US3904914A - Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship - Google Patents

Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship Download PDF

Info

Publication number
US3904914A
US3904914A US446845A US44684574A US3904914A US 3904914 A US3904914 A US 3904914A US 446845 A US446845 A US 446845A US 44684574 A US44684574 A US 44684574A US 3904914 A US3904914 A US 3904914A
Authority
US
United States
Prior art keywords
faceplate
funnel
reference surfaces
referencing
studs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US446845A
Inventor
Kazimir Palac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenith Electronics LLC
Original Assignee
Zenith Radio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenith Radio Corp filed Critical Zenith Radio Corp
Priority to US446845A priority Critical patent/US3904914A/en
Priority to US05/462,915 priority patent/US3971490A/en
Priority to CA212,689A priority patent/CA1022600A/en
Priority to GB7183/75A priority patent/GB1494871A/en
Priority to NL7502095A priority patent/NL7502095A/en
Priority to DE19752508821 priority patent/DE2508821A1/en
Priority to JP50024940A priority patent/JPS50140054A/ja
Priority to FR7506348A priority patent/FR2262862A1/fr
Priority to US05/573,692 priority patent/US3978562A/en
Application granted granted Critical
Publication of US3904914A publication Critical patent/US3904914A/en
Assigned to FIRST NATIONAL BANK OF CHICAGO, THE reassignment FIRST NATIONAL BANK OF CHICAGO, THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZENITH ELECTRONICS CORPORATION A CORP. OF DELAWARE
Assigned to ZENITH ELECTRONICS CORPORATION reassignment ZENITH ELECTRONICS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST NATIONAL BANK OF CHICAGO, THE (AS COLLATERAL AGENT).
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • H01J29/073Mounting arrangements associated with shadow masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0766Details of skirt or border
    • H01J2229/0772Apertures, cut-outs, depressions, or the like

Abstract

This invention disclosure depicts a novel rectangular-type color cathode ray tube and a method of manufacturing such a tube which insures that a phosphor screen pattern deposited on an inner surface of the tube faceplate is accurately referenced to the source of electron beams for the tube. The tube has a novel envelope, comprising an approximately rectangular, flangeless faceplate having in at least two perimetric interior regions thereof referencing means, the referencing means defining faceplate reference surfaces. A funnel having an approximately rectangular mouth is sealed to the faceplate. The funnel is provided with a like number of inside funnel reference surfaces in alignment with the faceplate reference surfaces for making referencing engagement with the faceplate reference surfaces when the faceplate and funnel are assembled. The faceplate and funnel reference surfaces are of such number and arrangement as to uniquely determine and fix the location of said faceplate relative to said funnel. In a preferred embodiment, the referencing means on the faceplate comprise corner-mounted studs serving also to hold a color selection electrode for the tube.

Description

United States Patent Palae Sept. 9, 1975 COLOR CATHODE RAY TUBE WITH INTERNAL FACEPLATE AND FUNNEL REFERENCE SURFACES FOR UNIQUE FACEPLATE-FUNNEL RELATIONSHIP [75] Inventor: Kazimir Palae, Carpentersville, Ill.
[73] Assignee: Zenith Radio Corporation, Chicago,
[22] Filed: Feb. 28, 1974 [2]] Appl. N0.: 446,845
[52] U.S. Cl. 313/482; 313/406; 313/407 [51] Int. Cl.-'...H01,I 5/02; H01] 29/00; H011 29/02;
[58] Field of Search 313/477. 482, 408, 472, 313/402, 404, 407; 220/21 A [56] References Cited UNITED STATES PATENTS 2,514,878 7/1950 Kuperus 1. 313/477 2,755.405 7/1956 Wilhelm 313/288 X 2,761.990 9/1956 Amdursky et a1. 313/417 X 2,916,644 12/1959 Kautz et a1 313/402 3,285,457 11/1966 Peterson 220/21 A 3,450920 6/1969 Engels et a1. .1 313/482 X 3,548,235 12/1970 Driedijk et a1 313/404 Primary Examiner-Robert Segal Attorney, Agent, or Firm-John H. Coult 1 ABSTRACT This invention disclosure depicts a novel rectangulartype color cathode ray tube and a method of manufacturing such a tube which insures that a phosphor screen pattern deposited on an inner surface of the tube faceplate is accurately referenced to the source of electron beams for the tube. The tube has a novel envelope, comprising an approximately rectangular. flangeless faceplate having in at least two perimetric interior regions thereof referencing means. the referencing means defining faceplate reference surfaces. A funnel having an approximately rectangular mouth is sealed to the faceplate. The funnel is provided with a like number of inside funnel reference surfaces in alignment with the faceplate reference surfaces for making referencing engagement with the faceplate reference surfaces when the faceplate and funnel are assembled. The faceplate and funnel refer ence surfaces are of such number and arrangement as to uniquely determine and fix the location of said faceplate relative to said funnel. In a preferred em bodiment, the referencing means on the faceplate comprise corner-mounted studs serving also to hold a color selection electrode for the tube.
9 Claims, 20 Drawing Figures PATENTEU SEP 9 m5 SHEET 1 PRIOR ART PRIORART 0 C/L x" 6 f RLu PRIOR ART RLb PAIENTEDSFP 1904.914
sum 2 or a PMENTED BE? 9 I975 sum 3 0f 23 PATENTED SEP 1 75 SHEET 4 [1F PATENTEH SEP 9197s 3904,914-
COLOR CATHODE RAY TUBE WITH INTERNAL FACEPLATE AND FUNNEL REFERENCE SURFACES FOR UNIQUE FACEPLATE-FUNNEL RELATIONSHIP CROSS-REFERENCE TO RELATED APPLICATIONS This application relates to, but is not dependent upon, copending applications Ser. No. 395,334, filed Sept. 7, 1973, Ser. No. 428,176, filed Dec. 26, 1973 and Ser. No. 424,0l7, filed Dec. 12, 1973, all having a common assignee herewith.
BACKGROUND OF THE INVENTION This invention relates to a novel color cathode ray tube of a rectangular type having a flangeless faceplate and a color selection electrode, and an improved method for making such a tube and improved tube structure which insures that a phosphor screen pattern deposited on the faceplate inner surface is accurately referenced to the source of electron beams for the tube. Phosphor screen pattern is herein intended to mean a pattern of interleaved arrays of red-emissivc, blue-emissive and green-emissive cathodo-luminescent elements and, in tubes of the negative guardband type, the associated black grille".
Conventional color cathode ray tubes have a glass envelope which comprises a flanged front panel sealed to a funnel. The front panel flange has embedded in its inner surface a plurality of studs which serve to support a color selection electrode adjacent to a phosphor screen pattern deposited on the inner surface of a faceplate section of the front panel. A neck for housing electron guns for the tube is sealed to the funnel.
It is critical to proper tube operation that the phosphor screen pattern and the aperture pattern of the associated color selection electrode be aligned with respect to the effective source of electron beams in the assembled tube in the same way that they were aligned with respect to the effective point source used in the photo-exposure operations employed to form the screen. If this corresponding relative alignment is not achieved, color purity errors will inevitably be exhibited in the images displayed by the end product tube.
In conventional tubes, the necessary referencing of the phosphor screen and the effective source of electron beams is established by the following method. The conventional referencing method will be best understood if the reader keeps in mind the general principle that two things referenced to a third thing are referenced to each other.
It is conventional during the photosereening operations in which the phosphor arrays (and the black grille in negative guardband tubes) are deposited, to reference the front panel to three external reference points, typically three rigid posts against which the front panel is urged during the photosereening operations. Thus, the screen pattern is deposited on the faceplate with reference to three fixed, known reference points. This referencing principle is portrayed in FIG. 1 wherein R represents the fixed external reference (the three reference posts), and reference line RL represents the referencing of the screen pattern 2 on faceplate portion 3 of a front panel 4 to the reference R.
During sealing of the neck 5 to the funnel 6 (depicted diagrammatically in FIG. 2) the effective source 7 of electron beams generated by the electron guns (shown schematically as 8), i.e., the apparent center of deflection of the beams, is referenced to three corresponding external reference points. More particularly, in conventional practice the neck 5 is sealed to the funnel 6 in a glass-to-glass sealing operation. The center line 8 of the neck 5 (on which the effective source 7 of electron beams will ultimately lie) is then referenced to the said three corresponding external reference points by grinding reference surfaces 9 (commonly termed pads") on the outside surface of the funnel to the required high degree of accuracy (typically about i 12 mils tolerance). The neck center line 8 and effective source 7 of electron beams are thus referenced to reference R, as represented by reference line RL,,.
To assemble a conventional tube according to conventional practice, a sealing fixture is employed which has in an upper plane three carbon buttons defining three reference points which correspond in location to the afore-described three reference points used in photoscreening the front panel. These panel referencing buttons engage and position the front panel during the funnel-panel sealing operation. In a lower plane, a similar set of three funnel referencing buttons are provided which are aligned with respect to the panel referencing buttons and which are positioned to engage the three external reference surfaces 9 ground on the funnel 6. Such a fixture is described in US. Pat. No. 3,737,065.
To seal a conventional funnel and front panel, a frittype solder glass is deposited on the funnel seal land and the funnel is placed in a fixture, such as described, with the funnel bearing against the said three panel referencing buttons. The front panel is placed on the funnel against the three panel referencing buttons. Since the panel referencing buttons and the funnel referencing buttons are aligned with respect to each other and can be considered as a single reference, it can be understood that the screen pattern on the front panel is thus referenced to the center line of the tube neck and thereby to the effective source of electron beams when the electron gun is ultimately assembled in the tube neck.
The referencing principles which apply to the described panel-funnel sealing operation are shown diagrammatically in FIG. 3. It can be seen that since the screen pattern 2 and neck center line are both referenced to the same external reference R, they are therefore referenced to each other.
The described conventional method for assembling conventional color tube envelopes accomplishes referencing of the phosphor screen pattern to the effective source of electron beams and is satisfactory from a performance and yield standpoint when the sealing fixtures are in good working condition yet, the conventional method has a number of drawbacks. Note in FIG. 3 that the external reference R (the six reference buttons on the conventional scaling fixture) must be preserved during the panel-funnel sealing operation. These sealing fixtures are subjected to extreme temperature cycling as they are heated and cooled during the frit sealing operation. The temperature cycling of these fixtures inevitably results in accuracy degradation with resultant high maintenance cost and decrease in yield of the sealing operation due to referencing accuracy losses, Also, the described conventional referencing method requires that high accuracy reference surfaces be ground on the funnel, an operation which adds to the cost of the end product tube.
Objects of the Invention It is a general object of this invention to provide an improved color cathode ray tube of the type having a color selection electrode, and an improved method of fabricating such a tube which insures that the phosphor screen pattern is accurately referenced to the source of electron beams for the tube.
It is another object to provide an improved color cathode ray tube and fabrication method of the character described which yields economies in tube cost.
It is yet another object to provide an improved color cathode ray tube of the type having a color selection electrode, which tube includes a low-cost system for supporting the color selection electrode and for referencing the tube faceplate and funnel.
It is still another object to provide an improved method for fabricating a color cathode ray tube which permits, in the frit sealing operation, the use of a sealing fixture which has no accuracy or alignment constraints upon it, and thus which has relatively low capital cost and greatly reduced upkeep.
BRIEF DESCRIPTION OF THE DRAWINGS The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify like elements, and in which:
FIGS. 1-3 diagrammatically depict a conventional method for referencing the screen pattern on the front panel of a color cathode ray tube to the effective source of electron beams in the assembled tube;
FIG. 4 is an exploded, schematic, partially fragmented view of components ofa color cathode ray tube constructed according to this invention, certain parts having exaggerated or distorted dimensions in order to more clearly illustrate the invention;
FIG. 4A is an enlarged view of a component of the FIG. 4 tube;
FIG. 5 is a plan view of the FIG. 4 tube, assembled and partly broken away to illustrate an aspect of the invention;
FIGS. 6 and 7 are enlarged perspective views, with parts broken away, of a corner of the assembled FIGS. 4 and 5 tube, showing in particular the suspension system for suspending the color selection electrode in the tube;
FIGS. 8-10 diagrammatically depict the method of this invention for referencing the screen pattern on the faceplate of a color cathode ray tube to the effective source of electron beams in the assembled tube;
FIG. 11 is a schematic, partially exploded view of an exposure table for exposing a faceplate according to a method of this invention;
FIG. 12 is a view of the FIG. 11 exposure table with the faceplate and attached color selection electrode in place, a portion of the faceplate being broken away to reveal hidden internal components;
FIG. 13 is a somewhat schematic perspective view of a neck seal lathe for sealing a cathode ray tube neck and funnel to implement a referencing method according to this invention;
FIG. 14 is an enlarged view of a funnel support head comprising part of the FIG. 13 lathe with the funnel exploded from the head to show hidden referencing structures on the faceplate of the head and on the inside of the funnel;
FIGS. 15 and 16 illustrate a simplified frit sealing fixture made possible by application of the principles of the present invention; and
FIGS. l7, l8 and I9 correspond to FIGS. 4, 4A and 5, and reveal an alternative embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT FIGS. 4-7 depict a novel color cathode ray tube embodying certain principles of this invention. In conventional shadow mask-type color tubes, the color selection electrode is supported by studs embedded in the inner surface of a flange provided on the tube faceplate or front panel". These studs do not play a direct part in the referencing of the phosphor screen pattern and the effective source of electron beams. Rather, referencing is accomplished using an external reference, as described above. At the heart of the present invention is the provision of means projecting from the faceplate portion of a cathode ray tube envelope to serve a dual function: (1) to define reference surfaces which mate with reference surfaces in the funnel during the faceplate-funnel sealing operation to assure referencing of the screen pattern on the faceplate (and the associated color selection electrode) to the effective source of electron beams in the end product tube, and (2) in the preferred embodiments, to support a color selection electrode adjacent the faceplate.
This invention is most advantageously implemented in rectangular color tubes of a novel type having a fiangeless faceplate which is sealed directly to the mouth of the funnel. FIGS. 4-7 illustrate a color tube representing one of the many possible implementations of the invention. The FIGS. 4-7 tube is illustrated as comprising a flangeless, spherically contoured faceplate 10 which mates with and is sealed to a funnel 12. A neck 14 is sealed to the funnel 12. In accordance with this invention, the funnel 12 has, or is provided with, a plurality of inside reference surfaces or areas located within the mouth region of the funnel 12.
In the illustrated FIGS. 4-7 embodiment, the plurality of reference surfaces are shown as comprising three reference surfaces l6, l7 and 18, the surfaces 16 and 17 being corner surfaces in one corner of the funnel, and the surface 18 being disposed in an adjacent corner of the funnel 12. As used herein, the funnel reference surfaces" may be designated surface areas on an otherwise unmodified funnel, or flats molded integrally into the funnel or, as shown in the FIGS. 4-7 embodiment, may be surfaces on bosses I9, 20 and 21, molded integrally into the funnel. Alternatively, the funnel reference surfaces may be provided by auxiliary structures mounted within the funnel.
The faceplate 10 includes in corresponding corners, referencing means defining a plurality of faceplate reference surfaces for mating with the afore-described funnel reference surfaces l6, l7 and 18. As will be described in detail hereinafter, in the preferred embodiments of this invention, such as the FIGS. 4-7 embodiment, the referencing means are projections in the form of studs 22, 23, 24 and 25 which serve also to support a color selection electrode 26 adjacent the inner surface of the faceplate on which is deposited a screen pattern 28. Stud 22 is shown enlarged in FIG. 4A. The studs 22-25 are located on the faceplate diagonals and are perpendicular thereto. As shown clearly in FIG. 5, when the faceplate 10 is sealed to the funnel 12, two edges of the stud 22, hereinafter termed the faceplate reference surfaces 30 and 32, engage the funnel reference surfaces 16 and 17 to define two reference points. The third reference point is defined by the engagement of an edge of stud 25, acting as faceplate reference surface 34, with the funnel reference surface 18.
The novel studs 22-25 do not, per se, constitute a part of this invention, but are described and claimed in my referent copending application, Ser. No. 428,176.
As stated, in accordance with a preferred implementation of the principles of this invention, the referencing means (studs 22-25 in FIGS. 4-7) have plural functions. Consider particularly FIGS, 4, 6 and 7 which show the studs 22-25 as constituting part of suspension devices 35 for supporting the color selection electrode 26. Neither the color selection electrode 26 nor the suspension devices 35, per se, constitute a part of this invention. The electrode is described and claimed in the referent copending application Ser. No. 395,334; the suspension devices 35 are described and claimed in the referent copending application Ser. No. 424,017.
Briefly, the color selection electrode 26 is a onepiece, frameless mask having integral means for stiffening the electrode and for shielding the screen from overscanned and stray electrons. The suspension devices 35 are located at the corners of the electrode 26 and each comprise brackets 36 supporting a springbiased lug 37 which retentively engages an aperture in the mating stud. Other structural details and features of the electrode 26 and suspension device 35 are described in the referent copending applications.
It is an aspect of this invention to provide, in the fabrication of a color cathode ray tube, an improved method for referencing a screen pattern on the tube faceplate to an effective source of electron beams for the tube. The method comprises, in broad terms, causing the funnel to be provided with three or more spaced, inside funnel reference surfaces. The faceplate is provided with inside referencing means defining a number of faceplate reference surfaces correspondingly spaced and located to engage the funnel reference surfaces when the faceplate and funnel are assembled. A pattern of cathodo-luminescent phosphor elements is deposited on an inner surface of the faceplate with reference to the faceplate reference surfaces. A neck is attached to the funnel with the neck center line referenced to the funnel reference surfaces. Finally, the faceplate is sealed to the funnel, the sealing operation including bringing the faceplate reference surfaces and the funnel reference surfaces into referencing engagement during the sealing operation. The screen pattern on the faceplate is thereby referenced to the neck center line and thus to the effective source of electron beams projected by electron gun means ultimately mounted on the center line of the neck.
The referencing principles underlying this invention are revealed in FIGS. 8-10. FIGS. 8-10 illustrate diagrammatically the way in which a screen pattern 38 and an associated color selection electrode 39, are referenced to an effective source 40 of electron beams projected by electron gun means, shown schematically as 42. The referencing principles represented by each of FIGS. 8, 9 and 10 will be described in detail hereinafter.
FIG. 8 is intended to portray diagrammatically that the phosphor pattern 38 and the faceplate referencing means, preferably an electrode-supporting stud 44 embedded in faceplate 46, as described, are referenced to each other, as represented by reference line RL,.
In the sealing of a neck 48 to a funnel 50, the center line C/L of the neck (on which will lie the effective source 40 of electron beams), and the funnel reference surfaces 52 are both referenced to a common external reference R. The effective electron source 40 and the reference surface 52 are thus referenced to each other. See FIG. 9', the referencing of the reference surface 52 to the external reference R is represented by reference line RL and the effective source 40 to reference R by line RL The mutual referencing of reference surface 52 and effective source 40 is represented by reference line R14 During assembly of the tube, the stud 44 is brought into referencing engagement with the reference surface 52 to reference the faceplate 46 to the funnel 50. The screen pattern 38 and associated color selection electrode 39 are thus referenced to the center line of the neck 48 and thereby to the effective electron source 40.
It is informative at this point to compare the FIGS. 8-10 diagrams with the corresponding FIGS. l-3 diagrams which depict the conventional referencing principles. Note that whereas in the conventional method (FIGS. l-3), it is necessary to carry the external reference R through the panel-funnel sealing operation (FIG. 3), referencing is accomplished within the tube in the method of this invention (FIG. 10). No external reference need be carried through the sealing operation. As noted above, the result is substantial savings in fixture-associated expenses, and improved referencing accuracy.
The referencing principle depicted diagrammatically in FIG. 8 is illustrated in schematic, but more structural form in FIGS. 11 and 12. The following discussions of FIGS. 11-16 will be made with reference to the FIGS. 4-7 tube shown and described above. As explained, in the photoscreening of the screen pattern 28 on faceplate 10, it is desired to reference the screen pattern 28 (and associated color selection electrode 26) to the studs 22-25. This is accomplished as follows. The studs 22-25 are placed on the faceplate 10 with high accuracy relative to each other and with general relation to three external points which establish the center of a bogey panel.
The phosphor pattern 28 is photochemically deposited on the inner surface of the faceplate with reference to the studs 22-25 by the use of an exposure table, which may be of the construction shown schematically in FIG. 11 as 53. The exposure table 53 includes posts 54, 55 and 56. The posts define three internal reference surfaces 57, 58 and 59 which correspond to the funnel reference surfaces 16, 17 and 18, respectively. The faceplate 10 is supported by supports 60, 61 and 62. During the photoscreening operation, the studs 22 and 25 are urged against reference surfaces 57-59 on posts 54-56 such that the phosphor pattern 28 created is referenced to the studs 22-25.
The exposure table 53 may be substantially conventional, including an exposure chamber 64 and a point source of UV light. The point light source is illustrated as comprising a mercury lamp 66 irradiating a collimator 68 which concentrates the received light into a small effective point source at its tip 70.
The funnel referencing principles will now be described. As explained, during sealing of the neck to the funnel, the neck center line and the funnel reference surfaces are both referenced to a common reference and are thus referenced to each other. In the practice of this invention, rather than referencing the neck cen-- ter line to pads ground externally on the funnel periphery as in the conventional practice (See 8 in FIG. 2), the neck center line is referenced to the internal funnel reference surfaces, such as surfaces 16-18 (See FIG. 4).
Referring to FIGS. 13 and 14, referencing ofthe neck center line to the funnel reference surfaces 16-18 may be accomplished by means of a neck seal lathe 72. The lathe 72 is shown as comprising a funnel support head 74 and a neck chuck 76 which are rotated in a common direction at a common speed by motors 78 and 80. The neck chuck 76 is moved linearly along a track assembly 82 to bring the neck 14 into engagement with the fun nel 12. A burner assembly 84 produces a flame which is played upon the funnel-neck joint as the funnel and neck are rotated together in coaxial mating engagement to effect a glass-to-glass seal of the neck to the funnel.
In order to reference the funnel reference surfaces 16-18 and the neck center line to a common reference, the funnel 12 is positioned on the funnel support head 74 in referencing engagement with bosses 86, 88 having edges defining reference surfaces 90, 92 and 94. See especially FIG. 14. The reference surfaces 90, 92 and 94 correspond in position to the reference surfaces 30, 32, 34 on studs 22 and 25. A pair of pivoted clamping levers 96, 98 are employed to hold the funnel 12 and to maintain it in referencing engagement with the bosses 86, 88. The clamping levers may be controllable by pneumatic pistons, for example, (not shown).
The funnel support head 74 and the neck chuck 76 are positioned and maintained in exact coaxial alignment by associated support structures 100, 102 and the track assembly 82. The reference surfaces 16-18 and the neck center line are thus referenced to each other.
As explained, by sealing the faceplate and funnel 12 with the studs 22 and 25 in referencing engagement with the reference surfaces 16-18, the screen pattern 28 (and associated color selection electrode 26) and the center line of the neck 14 are referenced to each other. The sealing operation, per se, may be conventional in the duration and temperature of the bake cycle, the oven employed, and other such details. As noted, however, this invention permits the use of an ceonomical sealing fixture 103, such as shown in FIGS. -16. FIG. 15 depicts an assembled tube as it would appear during the frit seal baking operation.
To seal the faceplate l0 and funnel 12, the color selection electrode 26 is attached to the faceplate 10. A quantity of frit-type solder glass is placed on the seal land at the mouth of the funnel l2, and the funnel 12 is placed in the fixture 103. The faceplate-funnel assembly is placed in an oven suitable for the frit sealing operation. The fixture 103 orients the funnel 12 during the frit sealing operation such that the funnel tilts in a direction so that the corner diagonally opposite reference surfaces 16 and 17 is the lowest corner, and the comer diagonally opposite reference surface 18 is the next lowest corner. By thus tilting the faceplate-funnel assembly, the gravitational force will hold studs 22 and 25 in referencing engagement with the reference surfaces 16-18 during the frit sealing operation.
It can be seen in FIG. 16 that the frit sealing fixture 103 may comprise simply a C-ring 104 having four carbon buttons 106 for engaging the funnel; the C-ring 104 is supported by an arm assembly 108 attached to a base 110. Since referencing is accomplished within the tube envelope in accordance with this invention, the external referencing buttons provided in prior art fixtures, such as shown in the US. Pat. No. 3,737,065, are unnecessary. The result is a fixture having reduced initial cost and greatly reduced maintenance expense.
As suggested above, whereas the above-described embodiment teaches the use of bosses molded integrally into the funnel 12 to define the internal reference surfaces, alternatively, the reference surfaces may comprise designated areas on an unmodified funnel, or flats molded into the inner surface of the funnel. A modification having molded flats is shown in FIGS. 17-19. In this embodiment a funnel 112 is provided with reference areas 114, 116 and 118 in three corners which constitute internal referencing surfaces functioning as the reference surfaces 16-18 in the abovedescribed embodiment. In this embodiment, the referencing projections are again preferably, but not necessarily, studs 120, 122, 124, 126 which serve also to support a color selection electrode of the tube.
Referring particularly to FIG. 18, the studs -126 preferably are fom1ed with a body portion 128 generally similar to the studs 22-25 in the first-described embodiment. Studs 120-124 each have, however, a wing 130 extending obliquely outwardly from the body portion 128. The wings 130 define faceplate reference surfaces 126, 128 and 130 which make referencing engagement with the reference areas 114, 116 and 118. Fabrication of a tube having the modified structures shown in FIGS. 17-19 may be as described above.
The invention is not limited to the particular details of construction of the embodiments depicted and other modifications and applications are contemplated. For example, in yet other embodiments of the invention, modified studs having radially shorter extensions may be devised to cooperate with bosses of less height than in the FIGS. 4-7 embodiment. Whereas each of the afore-described embodiments employ three funnel reference surfaces which are engaged by three faceplate reference surfaces, it should be understood that the principles of this invention are not limited to this number of reference surfaces and that referencing structures using more than three internal reference surfaces and having other configurations may be employed to exploit the teachings of this invention. In the illustrated and described preferred embodiment, to reference the phosphor pattern to the studs, the studs re placed on the faceplate with relation to the center of a bogey panel, and the phosphor pattern is then exposed in an exposure table having internal reference surfaces against which the studs make referencing engagement. Alternatively, the phosphor pattern may be referenced to the studs by locating both the studs on the panel and the phosphor pattern on the panel with respect to a common external reference such as three reference posts. Still other changes may be made in the abovedescribed methods and apparatus without departing from the true spirit and scope of the invention herein involved and it is intended that the subject matter in the above depiction shall be interpreted as illustrative and not in a limiting sense.
I claim:
1. A rectangular-type color cathode ray tube envelope, comprising:
an approximately rectangular, flangeless faceplate having an inner surface suitable for receiving a phosphor screen and having in at least two perimetric interior regions thereof discrete referencing means extending from said inner surface and constituting a part of said faceplate, said referencing means defining a set of faceplate reference surfaces within the envelope enclosure; and
a funnel having an approximately rectangular mouth sealed to said faceplate and having in at least two corresponding perimetric interior regions referencing means defining a corresponding set of inside funnel reference surfaces in alignment with said faceplate reference surfaces, said referencing means of said faceplate extending into the interior of said funnel to make referencing engagement with said set of funnel reference surfaces when said faceplate and funnel are assembled, the engagement of said faceplate and funnel reference surfaces uniquely determining and fixing the location of said faceplate relative to said funnel.
2. An envelope for a color cathode ray tube which is of the type having a color selection electrode, and which is as defined by claim 1, wherein said referencing means comprise studs affixed to and extending from corner regions of an inner surface of said faceplate and serving also to hold a color selection electrode for the tube.
3. The apparatus defined by claim 2 wherein said funnel reference surfaces comprise flat surfaces molded integrally into said funnel in interior corner regions thereof for making referencing engagement with said studs when said faceplate and funnel are assembled.
4. The apparatus defined by claim 2 wherein said funnel reference surfaces comprise corner-shaped reference surfaces in a first comer of the funnel mouth and a reference surface in an adjacent second corner of the funnel mouth, and wherein studs in first and second corners of the faceplate corresponding to said first and second corners of the funnel mouth make referencing engagement with said funnel reference surfaces when said faceplate and funnel are assembled.
5. In combination:
a rectangular-type color cathode ray tube envelope,
comprising:
an approximately rectangular, flangeless faceplate having a metal stud secured in each of four perimetric corner regions thereof so as to extend from an inner surface of said faceplate, two of said four studs in adjacent first and second faceplate corners defining three faceplate reference surfaces, and
a funnel having an approximately rectangular mouth sealed to said faceplate and provided with three inside funnel reference surfaces in alignment with said faceplate reference surfaces for making referencing engagement with said faceplate reference surfaces when the faceplate and funnel are assembled, the engagement of said faceplate and funnel reference surfaces uniquely determining and fixing the location of said faceplate relative to said funnel, and
a rectangular color selection electrode and suspending means on the four corners of said electrode for retentively engaging said studs such that said electrode is supported adjacent the faceplate.
6. The apparatus defined by claim 5 wherein said funnel reference surfaces comprise flat surfaces molded integrally into said funnel in interior corner regions thereof.
7. The apparatus defined by claim 5 wherein said funnel reference surfaces in said funnel comprise corner reference surfaces in one corner of the funnel mouth and a reference surface in an adjacent corner of the funnel mouth, and wherein said studs are located on the faceplate diagonals and perpendicular to the diagonals, two of said studs having edges generally perpendicular to the faceplate which constitute said faceplate reference surfaces.
8. The apparatus defined by claim 7 wherein said funnel reference surfaces constitute flat surfaces molded integrally into said funnel.
9. The apparatus defined by claim 8 wherein said faceplate is flangeless, and wherein said studs each comprise a stamping formed from sheet metal stock embedded in said faceplate.

Claims (9)

1. A rectangular-type color cathode ray tube envelope, comprising: an approximately rectangular, flangeless faceplate having an inner surface suitable for receiving a phosphor screen and having in at least two perimetric interior regions thereof discrete referencing means extending from said inner surface and constituting a part of said faceplate, said referencing means defining a set of faceplate reference surfaces within the envelope enclosure; and a funnel having an approximately rectangular mouth sealed to said faceplate and having in at least two corresponding perimetric interior regions referencing means defining a corresponding set of inside funnel reference surfaces in alignment with said faceplate reference surfaces, said referencing means of said faceplate extending into the interior of said funnel to make referencing engagement with said set of funnel reference surfaces when said faceplate and funnel are assembled, the engagement of said faceplate and funnel reference surfaces uniquely determining and fixing the location of said faceplate relative to said funnel.
2. An envelope for a color cathode ray tube which is of the type having a color selection electrode, and which is as defined by claim 1, wherein said referencing means comprise studs affixed to and extending from corner regions of an inner surface of said faceplate and serving also to hold a color selection electrode for the tube.
3. The apparatus defined by claim 2 wherein said funnel reference surfaces comprise flat surfaces molded integrally into said funnel in interior corner regions thereof for making referencing engagement with said studs when said faceplate and funnel are assembled.
4. The apparatus defined by claim 2 wherein said funnel reference surfaces comprise corner-shaped reference surfaces in a first corner of the funnel mouth and a reference surface in an adjacent second corner of the funnel mouth, and wherein studs in first and second corners of the faceplate corresponding to said first and second corners of the funnel mouth make referencing engagement with said funnel reference surfaces when said faceplate and funnel are assembled.
5. In combination: a rectangular-type color cathode ray tube envelope, comprising: an approximately rectangular, flangeless faceplatE having a metal stud secured in each of four perimetric corner regions thereof so as to extend from an inner surface of said faceplate, two of said four studs in adjacent first and second faceplate corners defining three faceplate reference surfaces, and a funnel having an approximately rectangular mouth sealed to said faceplate and provided with three inside funnel reference surfaces in alignment with said faceplate reference surfaces for making referencing engagement with said faceplate reference surfaces when the faceplate and funnel are assembled, the engagement of said faceplate and funnel reference surfaces uniquely determining and fixing the location of said faceplate relative to said funnel; and a rectangular color selection electrode and suspending means on the four corners of said electrode for retentively engaging said studs such that said electrode is supported adjacent the faceplate.
6. The apparatus defined by claim 5 wherein said funnel reference surfaces comprise flat surfaces molded integrally into said funnel in interior corner regions thereof.
7. The apparatus defined by claim 5 wherein said funnel reference surfaces in said funnel comprise corner reference surfaces in one corner of the funnel mouth and a reference surface in an adjacent corner of the funnel mouth, and wherein said studs are located on the faceplate diagonals and perpendicular to the diagonals, two of said studs having edges generally perpendicular to the faceplate which constitute said faceplate reference surfaces.
8. The apparatus defined by claim 7 wherein said funnel reference surfaces constitute flat surfaces molded integrally into said funnel.
9. The apparatus defined by claim 8 wherein said faceplate is flangeless, and wherein said studs each comprise a stamping formed from sheet metal stock embedded in said faceplate.
US446845A 1974-02-28 1974-02-28 Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship Expired - Lifetime US3904914A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US446845A US3904914A (en) 1974-02-28 1974-02-28 Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship
US05/462,915 US3971490A (en) 1974-02-28 1974-04-22 Color cathode ray tube with improved faceplate-funnel referencing structures
CA212,689A CA1022600A (en) 1974-02-28 1974-10-30 Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship and method of tube manufacture
GB7183/75A GB1494871A (en) 1974-02-28 1975-02-20 Colour cathode ray tube envelope
NL7502095A NL7502095A (en) 1974-02-28 1975-02-21 COLOR CATHOD RAY TUBE COVER.
DE19752508821 DE2508821A1 (en) 1974-02-28 1975-02-26 PISTON FOR A COLOR CATHODE TUBE
JP50024940A JPS50140054A (en) 1974-02-28 1975-02-28
FR7506348A FR2262862A1 (en) 1974-02-28 1975-02-28
US05/573,692 US3978562A (en) 1974-02-28 1975-05-01 Method of manufacturing a color cathode ray tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US446845A US3904914A (en) 1974-02-28 1974-02-28 Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship
US05/462,915 US3971490A (en) 1974-02-28 1974-04-22 Color cathode ray tube with improved faceplate-funnel referencing structures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/573,692 Division US3978562A (en) 1974-02-28 1975-05-01 Method of manufacturing a color cathode ray tube

Publications (1)

Publication Number Publication Date
US3904914A true US3904914A (en) 1975-09-09

Family

ID=27034762

Family Applications (2)

Application Number Title Priority Date Filing Date
US446845A Expired - Lifetime US3904914A (en) 1974-02-28 1974-02-28 Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship
US05/462,915 Expired - Lifetime US3971490A (en) 1974-02-28 1974-04-22 Color cathode ray tube with improved faceplate-funnel referencing structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/462,915 Expired - Lifetime US3971490A (en) 1974-02-28 1974-04-22 Color cathode ray tube with improved faceplate-funnel referencing structures

Country Status (6)

Country Link
US (2) US3904914A (en)
JP (1) JPS50140054A (en)
DE (1) DE2508821A1 (en)
FR (1) FR2262862A1 (en)
GB (1) GB1494871A (en)
NL (1) NL7502095A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997811A (en) * 1975-07-09 1976-12-14 Owens-Illinois, Inc. Color television tube structure and method of manufacture
US3999098A (en) * 1975-08-12 1976-12-21 Zenith Radio Corporation Color cathode ray tube having an improved shadow mask suspension system
US4020493A (en) * 1974-12-23 1977-04-26 Zenith Radio Corporation Photographic master for use in screening a color cathode ray tube
US4050602A (en) * 1975-07-09 1977-09-27 Owens-Illinois, Inc. Color television tube structure and method of manufacture
US4373237A (en) * 1978-12-27 1983-02-15 U.S. Philips Corporation Method of manufacturing a color television display tube
US4664478A (en) * 1983-09-22 1987-05-12 Prutec Limited Method of manufacturing a light valve
US4776822A (en) * 1987-11-12 1988-10-11 Zenith Electronics Corporation Registration transfer process for use in the manufacture of a tension mask color cathode ray tube
US5929558A (en) * 1996-12-30 1999-07-27 Samsung Display Devices Co., Ltd. Shadow mask assembly with thermal expansion compensation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028580A (en) * 1974-11-25 1977-06-07 Zenith Radio Corporation Shadow mask mount and funnel-faceplate referencing system for color CRT
US4084113A (en) * 1976-03-17 1978-04-11 Owens-Illinois, Inc. Color television picture tube structure and method of manufacture
US4030627A (en) * 1976-05-10 1977-06-21 Lentz William P TV bulb funnel construction
NL7812543A (en) * 1978-12-27 1980-07-01 Philips Nv METHOD FOR MANUFACTURING A COLOR TELEVISION IMAGE TUBE AND COLOR TELEVISION IMAGE TUBE MANUFACTURED BY THE METHOD
US4271345A (en) * 1979-05-18 1981-06-02 Corning Glass Works Induction heating coil
DE3033978C2 (en) * 1979-10-01 1985-03-07 Owens-Illinois, Inc., Toledo, Ohio Method of manufacturing a funnel part for a color television picture tube
US4467241A (en) * 1979-10-01 1984-08-21 Owens-Illinois, Inc. CRT With magnetic shield
NL8003609A (en) * 1980-06-23 1982-01-18 Philips Nv COLOR TELEVISION PICTURE TUBE.
NL8003610A (en) * 1980-06-23 1982-01-18 Philips Nv COLOR IMAGE TUBE.
NL8004174A (en) * 1980-07-21 1982-02-16 Philips Nv COLOR IMAGE TUBE.
US4856172A (en) * 1988-03-18 1989-08-15 Hughes Aircraft Company Method for the strain-free mounting of optical components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514878A (en) * 1947-06-12 1950-07-11 Hartford Nat Bank & Trust Co Electron discharge tube alignment means and method of aligning
US2755405A (en) * 1953-10-15 1956-07-17 Rca Corp Color television tube
US2761990A (en) * 1954-02-19 1956-09-04 Rauland Corp Color television image reproducer
US2916644A (en) * 1956-11-07 1959-12-08 Sylvania Electric Prod Cathode ray tube
US3285457A (en) * 1964-02-26 1966-11-15 Corning Glass Works Television picture tube envelopes and method of assembling the envelope parts
US3450920A (en) * 1967-01-13 1969-06-17 Philips Corp Faceplate with land portions having two cavities for receiving shadow mask support members
US3548235A (en) * 1968-07-26 1970-12-15 Philips Corp Face-plate for rectangular color television picture tube with land portions with recesses for receiving shadow mask support members

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB534178A (en) * 1939-01-12 1941-02-28 British Thomson Houston Co Ltd Improvements in and relating to methods of making glass enclosures
US2324972A (en) * 1941-11-27 1943-07-20 Gen Electric Electric lamp
GB692228A (en) * 1951-03-02 1953-06-03 Gen Electric Co Ltd Improvements in or relating to the manufacture of hollow glass vessels, such as cathode ray tube envelopes
US2942129A (en) * 1954-08-27 1960-06-21 Du Mont Allen B Lab Inc Cathode-ray tube structure
US3038096A (en) * 1956-02-21 1962-06-05 Westinghouse Electric Corp Color television tube
NL135015C (en) * 1964-10-28
US3361548A (en) * 1965-06-21 1968-01-02 Mcdonnell Donglas Corp Method for making cathode ray tube filters
NL150946B (en) * 1967-06-02 1976-09-15 Philips Nv COLOR TV DISPLAY TUBE.
US3404302A (en) * 1967-06-21 1968-10-01 Gen Electric Envelope wall with two continuous ledges for positioning and supporting aperture mask
US3735179A (en) * 1972-04-03 1973-05-22 Zenith Radio Corp Face panel assembly for color cathode-ray tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514878A (en) * 1947-06-12 1950-07-11 Hartford Nat Bank & Trust Co Electron discharge tube alignment means and method of aligning
US2755405A (en) * 1953-10-15 1956-07-17 Rca Corp Color television tube
US2761990A (en) * 1954-02-19 1956-09-04 Rauland Corp Color television image reproducer
US2916644A (en) * 1956-11-07 1959-12-08 Sylvania Electric Prod Cathode ray tube
US3285457A (en) * 1964-02-26 1966-11-15 Corning Glass Works Television picture tube envelopes and method of assembling the envelope parts
US3450920A (en) * 1967-01-13 1969-06-17 Philips Corp Faceplate with land portions having two cavities for receiving shadow mask support members
US3548235A (en) * 1968-07-26 1970-12-15 Philips Corp Face-plate for rectangular color television picture tube with land portions with recesses for receiving shadow mask support members

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020493A (en) * 1974-12-23 1977-04-26 Zenith Radio Corporation Photographic master for use in screening a color cathode ray tube
US3997811A (en) * 1975-07-09 1976-12-14 Owens-Illinois, Inc. Color television tube structure and method of manufacture
US4050602A (en) * 1975-07-09 1977-09-27 Owens-Illinois, Inc. Color television tube structure and method of manufacture
US3999098A (en) * 1975-08-12 1976-12-21 Zenith Radio Corporation Color cathode ray tube having an improved shadow mask suspension system
US4373237A (en) * 1978-12-27 1983-02-15 U.S. Philips Corporation Method of manufacturing a color television display tube
US4664478A (en) * 1983-09-22 1987-05-12 Prutec Limited Method of manufacturing a light valve
US4776822A (en) * 1987-11-12 1988-10-11 Zenith Electronics Corporation Registration transfer process for use in the manufacture of a tension mask color cathode ray tube
US5929558A (en) * 1996-12-30 1999-07-27 Samsung Display Devices Co., Ltd. Shadow mask assembly with thermal expansion compensation

Also Published As

Publication number Publication date
NL7502095A (en) 1975-09-01
JPS50140054A (en) 1975-11-10
US3971490A (en) 1976-07-27
FR2262862A1 (en) 1975-09-26
DE2508821A1 (en) 1975-09-04
GB1494871A (en) 1977-12-14

Similar Documents

Publication Publication Date Title
US3904914A (en) Color cathode ray tube with internal faceplate and funnel reference surfaces for unique faceplate-funnel relationship
US4547696A (en) Tension mask registration and supporting system
US3284655A (en) Cathode ray tube mesh assembly supported between envelope sections
US3308327A (en) Cathode ray tube
US3912963A (en) Color crt having shadow mask with forwardly directed, outwardly flared skirt
US2897392A (en) Color television tube mask and frame assembly
US2846608A (en) Cathode-ray tube
US3989524A (en) Method for manufacturing a color cathode ray tube using mask and screen masters
US3524096A (en) Color cathode ray tube having shadow mask frame formed to accommodate a support system
US3973964A (en) Method for manufacturing a color cathode ray tube and for making screening and mask masters used therein
US3978562A (en) Method of manufacturing a color cathode ray tube
JPH0463501B2 (en)
US3983613A (en) Photographic master for use in making a color cathode ray tube shadow mask
US3038096A (en) Color television tube
GB1496949A (en) Cathode ray tube
US2871087A (en) Method of assembling a color television tube
GB1535447A (en) Colour cathode ray tube
US4028580A (en) Shadow mask mount and funnel-faceplate referencing system for color CRT
US2916644A (en) Cathode ray tube
US4656389A (en) Tensed mask cathode ray tube
US3931541A (en) Connective means for a cathode ray tube mask-panel assembly
JPH06243794A (en) Internal magnetic shield for cathode ray tube
US4020493A (en) Photographic master for use in screening a color cathode ray tube
GB1250408A (en)
JPS598245A (en) Color picture tube fine gap type shadow mask manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST NATIONAL BANK OF CHICAGO, THE

Free format text: SECURITY INTEREST;ASSIGNOR:ZENITH ELECTRONICS CORPORATION A CORP. OF DELAWARE;REEL/FRAME:006187/0650

Effective date: 19920619

AS Assignment

Owner name: ZENITH ELECTRONICS CORPORATION

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, THE (AS COLLATERAL AGENT).;REEL/FRAME:006243/0013

Effective date: 19920827