium steel
US4071355A (en) Recovery of vanadium from pig iron
US3909245A (en) Process for lowering the iron content in nickel melts
US4322244A (en) Process for feeding carbon to an iron melt in a converter
US4001012A (en) Method of producing stainless steel
EP0090452B1 (en) Process for producing steel in a converter from pig iron and ferrous scrap
CA1102555A (en) Process and agent for the desulphurization of iron based melts
US4090869A (en) Process of manufacturing alloy steels in a continuously charged arc furnace
US3711278A (en) Method of manufacturing chromium alloyed steel
EP0043238B1 (en) Method of dephosphorizing molten pig iron
EP0073274B1 (en) Method of preliminary desiliconization of molten iron by injecting gaseous oxygen
US3826647A (en) Method of obtaining low-phosphorus contents in medium-and high-carbon steels in a bottom-blown oxygen steelmaking furnace
US4925489A (en) Process for melting scrap iron, sponge iron and/or solid pig iron
US4988387A (en) Agent and process for desulfurizing molten metals
US3746534A (en) Method of treating ferrous metals with oxygen containing a non gaseous fluidized fuel
US4274871A (en) Method of obtaining manganese alloys with a medium carbon content
US3832161A (en) Method of blowing-in through blast pipes submerged in a metallic bath
US3666445A (en) Auxiliary composition for steel-making furnaces
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
RU2118376C1 (en) Method of producing vanadium slag and naturally vanadium-alloyed steel
US3028232A (en) Process for blowing pig-iron
US3374088A (en) Method for producing low silicon ferromanganese alloys
US3304172A (en) Process for the manufacture of low phosphorus pig iron