US3908147A - Glow-discharge display device including cathode elements of finely divided carbon - Google Patents

Glow-discharge display device including cathode elements of finely divided carbon Download PDF

Info

Publication number
US3908147A
US3908147A US507722A US50772274A US3908147A US 3908147 A US3908147 A US 3908147A US 507722 A US507722 A US 507722A US 50772274 A US50772274 A US 50772274A US 3908147 A US3908147 A US 3908147A
Authority
US
United States
Prior art keywords
cathode
discharge
substrate
glow
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US507722A
Other languages
English (en)
Inventor
Raymond Frederick Hall
John Michael Stuart Schofield
James Smith
Jeffrey Charles Merrell Short
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US3908147A publication Critical patent/US3908147A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current

Definitions

  • Steinhauser A cross-barplay tube is has a current-voltage characteristic the S10 is unusually high for low-current densities at the cathode surfaces, this characteristic bein obtained by connecting a resistor in series with a conventional discharge and thus enablin to exhibit storage the characteristic is cathode surfaces fro finely divided carbo semiconductor or insulator.
  • the carbon ma vided on either an electricall lating substrate.
  • This invention relates to an electrical glow-discharge display device comprising an array of glow-discharge cathode elements and an anode element adjacent each cathode element for co-operating therewith to define an array of direct current glow-discharge paths through a gas atmosphere contained in said device, the cathode elements being electrically interconnected in groups, as are the anode elements, so that an addressing system exists for said paths, the surfaces of the elements of each cathode group which contact said atmosphere being physically separate from each other.
  • the cathode element groups may each consist of a column of cathode elements and the anode element groups may each consist of a row of anode elements, the addressing system then being one form of cross-bar addressing system.
  • row and column are used herein merely in a comparative sense; in practice the array may be orientated so that the rows extend from top to bottom and the columns extend from side to side. In addition the rows may extend at an angle other than 90 to the columns. They may also be curved, as may the columns).
  • Such a device may be used for displaying simple patterns such as diagrams, numerals, or words. There are two modes of operation of such devices:
  • each discharge path is energised during an address period and remains on until such time as an off pulse is applied thereto.
  • a discharge is energised it is necessary to control the current by means of a limiting resistor.
  • a limiting resistor In the cyclic mode such a resistor is connected in series with each anode row or each cathode column. The resistor is then time-shared between all the discharges on its row or column. Thus if the current limiting resistors are in the cathode columns the anode rows must be switched on in a cyclic manner.
  • the storage mode overcomes the duty-factor problem. it is theoretically possible because, once a discharge has been initiated, the voltage necessary to maintain that discharge is lower than that required to initiate it..Thus, if the row and column conductors are maintained at a relative potential difference V which is greater than the extinction voltage Ve for the dis charges but less than their strikingvoltage Vs, i.e. Vs V Ve, all elements will remain off until the voltage be tween the row and column conductor corresponding to a particular element is momentarily raised to above the striking voltage. When this is done the element in question will strike, and moreover it will remain on after the momentarily raised voltage has returned to its initial value. Thus successive elements can be energised in turn, and will remain on unless steps are taken to subsequently extinguish them. This can be done by momentarily reducing the voltage between the row and column conductor corresponding to a particular element.
  • US. Pat. No. 3,764,847 discloses a construction in which the anode electrodes comprise electrically conductive films deposited in rows and columns on the inner surface of an optically permeable viewing window of the device, the anode films of each row being individually electrically connected to a common row supply conductor which forms part of a cross-bar ad dressing system, which is also deposited on said inner surface, and at least the major portion of which is covered with an electrically insulating layer, said electrical connections each being formed by an electrically resistive thin-film path deposited on said inner surface and covered with an electrical insulator.
  • the invention provides an electrical glow-discharge display device comprising an array of glow-discharge cathode elements and an anode element adjacent each cathode element for cooperating therewith to define an array of direct current glow-discharge paths through a gas atmosphere contained in said device, the cathode elements being electrically interconnected in groups, as are the anode elements, so that an addressing system exists for said paths, the surfaces of the elements of each cathode group which contact said atmosphere being physically separate from each other and comprising carbon in finely divided form.
  • the particles of carbon preferably have diameters lying in the range 0.01 am to 10 am.
  • an electrical glow-discharge display device comprising an array of glow-discharge cathode elements and an anode element adjacent each cathode element for cooperating therewith to define an array of direct current glow-discharge paths through a gas atmosphere contained in-said device, the cathode elements being electrically interconnected in groups, as are the anode elements, sov that an addressing system exists for said paths, the surfaces of the elements of each cathode group which contact said atmosphere being physically separate from each other and comprising microscopically rough carbon.
  • the carbon may be in the form of carbon black", so-called baked carbon, colloidal graphite with potassium or sodium silicate, or so-called carbon paper" (available under the Registered Trade Mark Papyex). It may be present as an admixture with particles of a semiconductor or insulator such as silicon carbide or boron carbide respectively.
  • the carbon may be in the form of a coating or layer on an electrically conductive, e.g. metal, substrate. If this is the case the layer should be as thick as possible (consistent with good adhesion) to extend the life of the device. (Material is inevitably sputtered off in operation and it will be realised that immediately any part of the metal substrate is exposed the effect of the provision of the carbon will be lost and Rg will drop drastically, possibly resulting in destruction of the device).
  • the coating or layer of carbon is therefore preferably provided on an electrically insulating substrate, in which case the coating or layer forming the surface of each cathode element of a group is preferably electrically connected to the other coatings or layers of that group by a further conductive material, such as a metal which may also be provided on said insulating substrate.
  • the beneficial effect of the provision of the carbon may be due to its lowering the electron secondary emission coefficient for the cathode surface. Electrons emitted by the cathode surface in response to bombardment by electrons or ions may tend to become trapped in the undulations of the surface, this being a well-known hypothesis to explain the low-electronelectron secondary emission coefficient of such surfaces.
  • FIG. 1 shows glowdischarge current-voltage characteristics
  • FIG. 2 is a plan view of part of a first glow discharge display tube
  • FIG. 3 is a perspective view of a transverse section of the part of FIG. 2 together with a viewing window;
  • FIG. 4 is a longitudinal section of the part shown in FIG. 2 together with a viewing window
  • FIG. 5 shows separate parts of a second glowdischarge display tube.
  • curve A is the current i versus voltage V characteristic of a conventional glow-discharge path. It will be seen that the current initially increases slowly with voltage but eventually a point is reached beyond which the characteristic has a portion of negative slope. This point is the striking potential Vs of the path and, when it is just exceeded, the current increases rapidly until (in the absence of a current-limiting resistor) it reaches a point (not shown) on the slowly rising righthand part of the curve which corresponds to the applied voltage Vs. Because the right-hand part of the curve has such a shallow slope the final current will be large and may result in destruction of the device by an arc discharge.
  • Curve B which may be obtained in a device according to the invention, corresponds to curve A at low currents but, in the region beyond the region of negative slope, it has a much steeper slope than curve A.
  • the discharge path has the characteristic denoted by curve B then, when the striking potential Vs is just exceeded, the current will only increase to a value i,,,, which is much lower than the current corresponding to Vs on the right-hand part of the curve A. This lower current need not result in damage to the device.
  • Vm denotes the minimum maintaining potential of the path, once a discharge has been struck.
  • the maintaining potential corresponding to i, for curve B is Vs.
  • FIG. 2 a block 1 of electrically insulating material, for example that available under the Registered Trade Mark FUSITE K, has been moulded around a set of cathode substrate strips 2 which are led through the sides of the block 1 in a vacuum tight manner.
  • the upper surface of each substrate strip 2 is completely coated with a layer 12 of finely divided carbon, which may be 50 pm to m thick, except where the strips 2 pass through the side wall of the block 1 and also where they are exposed external to it.
  • Said layers 12 may then be provided by spraying colloidal graphite with potassium or sodium silicate in a suitable liquid vehicle (obtainable under the Registered Trade Mark DAG) onto the substrates through a suitable mask using compressed air.
  • the layers are baked in vacuo, for example at lOO0C.
  • the top face of the block 1 is provided with an array of cavities 3 which extend downwards as far as the coated strips 2.
  • cavities 3 which extend downwards as far as the coated strips 2.
  • a physically separate cathode surface is formed by the coated part of each strip 2 exposed at the closed end of each cavity.
  • the cathode substrate strips may be made of the material available under the Registered Trade Mark KOVAR.
  • the top face of the block 1 is provided with a set of 1 parallel ridges 4 which extend in the length direction of the block 1 so as to form channels linking parallel rows of cavities 3.
  • the cavities 3 are divided into parallel columns by grooves 5 provided in the top face of the block. These ridges and grooves can prevent sputtered material from the coated strip at the bottom of a cavity from forming a leakage path between one cavity and the next.
  • Further coated cathode substrate strips 6 which are similar to the strips 2 are provided at each end of the array. The whole of these coated strips 6 is exposed except where an (uncoated) part thereof passes through the wall of the block 1.
  • FIG. 3 is a perspective view of a cross-section taken on the line III-III of "FIG. 2.
  • a transparent viewing window plate 9 rests on the top of the ridges 4.
  • This window may be made of material available under the trade name SOVERIL 805.51 and carries a set of parallel anode wires 10 moulded into the lower face thereof. These wires 10 are aligned with the rows of cavities 3 so that an anode element faces each cavity and hence each cathode element.
  • the wires are led through the sides of the window 9 in a vacuum-tight manner. They form a cross-bar addressing system for the resulting array of glow-discharge paths in conjunc tion with the cathode substrate strips 2.
  • the window 9 is sealed all round to the block 1 as at 11 in a vacuumtight manner.
  • the anode wires 10 may be made of the material available under the Registered Trade Mark KOVAR".
  • FIG. 4 is a longitudinal section of the part shown in FIG. 2 taken on the line IVIV. It will be seen from FIG. 4 that the top face of the block 1 is provided with a step at each end. The auxiliary cathode substrate strips 6 lie on the face of this step and are consequently situated substantially in the same plane as are the substrate strips 2 and are thus each in a further channel extending in the column direction. The channels formed between the ridges 4 open into these further channels, all channels being closed by the plate 9 to form ducts. FIG. 4 also shows one anode wire 10.
  • the cavities 3 were disposed in 8 X 50 rectangular array. Each cavity was 0.75 mm square and the spacing between the cathode element surface 12 at the bottom of each cavity and the corresponding anode wire was 1.25 mm. The cavity depth was 0.75 mm and the ridges 4 were 0.6 mm high. The cavities were 1.5 mm between centers. The anode wires were in the form of strips 0.3 mm wide and 0.1 mm thick. The grooves 5 were 0.25 mm deep.
  • the interior of the tube was evacuated through an exhaust tube (not shown) and was filled with a gas atmosphere of, for example, pure neon at 40-60 Torr.
  • the complete tube was then aged by applying an operating potential of 350 volts between each cathode and anode element for a short time.
  • each discharge path was substantially as curve B of FIG. 1, i,,, being approximately 100 .LA.
  • FIG. 5 shows an exploded. view of a second glowdischarge display device which comprises an electrically insulating cathode substrate plate 13, an electrically insulating apertured intermediate plate 14 made, for example, from aluminum sheet which has been anodised to give it an electrically insulating skin, a spacer 15 into which plate 14 is located and an electrically insulating transparent viewing window plate 16.
  • the apertures 18 in the plate 14 are arranged in a rectangular array and a cathode element rectangle 17 of finely divided microscopically rough carbon is situated on the substrate 13 in register with each.
  • the eath ode rectangles of each row are electrically interconnected by means of a metal strip 19 offset from the apertures.
  • Electrically conductive anode strips 20 are provided on the underside of the anode plate 16, a strip 20 being in register with each column of apertures 18.
  • the strips 19 and 20 thus form a cross-bar addressing system for an array of glow-discharge paths each defined by a cathode element 17', an aperture 18, and the surface element of an anode strip 20 which faces that aperture 18.
  • the components 17 and 19 may be provided on the substrate 13 by first screen printing the strips 19 (which may be of silver) and then spraying on the cathode rectangle 17 in the form of colloidal graphite with potassium or sodium silicate in a suitable liquid vehicle through a suitable mask in a manner similar to that described for the layer 12 in the device of FIGS. 24, the material of each rectangle 17 being for example 25 ,u.m to um thick and positioned so that it overlaps the corresponding strip 19 slightly and thus electrically contacts it.
  • the carbon can be made into a suitable ink and screen-printed in position by standard thick-film techniques. After the provision of the rectangle 17 the substrate is baked, for example at 500C.
  • the anode strips 20 may also be silver, screenprinted onto the window plate 16.
  • the plate 14 may be 0.6mm l.2mm thick, the spacer 15 being 25-50 ,u.m thicker than plate 14 to give a small gap between plate 14 and window 16.
  • the apertures 18 may be 300 ,um in diameter.
  • the widths of anode strips 20 should preferably not exceed ,um, in order that they should not unduly obscure any glowdischarge occurring in the underlying apertures 18 in operation.
  • the peripheries of the components 13, 15 and 16 (which may all be of glass) are sealed together in a vacuumtight manner by means of a solder glass, and the interior evacuated through a pump stem (not shown) and filled with a glow-discharge atmosphere such as pure neon at 40-100 Torr.
  • a glow-discharge atmosphere such as pure neon at 40-100 Torr.
  • the resulting array of glowdischarge paths again had a voltage-current characteristic similar to curve B in FIG. 1.
  • the plates 13 and 16 may be slightly larger than the plate 14 and spacer 15 in order to facilitate electrical connection from an external circuit to the strips 19 and 20.
  • the spacer 15 may be dispensed with if protruberances of, for example, insulating material are provided on the window 16 or plate 14 in order to give the required small gap between them.
  • anode and cathode elements in the embodiments described have been arranged in rows and columns, it will be evident that other forms of coordinate array may alternatively be used.
  • a polar array may be employed with the interconnected cathode elements lying on concentric circles and the interconnected anode elements lying on radii of these circles.
  • the carbon of the layers 12 or 17 may be present as an admixture with particles of a semiconductor or insulator such as silicon carbide or boron carbide respectively.
  • An electrical glow-discharge display device comprising a hermetically sealed envelope containing an ionizable medium and a transparent window portion, an array of glow-discharge cathode elements and an anode element adjacent each cathode element for co operating therewith to define an array of direct current glow-discharge paths through the ionizable medium contained in said device, means interconnecting the cathode elements and the anode elements, respectively into groups forming an addressing system for said paths, each of said cathode elements having a substrate portion and a current-limiting surface layer portion in contact with the ionizable medium and physically separate from each other surface portion, said surface layer portion comprising carbon in finely divided form.
  • each cathode element of a group is a metal strip which extends to also form the substrate of the other cathode elements of that group.
  • each cathode element of a group is electrically connected to the other layers of that group by a further conductive material provided on said substrate.

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
US507722A 1973-09-28 1974-09-20 Glow-discharge display device including cathode elements of finely divided carbon Expired - Lifetime US3908147A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4552273A GB1473849A (en) 1973-09-28 1973-09-28 Glow-discharge display device

Publications (1)

Publication Number Publication Date
US3908147A true US3908147A (en) 1975-09-23

Family

ID=10437538

Family Applications (1)

Application Number Title Priority Date Filing Date
US507722A Expired - Lifetime US3908147A (en) 1973-09-28 1974-09-20 Glow-discharge display device including cathode elements of finely divided carbon

Country Status (6)

Country Link
US (1) US3908147A (ja)
JP (1) JPS5065171A (ja)
CA (1) CA1015392A (ja)
DE (1) DE2445237A1 (ja)
FR (1) FR2246973B1 (ja)
GB (1) GB1473849A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494037A (en) * 1980-06-26 1985-01-15 U.S. Philips Corporation Gas discharge display device having anodized and unanodized electrode surface areas
US6016027A (en) * 1997-05-19 2000-01-18 The Board Of Trustees Of The University Of Illinois Microdischarge lamp
US6563257B2 (en) 2000-12-29 2003-05-13 The Board Of Trustees Of The University Of Illinois Multilayer ceramic microdischarge device
US20060038490A1 (en) * 2004-04-22 2006-02-23 The Board Of Trustees Of The University Of Illinois Microplasma devices excited by interdigitated electrodes
US20060071598A1 (en) * 2004-10-04 2006-04-06 Eden J Gary Microdischarge devices with encapsulated electrodes
US20060082319A1 (en) * 2004-10-04 2006-04-20 Eden J Gary Metal/dielectric multilayer microdischarge devices and arrays
US20070170866A1 (en) * 2004-10-04 2007-07-26 The Board Of Trustees Of The University Of Illinois Arrays of microcavity plasma devices with dielectric encapsulated electrodes
US20070200499A1 (en) * 2006-01-23 2007-08-30 The Board Of Trustees Of The University Of Illinois Polymer microcavity and microchannel devices and fabrication method
US20080290799A1 (en) * 2005-01-25 2008-11-27 The Board Of Trustees Of The University Of Illinois Ac-excited microcavity discharge device and method
US20100072893A1 (en) * 2008-09-23 2010-03-25 The Board Of Trustees Of The University Of Illinois Ellipsoidal microcavity plasma devices and powder blasting formation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9915633D0 (en) * 1999-07-05 1999-09-01 Printable Field Emitters Limit Field electron emission materials and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2556616A (en) * 1948-03-25 1951-06-12 Corning Glass Works Method of making electrically conducting glass and articles made therefrom
US2959704A (en) * 1958-10-09 1960-11-08 Gen Electric Overvoltage protective device
US3484643A (en) * 1966-12-01 1969-12-16 Physics Int Co Boron carbide cathode for cold emission type cathode of the field emission type
US3764847A (en) * 1971-07-22 1973-10-09 Philips Corp Glow-discharge display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2556616A (en) * 1948-03-25 1951-06-12 Corning Glass Works Method of making electrically conducting glass and articles made therefrom
US2959704A (en) * 1958-10-09 1960-11-08 Gen Electric Overvoltage protective device
US3484643A (en) * 1966-12-01 1969-12-16 Physics Int Co Boron carbide cathode for cold emission type cathode of the field emission type
US3764847A (en) * 1971-07-22 1973-10-09 Philips Corp Glow-discharge display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494037A (en) * 1980-06-26 1985-01-15 U.S. Philips Corporation Gas discharge display device having anodized and unanodized electrode surface areas
US6016027A (en) * 1997-05-19 2000-01-18 The Board Of Trustees Of The University Of Illinois Microdischarge lamp
US6139384A (en) * 1997-05-19 2000-10-31 The Board Of Trustees Of The University Of Illinois Microdischarge lamp formation process
US6194833B1 (en) 1997-05-19 2001-02-27 The Board Of Trustees Of The University Of Illinois Microdischarge lamp and array
US6563257B2 (en) 2000-12-29 2003-05-13 The Board Of Trustees Of The University Of Illinois Multilayer ceramic microdischarge device
US20060038490A1 (en) * 2004-04-22 2006-02-23 The Board Of Trustees Of The University Of Illinois Microplasma devices excited by interdigitated electrodes
US7511426B2 (en) 2004-04-22 2009-03-31 The Board Of Trustees Of The University Of Illinois Microplasma devices excited by interdigitated electrodes
US7297041B2 (en) 2004-10-04 2007-11-20 The Board Of Trustees Of The University Of Illinois Method of manufacturing microdischarge devices with encapsulated electrodes
US20070170866A1 (en) * 2004-10-04 2007-07-26 The Board Of Trustees Of The University Of Illinois Arrays of microcavity plasma devices with dielectric encapsulated electrodes
US20060082319A1 (en) * 2004-10-04 2006-04-20 Eden J Gary Metal/dielectric multilayer microdischarge devices and arrays
US7385350B2 (en) 2004-10-04 2008-06-10 The Broad Of Trusstees Of The University Of Illinois Arrays of microcavity plasma devices with dielectric encapsulated electrodes
US20060071598A1 (en) * 2004-10-04 2006-04-06 Eden J Gary Microdischarge devices with encapsulated electrodes
US7573202B2 (en) 2004-10-04 2009-08-11 The Board Of Trustees Of The University Of Illinois Metal/dielectric multilayer microdischarge devices and arrays
US20080290799A1 (en) * 2005-01-25 2008-11-27 The Board Of Trustees Of The University Of Illinois Ac-excited microcavity discharge device and method
US7477017B2 (en) 2005-01-25 2009-01-13 The Board Of Trustees Of The University Of Illinois AC-excited microcavity discharge device and method
US20070200499A1 (en) * 2006-01-23 2007-08-30 The Board Of Trustees Of The University Of Illinois Polymer microcavity and microchannel devices and fabrication method
US8497631B2 (en) 2006-01-23 2013-07-30 The Board Of Trustees Of The University Of Illinois Polymer microcavity and microchannel devices and fabrication method
US8864542B2 (en) 2006-01-23 2014-10-21 The Board Of Trustees Of The University Of Illinois Polymer microcavity and microchannel device and array fabrication method
US20100072893A1 (en) * 2008-09-23 2010-03-25 The Board Of Trustees Of The University Of Illinois Ellipsoidal microcavity plasma devices and powder blasting formation
US8179032B2 (en) 2008-09-23 2012-05-15 The Board Of Trustees Of The University Of Illinois Ellipsoidal microcavity plasma devices and powder blasting formation

Also Published As

Publication number Publication date
JPS5065171A (ja) 1975-06-02
FR2246973B1 (ja) 1979-04-06
DE2445237A1 (de) 1975-04-03
CA1015392A (en) 1977-08-09
GB1473849A (en) 1977-05-18
FR2246973A1 (ja) 1975-05-02

Similar Documents

Publication Publication Date Title
US3743879A (en) Cold cathode display panel having a multiplicity of gas cells
US5083058A (en) Flat panel display device
KR100339196B1 (ko) 디스플레이장치용방전관및그의구동방법
US3838307A (en) Color plasma display
GB1496442A (en) Luminous discharge display devices
US5917284A (en) Sputter-resistant conductive coatings with enhanced emission of electrons for cathode electrodes in DC plasma addressing structure
US3908147A (en) Glow-discharge display device including cathode elements of finely divided carbon
US3662214A (en) Gas discharge display apparatus utilizing hollow cathode light sources
JPH04229530A (ja) プラズマ表示素子とその製造方法
US3825922A (en) Channel plate display device having positive optical feedback
US3701918A (en) Gaseous-flow, discharge display device with an array of hollow cathodes
US4475060A (en) Stabilized plasma display device
US4341976A (en) Display system
US3614509A (en) Large area plasma panel display device
US3753041A (en) Digitally addressable gas discharge display apparatus
US3654507A (en) Display panel with keep alive cells
US4030090A (en) Flat image display device utilizing digital modulation
US3846670A (en) Multiple gaseous discharge display-memory panel having decreased operating voltages
US4001620A (en) Modulation mask for an image display device
Jackson et al. Gas discharge displays: A critical review
US3684909A (en) Display panel having particle source
US3700946A (en) Gaseous display panel with apertured, metallic strip-like, scanning cathodes
EP0074440B1 (en) Display system and method of operating same
US3976823A (en) Stress-balanced coating composite for dielectric surface of gas discharge device
US3764847A (en) Glow-discharge display device