US3906775A - Riveter having axially latchable clutch - Google Patents

Riveter having axially latchable clutch Download PDF

Info

Publication number
US3906775A
US3906775A US481872A US48187274A US3906775A US 3906775 A US3906775 A US 3906775A US 481872 A US481872 A US 481872A US 48187274 A US48187274 A US 48187274A US 3906775 A US3906775 A US 3906775A
Authority
US
United States
Prior art keywords
collar
drive shaft
clutch
rest position
axially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US481872A
Inventor
Eliezer Benimetzki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US05/593,745 priority Critical patent/US4052078A/en
Application granted granted Critical
Publication of US3906775A publication Critical patent/US3906775A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/16Drives for riveting machines; Transmission means therefor
    • B21J15/26Drives for riveting machines; Transmission means therefor operated by rotary drive, e.g. by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/04Riveting hollow rivets mechanically
    • B21J15/043Riveting hollow rivets mechanically by pulling a mandrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/16Drives for riveting machines; Transmission means therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/17Socket type
    • Y10T279/17761Side detent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53709Overedge assembling means
    • Y10T29/53717Annular work
    • Y10T29/53726Annular work with second workpiece inside annular work one workpiece moved to shape the other
    • Y10T29/5373Annular work with second workpiece inside annular work one workpiece moved to shape the other comprising driver for snap-off-mandrel fastener; e.g., Pop [TM] riveter
    • Y10T29/53752Annular work with second workpiece inside annular work one workpiece moved to shape the other comprising driver for snap-off-mandrel fastener; e.g., Pop [TM] riveter having rotary drive mechanism

Definitions

  • ABSTRACT In a riveting device, comprising chuck means adapted to receive the mandrel of a blind rivet to exert a cycle
  • a means for latching the clutch comprises an axially 52 U.S. Cl 72/391; 279/76 Shiftable member so that theriveting device is latched [51] B21J 15/34 for a cycle of Operation by Simple axial P p 5 Field f Search 72/391, 279/1 DC, the drive shaft.
  • a bit has a power transmission collar.
  • the drive shaft has a well inv which there is a socket.
  • the combination of bit and collar is inserted into the References Cited well in the driveshaft whereby the pin and spiral association between collar and socket permit power trans- UNITED STATES PATENTS mission from the electric drill to the driveshaft.
  • an electric drill having such bit and collar can be used g 3,504,519 4/1970 Homungn 72391 akllternate ly far hole drllllng and power transmlsslon for 3,534,581 /1970 Mullen.
  • This invention relates to tools adapted to set the type of blind tubular rivet which has a mandril which can be pulled to anchor the remote portion of the blind rivet.
  • the invention also concerns the combination of a power transmission collar and power transmission socket powering av supplemental tool used intermittently with a hand-held electric drill for minimizing loss of time in shifting to and from drilling holes and use of such supplemental tool.
  • blind rivets having a setting means comprising a mandrel and an enlarged head.
  • Thenose of a riveting tool is held against the radially enlarged flange of the rivet as the mandrel of the blind rivet is pulled, thereby causing the remove portion of the tubular blind rivet to be expanded, set and anchored as the head is pulled rearwardly.
  • the blind rivet is equipped with a narrow neck portion so that immediately after the mandril has been pulled sufficiently to achieve the desired anchoring or the remote portion of the blind rivet, the neck breaks and the mandrel is pulled from the head.
  • the opening in the blind rivet is sealed because the head remains in the remote portion of the rivet.
  • the riveting guns which have been employed heretofore in achieving the riveting of blind rivets have included means so that when there was the cycle of operation, a chuck would grip the mandrel and pull the mandrel until the setting of the rivet and the breaking of the neck of the pulling pin. When the riveter chuck was being returned to its rest position the chuck would release, and the mandrel would be ejected from the riveting device.
  • a significant portion of blind rivets have been used in factories where compressed air was available. The compressed air type of riveting device has been much used.
  • a riveting device is provided with a clutch which can be engaged by a latching mechanism which is shifted to the latched position by a simple pushing forward on the drive shaft.
  • a supplemental tool such as a screw driver, riveter, etc.
  • the drive shaft of the supplemental tool is provided with a well adapted to receive both the bit and a collar attached near the chuck end of the bit, the collar having one spiral surface adapted to engage with and transmit power to one pin extending into the well of the drive shaft.
  • the pin is adapted to engage for power transmission purposes with such spiral surface of the collar.
  • FIG. 1 is a longitudinal cross sectional view of a riveting tool constructed in accordance with the invention.
  • FIG.. 2 is in part a plan view and in part a cross sectional view of some internal portions of FIG. 1, but with the apparatus turned from that shown in FIG. 1.
  • FIG. 3 is a longitudinal cross sectional view with certain parts shown in elevation and is somewhat similar to FIG. 1 except that the drive shaft is shifted axially forward to latch the clutch and to close the split nut into engagement with the axially shiftable screw of the tool.
  • FIG. 4 is a cross section taken on line 44 of FIG. 1 showing the manner in which the chuck of the riveting tool can grip the mandrel of a blind rivet.
  • FIG. 5 is a cross section taken on line 55 of FIG. 1 showing an intermediate support adapted to permit an axially shiftable assembly to slide axially for the reciprocating action of a cycle of riveting and securing such assembly so that it does not rotate.
  • FIG. 6 is a cross sectional view of a split nut having a pair of springs urging the two halves of the split nut into an open position, the nut being adapted for compression into engagement with a screw when the clutch is latched into engagement.
  • FIG. 7 is a cross sectional view taken on line 7-7 of FIG. 1 showing an axially slidable collar, there being a pinand slot connection between the driving collar and the carrier member for the split nut.
  • FIG. 8 is a cross sectional view, taken on line 88 of FIG. 1 showing the manner in which the power transmission collar secured to the bit of an electric drill engages a pin in the socket portion of the well in the drive shaft of the tool.
  • FIG. 9 is a cross sectional view resembling FIG. 1 except that the threaded rod is not at its rest position but near the end of its rearward shifting, as the clutch is about to be disengaged by such powered shifting of the threaded rod.
  • FIG. 10 is a perspective view of a power transmission system, utilizing a collar attached to a bit in a drill having a motor rotating the bit.
  • FIGS. 1 through 9 show one illustrative embodiment of a riveting tool have a casing 21, forward sleeve 23 and an intermediate support 22. Any of several nose pieces 24 may be in threaded engagement with the forward sleeve 23. The opening 25 in nose piece 24 can be selected to accomodate a suitable range of sizes of mandrils.
  • a rear plug 26 is in threaded engagement with the casing 21.
  • a bearing 27 and grease seal 28 in rear plug 26 are in slidable and rotatable engagement with a drive shaft 30.
  • the outer appearance of the riveting tool is controlled by such drive shaft 30, rear plug 26, casing 21, intermediate support 22, forward sleeve 23 and nose piece 24.
  • a rotatable assembly 29 comprises drive shaft 30 and the internal portions of the device which rotate with drive shaft 30.
  • the drive shaft has a well 31 adapted to accomodate a bit and a well 32 adapted to accomodate a collar secured to bit 34 by sunken set screw 350.
  • a pin 33 serves as a power transmission socket in well 32.
  • Pin engageable surfaces 37, on collar 35 serve to make the collar 35 a power transmission means. Such pin engageable surfaces 37 are approached through the balance of the circumference by spiral surfaces 36, thus making the socket self-guiding.
  • the collar 35 can be attached to bit 34 by sunken setscrew 35a before or after the bit is in the electric drill chuck.
  • the combination is adapted for insertion into the wells 31, 32, in the drive shaft, so that the bit need not be removed from its chuck to drive the supplemental tool.
  • collar 38 Inside the casing, and comprising a part of the rotatable assembly 29 is collar 38 having a slot 39.
  • a pin 41 is threaded into carrier and fits into slot 39 for transmission of power from drive shaft 30 and collar 38 to carrier 40.
  • a bearing 42 secured to carrier 40 serves as both a rotating bearing and thrust bearing.
  • Bearing 42 is secured against a rear wall of intermediate support 22 by appropriate means such as an expansion ring 43.
  • An axially shifting assembly 44 of the illustrative embodiment is particularly advantageous because it constitutes only a small proportion of the total weight of riveting device 20.
  • a chuck nose 45 is threadably engaged with an internal member 46. Cam surfaces 47 inside the chuck nose 45 engage with cam surfaces 48, 49 on jaws 50, 51 so that when chuck nose 45 is shifted rearwardly, the jaws grip mandril 52. When the chuck nose 45 is returned to its rest position, cam surfaces 53, 54 on the pair of jaws 50, 51 engage with cam surface 55 at the inside of nose piece 24,
  • a bore 56 in internal member 46 accomodates a spring 57 forwardly urging an ejection cap 58 having a bore 59 adapted to receive the rear portion of mandrel 52.
  • the pin or mandril When the pin or mandril is inserted in the chuck, it tends to push cap 58 rearwardly against the urging of spring 57.
  • the internal member 46 When the internal member 46 is returned forwardly to its rest position the inertia of the cap 58 and the action of spring 57 help to promote the ejection of the mandril during such final stages of the cycle of operation of the riveting device.
  • the split nut has a surface 69 engageable with the forward end of collar 38 so that the threaded portion of the split nut is spaced only a slight distance from threaded rod portion 62 of internal member when in the rest position shown in FIGS. 1 and 2.
  • Each split nut 63, 64 has cylindrical surface 68 corresponding generally to the cylindrical surface of carrying member 40.
  • a principal portion of the internal surface of collar 38 has a slip fit with such diameter of carrier 40.
  • the forward edge of collar 38 is cam surface 70 adapted to engage cam surface 71 between small diameter surface 69 and large diameter surfaces 68 on split nuts 63, 64. Particular attention is directed to the difference between FIG. 1 and FIG. 3.
  • Collar 38 engages small diameter surface 69 of split nuts 63, 64 in FIG.
  • a pin 41 which is threaded into carrier 40 fits into slot 39 of power transmission collar 38.
  • a bore at the axis of carrier 40 is shown as an opening through which (see FIG. 9) it is possible for threaded rod 62 to axially shift.
  • bit 34 carries collar 35 having pin engageable surfaces 37 which are automatically self-guided into engagement with pin 33 by spiral surfaces 36.
  • Drive shaft 30 has a well 32. If pin 33 becomes worn, it is readily replaced by unthreading the recessed screw and threading in a new pin.
  • the drive shaft 30 is pushed to latch the clutch means 75 with collar 38 over large diameter 68 of split nut 63, 64.
  • the collar 35 is inserted into well 32 so that the cam 37 on collar 35 engages pin 33 in well 32.
  • the bit extends into well 31.
  • the drive shaft 30 is driven, thereby rotating the split nut 63, 64.
  • Threaded rod 62 is axially shifted rearwardly, thereby pulling mandrel 52 gripped by the pair of jaws 50, 51 in the chuck nose 45.
  • Blind rivet 80 as it is initially employed, comprises tubular shank 81 and radially enlarged flange 82, so that the rivet does not go through the relatively snug hole into which the shank 81 is positioned.
  • the blind rivet comprises setting means 83 including a head 84 having cam surfaces adapted to enlarge the diameter of the remote portion of the tubular shank 81 as the head 84 is drawn rearwardly by the tool 20.
  • a neck 85 connects the head 84 with mandrel 52 for the pulling of the head 84 from its rest position to the anchored position.
  • the neck 85 is sufficient tensile strength to permit the anchoring of the remote portion of the rivet but the neck 85 does break when the head 84 is shifted into its final position, thereby releasing the mandrel 52 from the blind rivet.
  • the jaws 50, 51 continue to grip the mandrel 52 during its rearward movement, but when the spring 74 returns the axially shiftable assembly 44 to its rest position, cam 55 on nose piece 24 engages with earns 53, 54 on jaws 50, 51 to automatically open and release the jaws from the mandrel 52 so that mandrel 52 can be ejected by the inertia action of ejection cap 58.
  • a collar 35 is secured to a bit 34 with a recessed set screw 35a.
  • the collar 35 has a spiral surface terminating in a cam 37 engageable with pin 33 in the socket or well 32.
  • the combination of such well 32 and pin 33 can be treated as a socket for power transmission from power transmission collar 35.
  • Particular advantages are obtained because there is only a single pin and a corresponding cam on the collar.
  • the self guiding socket functioning are not as effective at such small diameter if, for example, four pins and four spirals are used.
  • the drive shaft is latched into engagement prior to the insertion of the power transmission means.
  • the latching of the clutch can occur after the collar 35 is inserted in well 32.
  • the small inertia of the axially shiftable assembly is advantageous during any engagement of the clutch means while the drive shaft 30 is rotating.
  • a riveting device for a blind rivet having a mandrel comprising a tubular housing, means for converting rotary power of a drive shaft to a cycle of axially shifting an internal member, a chuck adapted to grip a mandrel during its rearward axial shift with said internal member, and means for ejecting the mandril subsequent to the breaking thereof, the improvement which includes:
  • latching means adapted to engage said clutch means whenever the drive shaft is axially shifted forwardly from a rest position by a manual push;
  • unlatching means adapted to disengage said clutch means and to return the drive shaft rearwardly to its rest position, said unlatching means being responsive to the rearward axial movement of means moving with the chuck near the end of the rearward movement portion of the cycle of operation, and;
  • said clutch means, latching means, and unlatching means including a tubular collar of the drive shaft adapted to latch the clutch means when shifted in a forward position to compress split-nut means into engagement with an axially shiftable screw at its rest position, said screw disengaging the clutch by shifting the axially shiftable collar for a predetermined distance to its rest position, there being a spring adapted to urge the screw to its rest position upon the disengagement of the clutch, and there being a pair of springs to expand the split-nut to its rest position upon the disengagement of the clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Insertion Pins And Rivets (AREA)

Abstract

In a riveting device, comprising chuck means adapted to receive the mandrel of a blind rivet to exert a cycle of pulling the mandril to set the rivet and break the mandrel and to eject the thus broken mandrel, a means for latching the clutch comprises an axially shiftable member so that the riveting device is latched for a cycle of operation by a simple axial push upon the drive shaft. A bit has a power transmission collar. The drive shaft has a well in which there is a socket. The combination of bit and collar is inserted into the well in the driveshaft whereby the pin and spiral association between collar and socket permit power transmission from the electric drill to the driveshaft. Thus an electric drill having such bit and collar can be used alternately for hole-drilling and power transmission for the riveting device.

Description

United States Patent [191 [11 1 3,906,775 Benimetzki Sept. 23, 1975 RIVETER HAVING AXIALLY LATCHABLE CLUTCH Primary Examiner-C. W. Lanham Assistant Examiner-Gene P. Crosby [761 lnvemor' Eben}. Beiumetzkl c/o Br.llham Attorney, Agent, or Firm.lohn R. Ewbank; Melvin A.
Llghtlng Flxture Corporation, 12 W. St b 31st 51., New York, N.Y. 10001 em erg [22] Filed: June 21, 1974 [21] Appl. No.: 481,872
[57] ABSTRACT In a riveting device, comprising chuck means adapted to receive the mandrel of a blind rivet to exert a cycle [30] Foreign Application Priority Data of pulling the mandril to set the rivet and break the July 1, 1973 Israel 42637 mandrel and to eject the thus broken mandrel, a means for latching the clutch comprises an axially 52 U.S. Cl 72/391; 279/76 Shiftable member so that theriveting device is latched [51] B21J 15/34 for a cycle of Operation by Simple axial P p 5 Field f Search 72/391, 279/1 DC, the drive shaft. A bit has a power transmission collar. 279/76, 36 1 A 83 The drive shaft has a well inv which there is a socket. The combination of bit and collar is inserted into the References Cited well in the driveshaft whereby the pin and spiral association between collar and socket permit power trans- UNITED STATES PATENTS mission from the electric drill to the driveshaft. Thus $83? an electric drill having such bit and collar can be used g 3,504,519 4/1970 Homungn 72391 akllternate ly far hole drllllng and power transmlsslon for 3,534,581 /1970 Mullen. 72/391 t e "Vetmg 3,574,9l5 4/1971 .leal 72/391 3,774,437 11/1973 Young 72/391 2 l0 D'awmg F'gures 21 3B 85 45 e1 42 45k 7/ f j ii l lflas 73/2 26 21 50595822 R l \H Mk 'l s2 24 l V r" 2a 36 3o 35 4 2 I 359 2 W 7 1 \\\\\\c: i i sv. 25 -xwms\ll -i..,, 3 4 "w /m=,m so 41 2W 4 6 W 49. 29 37 l-a3 34 US Patent Sept. 23,1975 Sheet 2 of3 3,906,775
mm Oh mm US Patent Sept. 23,1975 Sheet 3 of3 3,906,775
mh mm mm N0 hm mm mm mm E N nv RIVETER HAVING AXIALLY LATCI-IABLE CLUTCH FIELD OF INVENTION This invention relates to tools adapted to set the type of blind tubular rivet which has a mandril which can be pulled to anchor the remote portion of the blind rivet. The invention also concerns the combination of a power transmission collar and power transmission socket powering av supplemental tool used intermittently with a hand-held electric drill for minimizing loss of time in shifting to and from drilling holes and use of such supplemental tool.
PRIOR ART In the installation of duct work and other custom built construction, there are situations in which there is need for fastening components by the installation of a rivet from one side. For several years there have been blind rivets having a setting means comprising a mandrel and an enlarged head. Thenose of a riveting tool is held against the radially enlarged flange of the rivet as the mandrel of the blind rivet is pulled, thereby causing the remove portion of the tubular blind rivet to be expanded, set and anchored as the head is pulled rearwardly. The blind rivet is equipped with a narrow neck portion so that immediately after the mandril has been pulled sufficiently to achieve the desired anchoring or the remote portion of the blind rivet, the neck breaks and the mandrel is pulled from the head. The opening in the blind rivet is sealed because the head remains in the remote portion of the rivet.
The riveting guns which have been employed heretofore in achieving the riveting of blind rivets have included means so that when there was the cycle of operation, a chuck would grip the mandrel and pull the mandrel until the setting of the rivet and the breaking of the neck of the pulling pin. When the riveter chuck was being returned to its rest position the chuck would release, and the mandrel would be ejected from the riveting device. A significant portion of blind rivets have been used in factories where compressed air was available. The compressed air type of riveting device has been much used.
In the construction of buildings however, compressed air tools are less convenient than electric tools. Holes are often drilled by hand-held electric drills. Electrically operated riveting devices have been employed in field installation of blind rivets. Young US. Pat. No. 3,774,437 exemplifies a riveting device scheduled to be actuated by an electric drill. The drive shaft of the Young device includes a stub which can be inserted into the chuck of an electric drill. Radial pressure is applied to latch the clutch into engagement in the Young device. The usefulness of a riveting device is dependent to a significant extent on the number of completed operations of rivet installations which the mechanic can complete in an hour. The cost of a riveting tool is less than the weeks salary of a worker. The speed of operation has generally been more significant than the cost of the riveting tool. Notwithstanding the thousands of persons using electric drills to drill holes into which they inserted blind rivets, there has not been any satisfactory solution for the long standing demand for a riveting device permitting fast installation of blind rivets in the field, that is, outside of factories equipped with tools for routine production.
SUMMARY OF THE INVENTION In accordance with the present invention, a riveting device is provided with a clutch which can be engaged by a latching mechanism which is shifted to the latched position by a simple pushing forward on the drive shaft. Some such type of forward pushing on a portion of the riveting device is a necessary feature of the operation of substantially any riveting device because the nose of the riveting tool must be pushed against the flange of the blind rivet after placement in its hole. Thus the present invention avoids loss of time inherent in the prior art types of separate operation for latching.
In accordance with the present invention conveniently connectable and disconnectable power transmission means are provided for driving a supplemental tool such as a screw driver, riveter, etc., with an electric drill. The drive shaft of the supplemental tool is provided with a well adapted to receive both the bit and a collar attached near the chuck end of the bit, the collar having one spiral surface adapted to engage with and transmit power to one pin extending into the well of the drive shaft. The pin is adapted to engage for power transmission purposes with such spiral surface of the collar. By the use of the advantageous collar and cooperating socket in the well of the supplemental tool, the holes can be drilled with the bit in the electric drill and then between the hole drilling steps, the supplemental tool can be used by inserting the bit and collar into the well of the drive shaft of the supplemental tool. An advantageous method of operation is possible by the use of such power transmission system.
DESCRIPTION OF DRAWINGS FIG. 1 is a longitudinal cross sectional view of a riveting tool constructed in accordance with the invention.
FIG.. 2 is in part a plan view and in part a cross sectional view of some internal portions of FIG. 1, but with the apparatus turned from that shown in FIG. 1.
FIG. 3 is a longitudinal cross sectional view with certain parts shown in elevation and is somewhat similar to FIG. 1 except that the drive shaft is shifted axially forward to latch the clutch and to close the split nut into engagement with the axially shiftable screw of the tool.
FIG. 4 is a cross section taken on line 44 of FIG. 1 showing the manner in which the chuck of the riveting tool can grip the mandrel of a blind rivet.
FIG. 5 is a cross section taken on line 55 of FIG. 1 showing an intermediate support adapted to permit an axially shiftable assembly to slide axially for the reciprocating action of a cycle of riveting and securing such assembly so that it does not rotate.
FIG. 6 is a cross sectional view of a split nut having a pair of springs urging the two halves of the split nut into an open position, the nut being adapted for compression into engagement with a screw when the clutch is latched into engagement.
FIG. 7 is a cross sectional view taken on line 7-7 of FIG. 1 showing an axially slidable collar, there being a pinand slot connection between the driving collar and the carrier member for the split nut.
FIG. 8 is a cross sectional view, taken on line 88 of FIG. 1 showing the manner in which the power transmission collar secured to the bit of an electric drill engages a pin in the socket portion of the well in the drive shaft of the tool.
FIG. 9 is a cross sectional view resembling FIG. 1 except that the threaded rod is not at its rest position but near the end of its rearward shifting, as the clutch is about to be disengaged by such powered shifting of the threaded rod.
FIG. 10 is a perspective view of a power transmission system, utilizing a collar attached to a bit in a drill having a motor rotating the bit.
DESCRIPTION OF ILLUSTRATIVE EMBODIMENT FIGS. 1 through 9 show one illustrative embodiment of a riveting tool have a casing 21, forward sleeve 23 and an intermediate support 22. Any of several nose pieces 24 may be in threaded engagement with the forward sleeve 23. The opening 25 in nose piece 24 can be selected to accomodate a suitable range of sizes of mandrils. A rear plug 26 is in threaded engagement with the casing 21. A bearing 27 and grease seal 28 in rear plug 26 are in slidable and rotatable engagement with a drive shaft 30. The outer appearance of the riveting tool is controlled by such drive shaft 30, rear plug 26, casing 21, intermediate support 22, forward sleeve 23 and nose piece 24.
A rotatable assembly 29 comprises drive shaft 30 and the internal portions of the device which rotate with drive shaft 30. As shown in FIG. 2 the drive shaft has a well 31 adapted to accomodate a bit and a well 32 adapted to accomodate a collar secured to bit 34 by sunken set screw 350. A pin 33 serves as a power transmission socket in well 32. Pin engageable surfaces 37, on collar 35 serve to make the collar 35 a power transmission means. Such pin engageable surfaces 37 are approached through the balance of the circumference by spiral surfaces 36, thus making the socket self-guiding. The collar 35 can be attached to bit 34 by sunken setscrew 35a before or after the bit is in the electric drill chuck. The combination is adapted for insertion into the wells 31, 32, in the drive shaft, so that the bit need not be removed from its chuck to drive the supplemental tool.
Inside the casing, and comprising a part of the rotatable assembly 29 is collar 38 having a slot 39. A pin 41 is threaded into carrier and fits into slot 39 for transmission of power from drive shaft 30 and collar 38 to carrier 40. A bearing 42 secured to carrier 40 serves as both a rotating bearing and thrust bearing. There are left hand threads for connecting the intermediate support 22 and casing 21, whereby the intermediate support is not loosened by rotary forces exerted against it. Bearing 42 is secured against a rear wall of intermediate support 22 by appropriate means such as an expansion ring 43.
In any riveting device for securing blind rivets, it is desirable to avoid excessive weight and inertia in the components which are subjected to the reciprocating cycle of rearward axial movement and return to the forward rest position. An axially shifting assembly 44 of the illustrative embodiment is particularly advantageous because it constitutes only a small proportion of the total weight of riveting device 20. A chuck nose 45 is threadably engaged with an internal member 46. Cam surfaces 47 inside the chuck nose 45 engage with cam surfaces 48, 49 on jaws 50, 51 so that when chuck nose 45 is shifted rearwardly, the jaws grip mandril 52. When the chuck nose 45 is returned to its rest position, cam surfaces 53, 54 on the pair of jaws 50, 51 engage with cam surface 55 at the inside of nose piece 24,
thereby releasing the jaws from their gripping of mandril 52. A bore 56 in internal member 46 accomodates a spring 57 forwardly urging an ejection cap 58 having a bore 59 adapted to receive the rear portion of mandrel 52. When the pin or mandril is inserted in the chuck, it tends to push cap 58 rearwardly against the urging of spring 57. When the internal member 46 is returned forwardly to its rest position the inertia of the cap 58 and the action of spring 57 help to promote the ejection of the mandril during such final stages of the cycle of operation of the riveting device.
As shown in FIG. 5, intermediate support 22 has an opening 60 which opening is not round. Thus opening 60 restrains internal member 46 from rotating. Internal member 46 is thus permitted to have only forward and rearward axial movement. Internal member 46 may have a pair of flat surfaces 61 in engagement with opening 60. The intermediate support 22 supports internal member so that no support is necessary at either the chuck nose 45 or at threaded rod 62. As shown in FIGS. 1 and 6, a pair of split nuts 63, 64 are urged apart by springs 65, 66. The split nuts 63, 64 are held in and rotated by carrier 40. The split nut has a surface 69 engageable with the forward end of collar 38 so that the threaded portion of the split nut is spaced only a slight distance from threaded rod portion 62 of internal member when in the rest position shown in FIGS. 1 and 2. Each split nut 63, 64 has cylindrical surface 68 corresponding generally to the cylindrical surface of carrying member 40. A principal portion of the internal surface of collar 38 has a slip fit with such diameter of carrier 40. The forward edge of collar 38 is cam surface 70 adapted to engage cam surface 71 between small diameter surface 69 and large diameter surfaces 68 on split nuts 63, 64. Particular attention is directed to the difference between FIG. 1 and FIG. 3. Collar 38 engages small diameter surface 69 of split nuts 63, 64 in FIG. 1 but is shifted axially forward to engage the large diameter 68 of nuts 63, 64 in FIG. 3. Such axial shifting of the collar from its rearward rest position to its latched forward position is accomplished by a simple pushing movement on the drive shaft 30. The operation of inserting a blind rivet in a hole necessitates setting the nose piece 24 against the exposed flange of the blind rivet so that the latching of the clutch, involving such simple push forward of the drive shaft 30, is a step which the operator readily learns without any significant loss of time in the riveting operation.
As soon as the electric drill (after the collar 35 has engaged pin 33) rotates the drive shaft 30 while collar 38 maintains the engagement of split nuts 63, 64 with threaded rod 62, the axially shiftable assembly 44 begins its rearward axial movement.
As shown in FIG. 7 a pin 41 which is threaded into carrier 40, fits into slot 39 of power transmission collar 38. A bore at the axis of carrier 40 is shown as an opening through which (see FIG. 9) it is possible for threaded rod 62 to axially shift.
As shown in FIG. 8, bit 34 carries collar 35 having pin engageable surfaces 37 which are automatically self-guided into engagement with pin 33 by spiral surfaces 36. Drive shaft 30 has a well 32. If pin 33 becomes worn, it is readily replaced by unthreading the recessed screw and threading in a new pin.
The shifting of the collar 38 between its two positions, engaging either clutch engagement surface 68 of split nuts 63, 64 or clutch disengagement smaller diameter surface 69 of split nuts 63, 64 serves to engage or disengage the clutch. When the clutch is engaged as shown in FIG. 3, the rotation of the drive shaft 30, collar 38 and carrier 40 causes the split nuts 63, 64 to rotate as part of the rotating assembly 29. Such rotation of split nuts 63, 64 transmits power to threaded rod 62 (a screw) which is thereby axially shifted rearwardly, thereby pulling the mandrel and setting the blind rivet. The shape of threads in split nut 63, 64 and threaded rod 62 are adapted for power driven screws and not for fasteners.
As shown in FIG. 9 the end 72 of threaded rod 62 is rearwardly advanced until it engages a rear wall 73 of collar 38. Thereafter the rearwardly moving rod 62 pushes the collar 38 until its inner walls 67, are shifted from large diameter 68 to small diameter 69, thereby disengaging the clutch and terminating the power driven rearward movement of collar 38.
While the rotating split nuts 63, 64 are axially shifting the threaded rod 62 rearwardly, a spring 74 is being compressed. Hence as soon as threaded nuts 63, 64 are spread apart by the disengagement of clutch means 75 the axially shiftable assembly 44 is returned to its rest position by the action of spring 74.
In the operation of the riveting device, the drive shaft 30 is pushed to latch the clutch means 75 with collar 38 over large diameter 68 of split nut 63, 64. The collar 35 is inserted into well 32 so that the cam 37 on collar 35 engages pin 33 in well 32. The bit extends into well 31. When the electric drill is started, the drive shaft 30 is driven, thereby rotating the split nut 63, 64. Threaded rod 62 is axially shifted rearwardly, thereby pulling mandrel 52 gripped by the pair of jaws 50, 51 in the chuck nose 45.
Blind rivet 80, as it is initially employed, comprises tubular shank 81 and radially enlarged flange 82, so that the rivet does not go through the relatively snug hole into which the shank 81 is positioned. The blind rivet comprises setting means 83 including a head 84 having cam surfaces adapted to enlarge the diameter of the remote portion of the tubular shank 81 as the head 84 is drawn rearwardly by the tool 20. A neck 85 connects the head 84 with mandrel 52 for the pulling of the head 84 from its rest position to the anchored position. The neck 85 is sufficient tensile strength to permit the anchoring of the remote portion of the rivet but the neck 85 does break when the head 84 is shifted into its final position, thereby releasing the mandrel 52 from the blind rivet. The jaws 50, 51 continue to grip the mandrel 52 during its rearward movement, but when the spring 74 returns the axially shiftable assembly 44 to its rest position, cam 55 on nose piece 24 engages with earns 53, 54 on jaws 50, 51 to automatically open and release the jaws from the mandrel 52 so that mandrel 52 can be ejected by the inertia action of ejection cap 58. It should be noted that the rearwardly shifting threaded rod 62 eventually engages rear wall 73 of the bore of collar 38 thereby power driving collar 38 from engagement position, whereby walls 67 of the internal surface of collar 38 engage with small diameter surface 69 of split nuts 63, 64 instead of the large diameter surfaces 68 of said split nuts 63, 64. Thus there is power disengagement of clutch means 75. The clutch means 75 is latched for a controlled cycle of operation comprising such power disengagement of the clutch means.
'Any tool such as a riveter, screw driver, or other de vice used intermittently with an electric drill having a bit for drilling holes can benefit from the advantageous power transmission means of the invention.- As shown in FIG. 10, a collar 35 is secured to a bit 34 with a recessed set screw 35a. The collar 35 has a spiral surface terminating in a cam 37 engageable with pin 33 in the socket or well 32. The combination of such well 32 and pin 33 can be treated as a socket for power transmission from power transmission collar 35. Particular advantages are obtained because there is only a single pin and a corresponding cam on the collar. The self guiding socket functioning are not as effective at such small diameter if, for example, four pins and four spirals are used.
Under normal circumstances the drive shaft is latched into engagement prior to the insertion of the power transmission means. The latching of the clutch can occur after the collar 35 is inserted in well 32. The small inertia of the axially shiftable assembly is advantageous during any engagement of the clutch means while the drive shaft 30 is rotating.
The various illustrative embodiments are merely examples of concepts more accurately defined in the appended claims.
The invention claimed is:
1. In a riveting device for a blind rivet having a mandrel, such device comprising a tubular housing, means for converting rotary power of a drive shaft to a cycle of axially shifting an internal member, a chuck adapted to grip a mandrel during its rearward axial shift with said internal member, and means for ejecting the mandril subsequent to the breaking thereof, the improvement which includes:
clutch means associating the drive shaft with the axially shifting internal member;
latching means adapted to engage said clutch means whenever the drive shaft is axially shifted forwardly from a rest position by a manual push;
unlatching means adapted to disengage said clutch means and to return the drive shaft rearwardly to its rest position, said unlatching means being responsive to the rearward axial movement of means moving with the chuck near the end of the rearward movement portion of the cycle of operation, and;
said clutch means, latching means, and unlatching means including a tubular collar of the drive shaft adapted to latch the clutch means when shifted in a forward position to compress split-nut means into engagement with an axially shiftable screw at its rest position, said screw disengaging the clutch by shifting the axially shiftable collar for a predetermined distance to its rest position, there being a spring adapted to urge the screw to its rest position upon the disengagement of the clutch, and there being a pair of springs to expand the split-nut to its rest position upon the disengagement of the clutch.
2. Riveting apparatus in accordance with claim 1 wherein the drive shaft of the riveting device has a well adapted to receive a bit held in the chuck of a hand held rotating drill, said bit having a power transmission collar having one spiral surface engageable with one pin, and said drive shaft well having one pin engageable for power transmission purposes with the pin receptive spiral surface of such collar.

Claims (2)

1. In a riveTing device for a blind rivet having a mandrel, such device comprising a tubular housing, means for converting rotary power of a drive shaft to a cycle of axially shifting an internal member, a chuck adapted to grip a mandrel during its rearward axial shift with said internal member, and means for ejecting the mandril subsequent to the breaking thereof, the improvement which includes: clutch means associating the drive shaft with the axially shifting internal member; latching means adapted to engage said clutch means whenever the drive shaft is axially shifted forwardly from a rest position by a manual push; unlatching means adapted to disengage said clutch means and to return the drive shaft rearwardly to its rest position, said unlatching means being responsive to the rearward axial movement of means moving with the chuck near the end of the rearward movement portion of the cycle of operation, and; said clutch means, latching means, and unlatching means including a tubular collar of the drive shaft adapted to latch the clutch means when shifted in a forward position to compress split-nut means into engagement with an axially shiftable screw at its rest position, said screw disengaging the clutch by shifting the axially shiftable collar for a predetermined distance to its rest position, there being a spring adapted to urge the screw to its rest position upon the disengagement of the clutch, and there being a pair of springs to expand the split-nut to its rest position upon the disengagement of the clutch.
2. Riveting apparatus in accordance with claim 1 wherein the drive shaft of the riveting device has a well adapted to receive a bit held in the chuck of a hand held rotating drill, said bit having a power transmission collar having one spiral surface engageable with one pin, and said drive shaft well having one pin engageable for power transmission purposes with the pin receptive spiral surface of such collar.
US481872A 1973-07-01 1974-06-21 Riveter having axially latchable clutch Expired - Lifetime US3906775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/593,745 US4052078A (en) 1973-07-01 1975-07-07 Power transmission collar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IL7342637A IL42637A0 (en) 1973-07-01 1973-07-01 Device for riveting blind rivets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/593,745 Division US4052078A (en) 1973-07-01 1975-07-07 Power transmission collar

Publications (1)

Publication Number Publication Date
US3906775A true US3906775A (en) 1975-09-23

Family

ID=11047200

Family Applications (1)

Application Number Title Priority Date Filing Date
US481872A Expired - Lifetime US3906775A (en) 1973-07-01 1974-06-21 Riveter having axially latchable clutch

Country Status (4)

Country Link
US (1) US3906775A (en)
CA (1) CA1021740A (en)
GB (1) GB1433304A (en)
IL (1) IL42637A0 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034591A (en) * 1975-02-13 1977-07-12 Rothenberger Gmbh Kg Device for enlarging pipe ends
WO1986006662A1 (en) * 1985-05-07 1986-11-20 Tuomo Saarinen A riveting apparatus
WO1991011279A1 (en) * 1990-02-01 1991-08-08 Krister Juntunen Riveting device
US5473805A (en) * 1991-08-12 1995-12-12 Gesipa Blindniettechnik Gmbh Tool for setting blind rivets
US5544401A (en) * 1995-01-02 1996-08-13 Danino; Avraham Riveting device
US5802691A (en) * 1994-01-11 1998-09-08 Zoltaszek; Zenon Rotary driven linear actuator
US6018978A (en) * 1996-09-03 2000-02-01 Aniento; Andres Perez Universal simplified riveter
US6962543B2 (en) * 1999-09-24 2005-11-08 Borgwarner Inc. Continuously variable belt drive system
WO2009072836A2 (en) * 2007-12-06 2009-06-11 Soo Il Lee Electric apparatus for riveting
US20100054892A1 (en) * 2008-08-27 2010-03-04 Huang ting-chun Structure of rivet fixing device
WO2013180769A1 (en) * 2012-05-31 2013-12-05 Newfrey Llc Blind rivet fastening device
US20150040374A1 (en) * 2007-01-16 2015-02-12 Harry E. Taylor Blind rivet setting method
DE102013221790A1 (en) * 2013-10-28 2015-05-21 Robert Bosch Gmbh Rivet attachment for a screwing tool and screwing tool
US9968988B2 (en) 2012-05-31 2018-05-15 Newfrey Llc Blind rivet fastening device
CN111372702A (en) * 2017-11-28 2020-07-03 思普斯技术有限责任公司 Automatic dual-action fastener installation tool
EP3590625A4 (en) * 2017-03-02 2020-12-30 Hangzhou Lianwei Technology Co., Ltd. Riveting tool chuck and riveting tool
WO2022135989A1 (en) * 2020-12-22 2022-06-30 Robert Bosch Gmbh Resetting device for a riveting tool machine or a rivetting attachment device, riveting tool machine comprising the resetting device, and riveting attachment device comprising the resetting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144158A (en) * 1961-06-13 1964-08-11 Gobin Daude Device for setting rivets in a wall whitch is accessible on one side only
US3423986A (en) * 1966-03-11 1969-01-28 Rivetmaster Inc Rivet gun for blind rivets
US3504519A (en) * 1967-04-26 1970-04-07 Helfer & Co Kg Feinwerkbau Riveting tool for use with mandrel-equipped blind rivets
US3534581A (en) * 1968-02-08 1970-10-20 Malco Products Inc Mandrel type rivet setting device
US3574915A (en) * 1968-08-08 1971-04-13 Aerpat Ag Fastener-placing apparatus
US3774437A (en) * 1972-03-02 1973-11-27 D Young Rivet setting apparatus with axially movable collar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144158A (en) * 1961-06-13 1964-08-11 Gobin Daude Device for setting rivets in a wall whitch is accessible on one side only
US3423986A (en) * 1966-03-11 1969-01-28 Rivetmaster Inc Rivet gun for blind rivets
US3504519A (en) * 1967-04-26 1970-04-07 Helfer & Co Kg Feinwerkbau Riveting tool for use with mandrel-equipped blind rivets
US3534581A (en) * 1968-02-08 1970-10-20 Malco Products Inc Mandrel type rivet setting device
US3574915A (en) * 1968-08-08 1971-04-13 Aerpat Ag Fastener-placing apparatus
US3774437A (en) * 1972-03-02 1973-11-27 D Young Rivet setting apparatus with axially movable collar

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034591A (en) * 1975-02-13 1977-07-12 Rothenberger Gmbh Kg Device for enlarging pipe ends
WO1986006662A1 (en) * 1985-05-07 1986-11-20 Tuomo Saarinen A riveting apparatus
GB2194910A (en) * 1985-05-07 1988-03-23 Tuomo Saarinen A riveting apparatus
US4750347A (en) * 1985-05-07 1988-06-14 Tuomo Saarinen Riveting apparatus
GB2194910B (en) * 1985-05-07 1989-05-10 Tuomo Saarinen A riveting apparatus
WO1991011279A1 (en) * 1990-02-01 1991-08-08 Krister Juntunen Riveting device
US5473805A (en) * 1991-08-12 1995-12-12 Gesipa Blindniettechnik Gmbh Tool for setting blind rivets
US5802691A (en) * 1994-01-11 1998-09-08 Zoltaszek; Zenon Rotary driven linear actuator
US5544401A (en) * 1995-01-02 1996-08-13 Danino; Avraham Riveting device
US6018978A (en) * 1996-09-03 2000-02-01 Aniento; Andres Perez Universal simplified riveter
US6962543B2 (en) * 1999-09-24 2005-11-08 Borgwarner Inc. Continuously variable belt drive system
US9481027B2 (en) * 2007-01-16 2016-11-01 Harry E. Taylor Blind rivet setting method
US20150040374A1 (en) * 2007-01-16 2015-02-12 Harry E. Taylor Blind rivet setting method
WO2009072836A3 (en) * 2007-12-06 2009-09-03 Soo Il Lee Electric apparatus for riveting
WO2009072836A2 (en) * 2007-12-06 2009-06-11 Soo Il Lee Electric apparatus for riveting
US7681429B1 (en) * 2008-08-27 2010-03-23 Huang ting-chun Structure of rivet fixing device
US20100054892A1 (en) * 2008-08-27 2010-03-04 Huang ting-chun Structure of rivet fixing device
WO2013180769A1 (en) * 2012-05-31 2013-12-05 Newfrey Llc Blind rivet fastening device
CN104903022A (en) * 2012-05-31 2015-09-09 纽弗雷公司 Blind rivet fastening device
CN104903022B (en) * 2012-05-31 2017-09-01 纽弗雷公司 blind rivet fastening device
US9968988B2 (en) 2012-05-31 2018-05-15 Newfrey Llc Blind rivet fastening device
DE102013221790A1 (en) * 2013-10-28 2015-05-21 Robert Bosch Gmbh Rivet attachment for a screwing tool and screwing tool
EP3590625A4 (en) * 2017-03-02 2020-12-30 Hangzhou Lianwei Technology Co., Ltd. Riveting tool chuck and riveting tool
CN111372702A (en) * 2017-11-28 2020-07-03 思普斯技术有限责任公司 Automatic dual-action fastener installation tool
WO2022135989A1 (en) * 2020-12-22 2022-06-30 Robert Bosch Gmbh Resetting device for a riveting tool machine or a rivetting attachment device, riveting tool machine comprising the resetting device, and riveting attachment device comprising the resetting device

Also Published As

Publication number Publication date
CA1021740A (en) 1977-11-29
GB1433304A (en) 1976-04-28
IL42637A0 (en) 1973-10-25
AU7070174A (en) 1976-01-08

Similar Documents

Publication Publication Date Title
US3906775A (en) Riveter having axially latchable clutch
US3906776A (en) Self-drilling blind riveting tool
US3774437A (en) Rivet setting apparatus with axially movable collar
US4293258A (en) Self drilling blind rivet
EP0043217B1 (en) Fastener setting tool
TWI572425B (en) A blind rivet fastening device and floating piece
AU2007213931B2 (en) Blind rivet and associated method
JP2010260064A (en) Blind rivet fastening device
US3574915A (en) Fastener-placing apparatus
US4213239A (en) Tube extractor
US4869091A (en) Tool for coldworking holes
US3686915A (en) Installation tool for fasteners requiring rotary and axial movements
US4052078A (en) Power transmission collar
US3462988A (en) Anchor setting tool
US3616673A (en) Combination rotating and reciprocating rivet tool
EP0881011B1 (en) Universal simplified riveter gun
US3915055A (en) Blind rivet having counterbored sleeve head of double-angle configuration
US3630427A (en) A riveting tool
US3028777A (en) Blind fastener setting wrench
US3406556A (en) Spin fastener inserters
US5544401A (en) Riveting device
US3263320A (en) Apparatus and method for assembling and disassembling clamps
US2762403A (en) Power operated screw setter
US2405613A (en) Apparatus for setting blind rivets
US11577302B2 (en) Fastener placement tool