US3903884A - Manifold nebulizer system - Google Patents

Manifold nebulizer system Download PDF

Info

Publication number
US3903884A
US3903884A US388481A US38848173A US3903884A US 3903884 A US3903884 A US 3903884A US 388481 A US388481 A US 388481A US 38848173 A US38848173 A US 38848173A US 3903884 A US3903884 A US 3903884A
Authority
US
United States
Prior art keywords
cap
nebulizer
gas
module
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US388481A
Inventor
Paul O Huston
William L Douma
Robert A Gandi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Professional Medical Products Inc
Original Assignee
Becton Dickinson and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becton Dickinson and Co filed Critical Becton Dickinson and Co
Priority to US388481A priority Critical patent/US3903884A/en
Application granted granted Critical
Publication of US3903884A publication Critical patent/US3903884A/en
Assigned to DART INDUSTRIES, INC., 2211 SANDERS ROAD, NORTHBROOK, ILL. 60062 A DE CORP. reassignment DART INDUSTRIES, INC., 2211 SANDERS ROAD, NORTHBROOK, ILL. 60062 A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BECTON, DICKINSON AND COMPANY
Assigned to PROFESSIONAL MEDICAL PRODUCTS, INC., A DE CORP reassignment PROFESSIONAL MEDICAL PRODUCTS, INC., A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DART INDUSTRIES INC., A DE CORP
Assigned to GENERAL ELECTRIC CREDIT CORPORATION, A CORP. OF N.Y. reassignment GENERAL ELECTRIC CREDIT CORPORATION, A CORP. OF N.Y. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PROFESSIONAL MEDICAL PRODUCTS, INC.
Assigned to PROFESSIONAL MEDICAL PRODUCTS, INC. reassignment PROFESSIONAL MEDICAL PRODUCTS, INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC CAPITAL CORPORATION, F/K/A GENERAL ELECTRIC CREDIT CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers

Definitions

  • ABSTRACT A manifold nebulizer system for use in a breathing circuit.
  • the system includes a nebulizer module and an exhaust module,
  • the nebulizer module consists of a vial to contain liquid and has structure for producing an aerosol of liquid particles for entrainment in a stream of gas.
  • the exhaust module has a valve for facilitating inhalation of the aerosol by the patient and removal of exhaled gases received from the patient. Adjustable surfaces are on the modules to permit relative movement therebetween. In this manner, the manifold nebulizer is capable of assembly into a multiplicity of flow line arrangements and positions.
  • the present invention deals with an inexpensive single patient manifold nebulizer system designed primarily to provide the user with the versatility necessary to conform to the numerous in-use configurations and functional requirements without the high cost inherent in reusable units.
  • a manifold nebulizer designed for use in gas flow circuity such as in a breathing circuit includes a nebulizer module consisting of a cap portion containing a nebulizing chamber therein and a through passageway thereacross. Means are provided on the cap portion for connection to a main source of gas and to facilitate passage of said gas through the cap portion.
  • the cap includes a depending skirt to receive in sealed relationship a vial designed to contain liquid.
  • a means for connection to a gas source to drive the nebulizer means is provided.
  • a nozzle depends inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the nebulizing chamber.
  • An aspiration tube us adjacent to and in fluid communication with the nozzle and extends into the liquid so that when gas passes through the nozzle the venturi efi'ect will draw the liquid through the tube and facilitate entrainment of said liquid in particulate form within the gas.
  • a baffle means depends from the nozzle to remove large liquid particles and provide the desired particle size distribution.
  • Secondary means are in the cap to divert a portion of main gas flow into the nebulizing chamber and to direct a portion of the main flow of gas into communication with the aerosol created therein to aid in transferring the aerosol into the main gas flow passageway for discharge from the nebulizer module.
  • the manifold nebulizer also includes an exhaust module having a body portion which is removably connectable to the nebulizer module.
  • An exhaust valve assembly is on the body portion and includes an exhaust opening.
  • One end of the exhaust module is adapted to be coupled to a mouthpiece assembly for use by a patient.
  • Adjustable surfaces are on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit.
  • nebulizer When the nebulizer is connected to a gas source and a patient inhales, a nebulized aerosol of gas and liquid particles will be inhaled. When the patient exhales, the valve assembly will open permitting the expired gas to pass through the exhaust opening and out of the circuit.
  • the versatile modular configuration consisting of a nebulizer module and an exhaust module including a valve assembly are each capable of functioning independently. Alternatively, they can be combined to conform to the classical series configuration of modules or in a parallel nebulizer module and exhaust module configuration.
  • the system is designed for intermittent positive pressure or ventilator usage.
  • a mounting post can be provided for facilitating the connection of the two modules in series and a slightly different post can be provided for connecting the modules in parallel.
  • the post of either design would have an extension to facilitate mounting of the entire nebulizer assembly in a convenient manner.
  • the post for series arrangement permits 360 rotation of the modules.
  • Support brackets are on the modules to facilitate mounting of the modules to a post in side-by-side parallel arrangement if the particular use demands such an assembly.
  • a threaded vial for containing medicament or fluid is provided for threaded interengagement with the remainder of the module for positive closure purposes. Additionally, a gasket seal is present to prevent any danger of nebulizer leakage.
  • the vial has liquid level graduations and is transparent to permit constant monitoring of fluid contained therein.
  • the bottom of the vial contains a bulb-like reservoir which insures complete medication usage due to its reception of the open tip of the fluid aspiration tube.
  • the bottom of the reservior also contains an integral rib to prevent occlusion of the open tip of the aspiration.
  • Lock ring configuration is present on all of the positive pressure hose connections in the system to facili tate positive grip of the modules with the hose or tubing cuffs.
  • thermometer port bushing is provided on the nebulizer module and has an integral leakproof cap.
  • the bushing is designed to permit usage of a thermometer to determine mainstream temperatures or to be used for introduction of medications.
  • a hose gripping is on predetermined ports of the modules to prevent blow-off of external connections under pressure.
  • a secondary baffle whose purpose is to remove larger particles is provided.
  • the baffle also contains diametrically opposed orifices in the mainstream to entrain gas for improved mixing with the aerosol.
  • the exhaust passageways are designed so that a downdraft exhaust condition exists and by providing a 360 rotatable collection head, the exhaust can be positioned in any desired direction.
  • the collection head mounted on the exhaust module contains an integral sump for accumulation of condensate.
  • the exhaust port of the exhaust module is sized to accept a hose attachment usable for spirometry procedures.
  • the exhaust module has a connector part with an internal reverse flair to facilitate snap-in fit when con nected to a nebulizer module thereby assuring a reliable connection.
  • the overall manifold nebulizer system provides narrow range aerosol particle size distribution within the desired range for ideal deposition within the respiratory system.
  • the system is also designed for use of a pressure transfer adapter to permit pressure reduction when the unit is used with a single supply tube respirator.
  • FIG. 1 is a perspective view of a series embodiment of the manifold nebulizer system of the invention shown in connection with a source of gas and a conduit for passage to a patient;
  • FIG. 2 is a fragmentary sectional view of a series embodiment of the manifold nebulizer of the invention with arrows showing the direction of gas flow through the system in use;
  • FIG. 3 is a fragmentary sectional end elevation view thereof taken along the plane of line 3--3 of FIG. 1;
  • FIG. 4 is a fragmentary sectional end elevation view thereof taken along th plane ofline 33 of FIG. 1 and showing alternative positions of the exhaust module portion of the system;
  • FIG. 5 is an enlarged fragmentary perspective view of the post and post mounting portion of a series embodiment of FIGS. 1 to 4;
  • FIG. 6 is a perspective view of a parallel embodiment of the manifold nebulizer system of the invention shown in connection with an air supply source and a patient;
  • FIG. 7 is a side elevational view of a parallel embodiment of the manifold nebulizer as shown in FIG. 6 with the thermometer port open to receive a thermometer;
  • FIG. 8 is a fragmentary sectional view of the post portion ofa parallel embodiment of the manifold nebulizer in connection with the two modules of the system.
  • FIG. 9 is an enlarged fragmentary perspective view thereof showing how the post is removed from the bracket portion of a module.
  • a manifold nebulizer system as depicted in FIGS. I and 2 includes two major component modules. There is a nebulizer module 21 and an exhaust module 22. The two modules are connected together and at the connection joint is a removable mounting post 23. The opposite side of the nebulizer module 2] is connected to a supply hose 24. A source of gas under pressure supplies gas through supply hose 24 and to the system.
  • a secondary small supply hose 25 is also connected to the source of gas.
  • the exhaust modules has its outlet side opposed to the nebulizer module which can be connected to a breathing hose 26 which terminates in a mouthpiece 27 or other connector for transmittal to the patient.
  • a small tube 28 connects the top of nebulizer module 21 to the top of exhaust module 22 via a pressure reducer 37.
  • tube 280 may be connected directly to the source of gas. All of the above discussed components of the system are of a disposable plastic material so that they may be used for a single patient and then disposed of after use.
  • the upper portion of the module includes a cap 29.
  • a cylindrical inlet connection extends laterally from one side of cap 29 and an outlet connection 31 extends laterally from the diametrically opposite side of cap 29.
  • the central portion of cap 29 is predominantly hollow on the inside.
  • Connectors 30 and 31 are aligned and have aligned through passageways 31 and 33 respectively.
  • the connectors are open to the exterior of the cap and passageways 32 and 33 communicate to provide a continuous through passageway in cap 29. This is demonstrated by the arrows in FIG. 2.
  • Connectors 30 and 31 each have an annular flange 34 at the extreme end to form a grip ring for interconnection with the cuff of hose 24 as shown in FIG. I. This prevents blow-off of the hose 24 during operation of the system.
  • a tubular projection 35 Extending upward from the central portion of cap 29 is a tubular projection 35 with a passageway 36 therethrough.
  • a pressure reducer 37 can be attached on the open upper end of tubular extension 35 in frictional engagement therewith.
  • a supply tube 25 can be attached directly to projection 36 or to projection 38 on reducer 37 as shown.
  • Reducer 37 also includes a lateral tubular portion 39 which has a passageway 40 therethrough communicating with the interior of reducer 37.
  • Lateral projection 39 is adapted to receive one end of hose 28 thereon to provide fluid communication between the interior of hose 28 and the interior of cap 37.
  • Projection 35 extends inwardly of cap 29 to form a nozzle housing 41.
  • a nozzle 42 having a passageway therethrough and terminating in a restricted opening is mounted in nozzle housing 41 and communicates with passageway 36 and ultimately with secondary gas source 25.
  • a baffle assembly 43 is affixed to the nozzle housing 41 and includes a lateral baffle member 44 in alignment with the exit opening of nozzle 42 and an orifice 45 located intermediate baffle 44 and the opening of nozzle 42 and substantially perpendicular to the flow of gas from nozzle 42.
  • the baffle assembly 43 receives an aspiration or suction tube 46 therein with the passageway through tube 46 in communication with orifice 45.
  • the nozzle, nozzle housing and baffle assembly are housed within a tubular chamber 49 defined by wall 47 extending downwardly from cap 29 and concentric with the cylindrical skirt 48 of cap 29.
  • the chamber 49 is open at the bottom to facilitate exit of exhaust gases as shown by the arrows in FIG. 2 and has a pair of diametrically opposed openings or orifices 50 adjacent the top of the chamber. Each opening 50 is in alignment with one of the aligned connector portions of cap 29. These Openings provide an inlet means for additional gas from the main supply tube 24 to enter the chamber 49 and pass therethrough to facilitate mixing and transfer of aerosol from the nebulizer chamber out through lateral connector 31. This flow path is depicted by arrows in FIG. 2.
  • Plug 51a can be hinged to bushing 51 in any convenient fashion to alleviate the danger of its loss when it is removed from the opening in the cap.
  • a thermometer can be inserted to determine mainstream temperatures or medicaments can be introduced for use in the system.
  • the plug 510 can be replaced in a tight leak-proof fashion when bushing 51 is not in use.
  • skirt 48 contains threads 52 which interengage with threads 53 on the outer surface of a vial 54.
  • the top of vial 54 is open and the upper rim of the vial engages with a gasket 55 in cap 29 to provide a sealed engagement point between the upper edge of the vial and the cap 29.
  • Vial 54 is transparent and is designed to contain liquid to be introduced into the gas flow during operation of the manifold nebulizer.
  • Suction tube 46 extends downward into vial S4 and has its bottom edge 56 located in a bulb-like reservoir 57 in the bottom of the vial. The dimensions of reservoir 57 are less then the dimensions of the remainder of the vial so that complete liquid usage is obtained. In many environments, the liquid would contain a medication for use in the system. In turn.
  • a rib 58 is present on the bottom of reservoir 57. In this manner, the tube is prevented from occluding on the reservoir bottom while still being close enough to the bottom of the vial to remove substantially all of the liquid from the vial.
  • a graduated scale 59 is on the transparent reservoir so that liquid levels can be closely controlled for medical applications.
  • a major supply of gas is forced through tube 24 and through the major horizontal passageway through cap 29 to exit from the open end of connector 31. A portion of that main gas flow is deflected through openings 50 into the chamber 49.
  • Gas from the secondary source tube 25 passes through nozzle 42 and the venturi effect produced by flow through orifice 43 aspirates fluid through suction tube 46 and out through ap erturc 45.
  • the liquid is then directed with the gas flow from nozzle 42 against baffle 44 where it is further broken up into small particles in the gas within chamber 49 producing an aerosol.
  • the aerosol within the chamber then passes from the chamber out the bottom end thereof and into the mainstream flow again for exit from cap 29 in the manner described above. In this manner, aerosol passes from the nebulizer module 21 through the remainder of system to the patient receiving tube 26.
  • the operation of the activity within the nebulizer chamber is consistent with well known procedures for providing aerosol in a gaseous medium.
  • Exhaust module 22 includes a cylindrically shaped body portion 60 which is open at the top and bottom.
  • a lateral tubular connector 61 extends from one side of body 60 and a second lateral tubular connector 62 extends from the other side of body 60.
  • the tubular connectors on the exhaust module are diametrically opposed and communicate on one end with the interior chamber of the exhaust module and at the other end with the exterior of the exhaust module. In this manner, a through passageway exits through the exhaust module in a lateral direction.
  • the arrows in FIG. 2 depict gas flow through the lateral passageway.
  • Tubular connector 61 has an inner diameter large enough so that connector 31 of the nebulizer module 21 can be received therein in tight frictional engagement. In this manner, a lateral passageway is provided in manifold nebulizer 20 from the rear tip of connector 30 to the forward tip of connector 62.
  • the end portion 63 of connector 61 is flared outwardly on the inner sur face to facilitate a snap-in fit with connector'31 of the nebulizer module. In this manner, reliable connection between the modules is assured.
  • Connector 62 on the opposite side of the exhaust module 22 has a flanged outer rim 64 which facilitates the provision of a lock ring type of engagement with the cuff of a connected hose such as hose 26.
  • FIG. 1 displays connector 62 in engagement with hose 26 for transmittal to and from the patient.
  • a peripheral rim 65 surrounding the bottom opening of body portion 60 has an inner flange 66 adapted to receive collection chamber 67 in a snap fit arrange ment.
  • the upper rim of collection chamber 67 contains a similar exterior flange 68 together with a spaced annular shoulder 69.
  • Flanges 68 and 69 interchange with rim 65 and flange 66 in a snap-in arrangement for assembly of the exhaust module.
  • the collection chamber 67 can be removed by merely deforming the plastic slightly to disengage the interengaged flanges.
  • Collec tion chamber 67 is hollow and terminates in a lateral exhaust tube 70 which is open to the exterior of the manifold nebulizer 20.
  • the top of the collection cham ber 67 is open so that it communicates with the interior of body portion 60 when attached thereto and exhaled gases can be transmitted through the body and out of the exhaust outlet tubes 70 as shown by the arrows in FIG. 2.
  • a down draft exhaust configuration is provided.
  • a sump 71 is provided in the interior base of collection chamber 67 below the exhaust tube 70 for accumulation of condensate.
  • the exhaust port and tube 70 is of a desirable size for ready connection to a hose attachment used in conventional spirometry procedures. (not shown).
  • FIGS. 3 and 4 with the exhaust module being rotatable about the nebulizer module and the mounting post 23, it is possible to position the exhaust in any desired direction in a 360 vertical plane of revolution. In this manner, the effective sump area 71 can be varied as depicted in FIG. 4.
  • Collection chamber 67 can also be rotated in a 360 horizontal plane.
  • the upper outer rim 72 of body 60 contains a bead on its circumference for interengagement with the beaded rim 73 ofa cap 74.
  • a central tubular valve seat 75 Concentric with rim 72 is a central tubular valve seat 75 open at the top and bottom to permit communication with the interior of body 60 and the exterior thereof.
  • a resilient diaphragm valve member 76 Seated over the upper edge of tubular valve seat 75 is a resilient diaphragm valve member 76.
  • the central portion 77 of valve member 76 is of larger diameter than the valve seat 75 and occludes seat 75 when pressure is applied within the internal portion of cap 74 so as to prevent gases from flowing out of the interior of body 60.
  • valve member 76 extends outwardly from the center portion through a convolution portion 78 and a rim portion 79.
  • the convolution portion is designed to permit the diaphragm 77 to be moved away from seat 75 with a minimum of force.
  • the rim portion 79 is fixed in position between cap 74 and rim 72 on the upper edge of body 60 thus sealing this joint. This forms a rolling convolution valve diaphragm which is sensitive to small pressure changes and has a low exhalation retard.
  • the valve actuating pressure is provided through tube 28 which is connected to the secondary gas supply source and is mounted on the upright hollow extension 80 on cap 74.
  • the tube 28 communicates with the interior of cap 74 above valve member 76.
  • dome pressure seats the valve.
  • the dome pressure is relieved and, central portion 77 of the valve is forced upward and unseated from the upper rim of valve seat 75. Gases can then escape into the main body portion 60 of exhaust module 22 and down through exhaust attachment 67 and out through exhaust port 70. This action is depicted by the phantom arrows in FIG. 2.
  • mounting post 23 is positioned on the exhaust module at the point where the exhaust module interengages with the nebulizer module.
  • the interengagement between connectors 31 and 61 is of a frictional type and permits rotation therebetween so that the nebulizer module can rotate 360 with respect to the exhaust module without disconnecting the two modules or providing a leakage condition.
  • the details of mounting post 23 are best depicted in FIG. of the drawings with the exception of mounting knob 81 on the distal end of the handle portion 82 of post 23.
  • Knob 81 provides a means for mounting of the entire assembly during use.
  • the outer surface of connector 61 contains a plurality of spaced longitudinal triangular ribs 83 about its circumference.
  • the top and bottom diametrically opposed ribs include a central bead 84 for keying of the post in an upright position with re spect to the exhaust module.
  • the handle 82 of the post terminates at the end distal from the end containing knob 81 in a ring portion 85.
  • Ring portion 85 has an inner diameter substantially the same as the outer diameter as connector 61 but slightly larger.
  • a plurality of grooves 86 about the inner circumference of ring 85 are provided for alignment with ribs 83 of connector 61.
  • post 23 can be oriented in eight different directions about a 360 revolution with respect to the exhaust module.
  • This adds versatility to the modular arrangement of the system and is particularly useful in orienting the exhaust portion so that sump 71 is in any desired position as shown in FIG. 4.
  • the rotation orientations of the system are many fold.
  • gas under pressure is supplied through tubes 24 and 25 into the nebulizer module 21.
  • the main flow of gas continues through the nebulizer module and on through the exhaust module through the interconnection of the lateral connectors as described above.
  • the secondary source of gas through tube 25 is passed through nozzle 41 which aspirates liquid medicament into the chamber 49.
  • Baffles are provided to break down particle size to the desired degree.
  • a portion of the main flow of gas is directed through ports into the chamber where it helps to gather the aerosol and carry it out of the bottom of the chamber and up into the main gas flow for transmittal to the patient.
  • the aerosol flows through the exhaust module with the valve assembly closed by dome pressure exerted by the second gas source to the patient as he inhales.
  • valve sealing dome pressure is relieved and the pressure of the exhalation gases unseat valve 76 and permit exit down through the exhaust passageways of body and out through exhaust tube 70. Condensate is collected in sump 71.
  • the valve will once again return to its relaxed position 77 over valve seat 75.
  • the above described arrangement is used when it is desired to have the nebulizer module 21 and the exhaust module 22 in a series arrangement as for intermittent positive pressure breathing.
  • the modular system is also adaptable for use in a parallel arrangement for ventilator procedures with the assistance of an alternate post 230.
  • This type of system is depicted in FIGS. 6-9 of the drawings.
  • Modules 21 and 22 are virtually identical with the modules of the previously discussed embodiment.
  • There is no need for a pressure re ducer 37 and secondary supply tube 25 is fastened directly to tubular extension 35 of cap 29.
  • Tube 28a can come from the original supply source as another sec ondary supply means and can be connected in a similar manner as in the previous embodiment to tubular extension 80 of the cap.
  • Plug 87 has an appropriate handle 88 and may be removed if the module 22 is to be used in another fashion as in the previous embodiment where lateral connector 61 is employed.
  • modules 21 and 22 are identical to the previous embodiment.
  • the modified post 23a is best depicted in FIG. 9.
  • Mounting knob 81 is not changed however handle arm 820 now terminates in a connector base 89 which is different in structure than ring of post 23.
  • the base 89 includes a pair of spaced horizontal rectangular plates 90 which support a pair of opposed rectangular shaped tongues 91 and 92.
  • Each tongue is designed to recieve one of the modules 21 and 22 so that both modules are mounted to post 230.
  • Module 21 has a pair of opposed cup shaped brackets 93 formed on the outer skirt portion of the cap. Brackets 93 are positioned on the cap of nebulizer module 21 so that when a bracket 93 is positioned on a tongue of the post.
  • nebulizer module 21 is mounted on tongue of the post.
  • exhaust module 22 has a pair of opposed brackets 94 of the same Configuration and size as receptacles 93 so that the exhaust module can also be mounted on either of the two tongues 91 and 92 of post 23a.
  • Brackets 94 are on the exterior of the body portion of the exhaust module and are diametrically positioned so that the lateral through passageway of the module is perpendicular to the point at which the post 23a is mounted. in this manner, the through passageways of both modules are parallel which is in contrast to the previously discussed embodiment where the modules are in series. It can be readily seen how the modules can be interchanged with respect to the mounting position on post 230.
  • Tongues 91 and 92 extend upwardly into cup shaped brackets 93 and 94 so as to be captured within the U- shaped configuration of the brackets. Since the bracket is seated on the tongue in each case, the modules cannot be displaced in a downward direction and the end sides of each bracket retains the modules in a lateral position on the tongues of the post. Removal of the modules is retarded in an upward direction by the presence of beveled ribs 95 on the handle portion of post 230.
  • the resilient nature of the plastic modules and post make it possible for the bracket to be deformed and snapped in and out of position around the tongues and past the interference caused by beveled ribs 95. The ribs will retain the modules in position from removal in an upward direction until sufficient force is applied to cause deformation of the part at which time the modules can be removed from the post.
  • FIG. 7 depicts the thermometer bushing 51 in open position with cap 51a having been removed from the opening in the top of the bushing 51.
  • a thermometer 96 can then be passed through the opening and into the interior of the nebulizer module for the purpose of taking a gas temperature reading.
  • the integrally mounted cap 51a can then be replaced in position sealing the opening in the bushing 51.
  • Cap 51a can be mounted to the bushing 51 in any convenient fashion such as by being integrally molded with the port with the addition of flexible resilient arm 97 as depicted in FIG. 7.
  • FIG. 6 shows the parallel embodiment 20a in assembled condition in a breathing system.
  • Main supply tube 24 is connected as in the previous embodiment to nebulizer module 21.
  • exit connector 31 of module 21 is connected to a first manifold hose 98 which terminates in connection with a manifold 99.
  • One end of the manifold 99 is connected to the patient via currently used practice (for example, the mask 100 as shown).
  • a further opening is in manifold 99 and is connected to an exhaust hose 101.
  • the opposite end of the exhaust hose 101 is mounted on connector 62 of exhaust module 22.
  • Secondary supply hoses 25 and 28a provide secondary gas to power the nebulizer module 21 and the valve module 22 respectively.
  • Aerosol is produced within nebulizer module 21 in the same manner as in respect to nebulizer 20 and exits from nebulizer module 21 into hose 98. It then passes through manifold 99 and mouthpiece 100 to the patient.
  • the valve assembly in exhaust module 22 will be opened in the same manner as in respect to manifold nebulizer 20 and the exhaled gases and other matter will pass through tube 101 into exhaust module 22. It will then pass out of the exhaust module in the same manner as in respect to manifold nebulizer 20.
  • a manifold nebulizer system for use in a breathing circuit comprising:
  • a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
  • cap portion forming at least one side of said through passageway for removable connection to a main source of gas to facilitate passage of gas through the cap portion;
  • the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
  • a nozzle depending inwardly of the cap in alignment with the opening in the cap and in fluid communication with the gas from the secondary source passing through the opening in the cap so as to direct the gas at high velocity into the chamber;
  • a tube in the cap and extending beyond the depending skirt so as to extend into the vial connected with the cap with one open end adjacent to and in fluid communication with the nozzle and the other open end in liquid contained in the vial so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
  • an exhaust module having a body portion with a through passageway and being removably connectable to the nebulizer module
  • adjustable surfaces on the manifold nabulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
  • cap portion having a lateral tubular extension extending therefrom and the exhaust module having a lateral receiving tubular portion extending therefrom;
  • the lateral projection from the cap portion including means b sealingly removably engage with the lat eral extension of the exhaust module and to achieve communication between the passageways through the nebulizer module and the exhaust module;
  • a post being mounted on one of said lateral projecting portions and extending substantially perpendicular therefrom so that when the modules are interengaged and the post is mounted thereon, the post will provide mounting surfaces for the nebulizer;
  • the post containing a series of spaced recesses and the corresponding portion of the module on which the post is to be mounted contains a plurality of spaced corresponding projections and the post rotatably mountable about the corresponding portion of the module so that when the post is mounted with the projections in the corresponding recesses, rotation of the post with respect to at least one of the modules will permit mounting of at least one module in any desired rotation.
  • a manifold nebulizer system for use in a breathing circuit comprising:
  • a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
  • cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion;
  • the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
  • a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber;
  • a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
  • an exhaust module having a body portion with a through passageway and being removably connectable to the nebulizer module
  • the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection;
  • adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
  • a post having a pair of locking tongues with each locking tongue removably inserted in the bracket of one of the nebulizer and exhaust modules so as 0 to mount both modules to a common support surface to form a manifold nebulizer unit;
  • the post including a projecting arm extending from the base portion containing the tongues with the projecting arm forming a mounting surface for the manifold nebulizer.
  • a manifold nebulizer system for use in a breathing circuit comprising:
  • a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
  • cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion;
  • the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
  • a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber;
  • a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
  • an exhaust module having a body portion with a through passageway and being removably connected to the nebulizer module;
  • the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection;
  • adjustable surfaces on the manifold nebulizer to per mit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
  • the vial designed to contain liquid being removably interengaged with the depending skirt of the cap and having said other open end of the tube extending therein;
  • the vial being transparent and having liquid level gradations on the surface thereof;
  • the end of the vial remote from the skirt having a bulb-shaped configuration slightly larger than the said other open end of the tube permitting extension of the tube therein to facilitate complete usage of liquid in the vial;
  • a rib extending inwardly of the vial from the bottom of the bulb portion thereof said other open end terminating in a rim normal to the longitudinal axis of the tube; said rim engaged with said rib to prevent occlusion thereof during use of the manifold nebulizer.
  • a manifold nebulizer system for use in a breathing circuit comprising:
  • a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
  • cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion;
  • the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
  • a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber;
  • a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
  • an exaust module having a body portion with a through passageway and being removably connected to the nebulizer module;
  • the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection;
  • adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
  • the sump having an annular rib extending from its upper surface portion and the exhaust module having a corresponding rib for receiving the rib of the sump in removable interengagement to retain the sump in position on the exhaust module while permitting relative rotation therebetween.

Abstract

A manifold nebulizer system for use in a breathing circuit. The system includes a nebulizer module and an exhaust module. The nebulizer module consists of a vial to contain liquid and has structure for producing an aerosol of liquid particles for entrainment in a stream of gas. The exhaust module has a valve for facilitating inhalation of the aerosol by the patient and removal of exhaled gases received from the patient. Adjustable surfaces are on the modules to permit relative movement therebetween. In this manner, the manifold nebulizer is capable of assembly into a multiplicity of flow line arrangements and positions.

Description

United States Patent 11 1 Huston et a1.
1 1 MANIFOLD NEBULIZER SYSTEM [75] Inventors: Paul O. Huston, Montville; William L. Douma, West Paterson, both of Ni; Robert A. Gandi, New York, NY.
[73] Assignee: Becton, Dickinson and Company,
East Rutherford, NJ.
[22] Filed: Aug. 15, 1973 [21] Appl. No.: 388,481
[52] US. Cl 128/194; 128/145.8 [51] Int. C11 ,1 A61M 11/00 [58] Field of Search .1 128/194, 186, 187, 201,
128/203, 209, 142.2, 1423, 142.4, 1458, 208, DIG. 2, 192; 248/290, 291, 324, 339; 26l/DIG. 65, 72 R 1451 Sept. 9, 1975 Primary Exam1'nerRichard A. Gaudet Assistant Exam1'nerHenry J. Recla Attorney, Agent, or Firm1(ane, Dalsimer, Kane, Sullivan and Kurucz [57] ABSTRACT A manifold nebulizer system for use in a breathing circuit. The system includes a nebulizer module and an exhaust module, The nebulizer module consists of a vial to contain liquid and has structure for producing an aerosol of liquid particles for entrainment in a stream of gas. The exhaust module has a valve for facilitating inhalation of the aerosol by the patient and removal of exhaled gases received from the patient. Adjustable surfaces are on the modules to permit relative movement therebetween. In this manner, the manifold nebulizer is capable of assembly into a multiplicity of flow line arrangements and positions.
4 Claims, 9 Drawing Figures PATENTED SEP 91975 SHEET 1 0F 6 PATENTED 315? 91975 sum 2 o g hm Q m? NW M? hv 'I II I W w Q R i\\\ n) \k\\\ x A S PATENTED 91975 SHEET 5 0f 6 MANIFOLD NEBULIZER SYSTEM BACKGROUND OF THE INVENTION There are many breathing systems in the marketplace today; in a multiplicity of designs depending upon the particular use for a particular patient. This is especially true when dealing with manifold nebulizer embodiments. In general, manifold nebulizers are used to add moisture or medicament to a gaseous flow to be inhaled by a patient. Need for introducing moisture or medicament into the gas stream in the most efficient and effective manner has brought about the development of a variety of different complicated and expensive devices.
It has also been determined that exhaust of the expired air from the patient can often create a problem in the more complicated and unwieldy systems. For maximum patient comfort and safety, it is necessary that upon inhalation he receive only unused (fresh) gas and medicament or moisture and upon exhalation means be provided for quickly and efficiently removing the exhaled gases.
With the above thoughts in mind, it is readily apparent that rather complicated and costly nebulizer systems are presently in use today. Additionally, these systems are usually relatively inflexible in design so that assembly into a complete air flow system can often become quite difficult.
It should also be kept in mind that, in view of the complicated and expensive systems presently in use, disposability has become relatively prohibitive. It would be desirable to have a disposable manifold nebulizer arrangement which is capable of adaption for a variety of different in-line connections and arrangements of its component parts and which can then be discarded after single patient use.
SUMMARY OF THE INVENTION With the above discussion in mind, the present invention deals with an inexpensive single patient manifold nebulizer system designed primarily to provide the user with the versatility necessary to conform to the numerous in-use configurations and functional requirements without the high cost inherent in reusable units.
In general, a manifold nebulizer designed for use in gas flow circuity such as in a breathing circuit includes a nebulizer module consisting ofa cap portion containing a nebulizing chamber therein and a through passageway thereacross. Means are provided on the cap portion for connection to a main source of gas and to facilitate passage of said gas through the cap portion. The cap includes a depending skirt to receive in sealed relationship a vial designed to contain liquid. A means for connection to a gas source to drive the nebulizer means is provided. A nozzle depends inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the nebulizing chamber. An aspiration tube us adjacent to and in fluid communication with the nozzle and extends into the liquid so that when gas passes through the nozzle the venturi efi'ect will draw the liquid through the tube and facilitate entrainment of said liquid in particulate form within the gas. A baffle means depends from the nozzle to remove large liquid particles and provide the desired particle size distribution. Secondary means are in the cap to divert a portion of main gas flow into the nebulizing chamber and to direct a portion of the main flow of gas into communication with the aerosol created therein to aid in transferring the aerosol into the main gas flow passageway for discharge from the nebulizer module.
The manifold nebulizer also includes an exhaust module having a body portion which is removably connectable to the nebulizer module. An exhaust valve assembly is on the body portion and includes an exhaust opening. One end of the exhaust module is adapted to be coupled to a mouthpiece assembly for use by a patient. Adjustable surfaces are on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit.
When the nebulizer is connected to a gas source and a patient inhales, a nebulized aerosol of gas and liquid particles will be inhaled. When the patient exhales, the valve assembly will open permitting the expired gas to pass through the exhaust opening and out of the circuit.
More specifically, the versatile modular configuration consisting of a nebulizer module and an exhaust module including a valve assembly are each capable of functioning independently. Alternatively, they can be combined to conform to the classical series configuration of modules or in a parallel nebulizer module and exhaust module configuration. The system is designed for intermittent positive pressure or ventilator usage.
A mounting post can be provided for facilitating the connection of the two modules in series and a slightly different post can be provided for connecting the modules in parallel. The post of either design would have an extension to facilitate mounting of the entire nebulizer assembly in a convenient manner. In fact the post for series arrangement permits 360 rotation of the modules. Support brackets are on the modules to facilitate mounting of the modules to a post in side-by-side parallel arrangement if the particular use demands such an assembly.
Turning specifically to the nebulized module. a threaded vial for containing medicament or fluid is provided for threaded interengagement with the remainder of the module for positive closure purposes. Additionally, a gasket seal is present to prevent any danger of nebulizer leakage. The vial has liquid level graduations and is transparent to permit constant monitoring of fluid contained therein. The bottom of the vial contains a bulb-like reservoir which insures complete medication usage due to its reception of the open tip of the fluid aspiration tube. The bottom of the reservior also contains an integral rib to prevent occlusion of the open tip of the aspiration.
Lock ring configuration is present on all of the positive pressure hose connections in the system to facili tate positive grip of the modules with the hose or tubing cuffs.
A thermometer port bushing is provided on the nebulizer module and has an integral leakproof cap. The bushing is designed to permit usage of a thermometer to determine mainstream temperatures or to be used for introduction of medications.
A hose gripping is on predetermined ports of the modules to prevent blow-off of external connections under pressure. A secondary baffle whose purpose is to remove larger particles is provided. The baffle also contains diametrically opposed orifices in the mainstream to entrain gas for improved mixing with the aerosol.
In connection with the exhaust module, the exhaust passageways are designed so that a downdraft exhaust condition exists and by providing a 360 rotatable collection head, the exhaust can be positioned in any desired direction. The collection head mounted on the exhaust module contains an integral sump for accumulation of condensate. The exhaust port of the exhaust module is sized to accept a hose attachment usable for spirometry procedures.
The exhaust module has a connector part with an internal reverse flair to facilitate snap-in fit when con nected to a nebulizer module thereby assuring a reliable connection.
Finally, the overall manifold nebulizer system provides narrow range aerosol particle size distribution within the desired range for ideal deposition within the respiratory system. The system is also designed for use of a pressure transfer adapter to permit pressure reduction when the unit is used with a single supply tube respirator.
With the above objectives, among others, in mind, reference is had to the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a perspective view of a series embodiment of the manifold nebulizer system of the invention shown in connection with a source of gas and a conduit for passage to a patient;
FIG. 2 is a fragmentary sectional view of a series embodiment of the manifold nebulizer of the invention with arrows showing the direction of gas flow through the system in use;
FIG. 3 is a fragmentary sectional end elevation view thereof taken along the plane of line 3--3 of FIG. 1;
FIG. 4 is a fragmentary sectional end elevation view thereof taken along th plane ofline 33 of FIG. 1 and showing alternative positions of the exhaust module portion of the system;
FIG. 5 is an enlarged fragmentary perspective view of the post and post mounting portion of a series embodiment of FIGS. 1 to 4;
FIG. 6 is a perspective view of a parallel embodiment of the manifold nebulizer system of the invention shown in connection with an air supply source and a patient;
FIG. 7 is a side elevational view of a parallel embodiment of the manifold nebulizer as shown in FIG. 6 with the thermometer port open to receive a thermometer;
FIG. 8 is a fragmentary sectional view of the post portion ofa parallel embodiment of the manifold nebulizer in connection with the two modules of the system; and
FIG. 9 is an enlarged fragmentary perspective view thereof showing how the post is removed from the bracket portion of a module.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A manifold nebulizer system as depicted in FIGS. I and 2 includes two major component modules. There is a nebulizer module 21 and an exhaust module 22. The two modules are connected together and at the connection joint is a removable mounting post 23. The opposite side of the nebulizer module 2] is connected to a supply hose 24. A source of gas under pressure supplies gas through supply hose 24 and to the system.
A secondary small supply hose 25 is also connected to the source of gas.
The exhaust modules has its outlet side opposed to the nebulizer module which can be connected to a breathing hose 26 which terminates in a mouthpiece 27 or other connector for transmittal to the patient. In one embodiment of the series configuration a small tube 28 connects the top of nebulizer module 21 to the top of exhaust module 22 via a pressure reducer 37. In a second embodiment, tube 280 may be connected directly to the source of gas. All of the above discussed components of the system are of a disposable plastic material so that they may be used for a single patient and then disposed of after use.
Turning to consideration of specific details of the nebulizer module 2], particular attention is directed to FIG. 2 of the drawings. The upper portion of the module includes a cap 29. A cylindrical inlet connection extends laterally from one side of cap 29 and an outlet connection 31 extends laterally from the diametrically opposite side of cap 29. The central portion of cap 29 is predominantly hollow on the inside. Connectors 30 and 31 are aligned and have aligned through passageways 31 and 33 respectively. The connectors are open to the exterior of the cap and passageways 32 and 33 communicate to provide a continuous through passageway in cap 29. This is demonstrated by the arrows in FIG. 2.
Connectors 30 and 31 each have an annular flange 34 at the extreme end to form a grip ring for interconnection with the cuff of hose 24 as shown in FIG. I. This prevents blow-off of the hose 24 during operation of the system.
Extending upward from the central portion of cap 29 is a tubular projection 35 with a passageway 36 therethrough. A pressure reducer 37 can be attached on the open upper end of tubular extension 35 in frictional engagement therewith. A supply tube 25 can be attached directly to projection 36 or to projection 38 on reducer 37 as shown. Reducer 37 also includes a lateral tubular portion 39 which has a passageway 40 therethrough communicating with the interior of reducer 37. Lateral projection 39 is adapted to receive one end of hose 28 thereon to provide fluid communication between the interior of hose 28 and the interior of cap 37. Projection 35 extends inwardly of cap 29 to form a nozzle housing 41. A nozzle 42 having a passageway therethrough and terminating in a restricted opening is mounted in nozzle housing 41 and communicates with passageway 36 and ultimately with secondary gas source 25.
A baffle assembly 43 is affixed to the nozzle housing 41 and includes a lateral baffle member 44 in alignment with the exit opening of nozzle 42 and an orifice 45 located intermediate baffle 44 and the opening of nozzle 42 and substantially perpendicular to the flow of gas from nozzle 42.
The baffle assembly 43 receives an aspiration or suction tube 46 therein with the passageway through tube 46 in communication with orifice 45. The nozzle, nozzle housing and baffle assembly are housed within a tubular chamber 49 defined by wall 47 extending downwardly from cap 29 and concentric with the cylindrical skirt 48 of cap 29.
The chamber 49 is open at the bottom to facilitate exit of exhaust gases as shown by the arrows in FIG. 2 and has a pair of diametrically opposed openings or orifices 50 adjacent the top of the chamber. Each opening 50 is in alignment with one of the aligned connector portions of cap 29. These Openings provide an inlet means for additional gas from the main supply tube 24 to enter the chamber 49 and pass therethrough to facilitate mixing and transfer of aerosol from the nebulizer chamber out through lateral connector 31. This flow path is depicted by arrows in FIG. 2.
Between inlet connector 30 and the walls of chamber 49 is an opening in the upper surface of cap 29 which normally contains a removable bushing 51. Plug 51a can be hinged to bushing 51 in any convenient fashion to alleviate the danger of its loss when it is removed from the opening in the cap. When plug 51a is removed from the opening in bushing 51, a thermometer can be inserted to determine mainstream temperatures or medicaments can be introduced for use in the system. The plug 510 can be replaced in a tight leak-proof fashion when bushing 51 is not in use.
The interior surface of skirt 48 contains threads 52 which interengage with threads 53 on the outer surface of a vial 54. The top of vial 54 is open and the upper rim of the vial engages with a gasket 55 in cap 29 to provide a sealed engagement point between the upper edge of the vial and the cap 29. Vial 54 is transparent and is designed to contain liquid to be introduced into the gas flow during operation of the manifold nebulizer. Suction tube 46 extends downward into vial S4 and has its bottom edge 56 located in a bulb-like reservoir 57 in the bottom of the vial. The dimensions of reservoir 57 are less then the dimensions of the remainder of the vial so that complete liquid usage is obtained. In many environments, the liquid would contain a medication for use in the system. In turn. to prevent occlusion of lower open tip 56 of suction tube 46, a rib 58 is present on the bottom of reservoir 57. In this manner, the tube is prevented from occluding on the reservoir bottom while still being close enough to the bottom of the vial to remove substantially all of the liquid from the vial. A graduated scale 59 is on the transparent reservoir so that liquid levels can be closely controlled for medical applications.
In operation, a major supply of gas is forced through tube 24 and through the major horizontal passageway through cap 29 to exit from the open end of connector 31. A portion of that main gas flow is deflected through openings 50 into the chamber 49. Gas from the secondary source tube 25 passes through nozzle 42 and the venturi effect produced by flow through orifice 43 aspirates fluid through suction tube 46 and out through ap erturc 45. The liquid is then directed with the gas flow from nozzle 42 against baffle 44 where it is further broken up into small particles in the gas within chamber 49 producing an aerosol. The aerosol within the chamber then passes from the chamber out the bottom end thereof and into the mainstream flow again for exit from cap 29 in the manner described above. In this manner, aerosol passes from the nebulizer module 21 through the remainder of system to the patient receiving tube 26. The operation of the activity within the nebulizer chamber is consistent with well known procedures for providing aerosol in a gaseous medium.
Exhaust module 22 includes a cylindrically shaped body portion 60 which is open at the top and bottom. A lateral tubular connector 61 extends from one side of body 60 and a second lateral tubular connector 62 extends from the other side of body 60. The tubular connectors on the exhaust module are diametrically opposed and communicate on one end with the interior chamber of the exhaust module and at the other end with the exterior of the exhaust module. In this manner, a through passageway exits through the exhaust module in a lateral direction. The arrows in FIG. 2 depict gas flow through the lateral passageway.
Tubular connector 61 has an inner diameter large enough so that connector 31 of the nebulizer module 21 can be received therein in tight frictional engagement. In this manner, a lateral passageway is provided in manifold nebulizer 20 from the rear tip of connector 30 to the forward tip of connector 62. The end portion 63 of connector 61 is flared outwardly on the inner sur face to facilitate a snap-in fit with connector'31 of the nebulizer module. In this manner, reliable connection between the modules is assured.
Connector 62 on the opposite side of the exhaust module 22 has a flanged outer rim 64 which facilitates the provision of a lock ring type of engagement with the cuff of a connected hose such as hose 26. FIG. 1 displays connector 62 in engagement with hose 26 for transmittal to and from the patient.
A peripheral rim 65 surrounding the bottom opening of body portion 60 has an inner flange 66 adapted to receive collection chamber 67 in a snap fit arrange ment. The upper rim of collection chamber 67 contains a similar exterior flange 68 together with a spaced annular shoulder 69. Flanges 68 and 69 interchange with rim 65 and flange 66 in a snap-in arrangement for assembly of the exhaust module. The collection chamber 67 can be removed by merely deforming the plastic slightly to disengage the interengaged flanges. Collec tion chamber 67 is hollow and terminates in a lateral exhaust tube 70 which is open to the exterior of the manifold nebulizer 20. The top of the collection cham ber 67 is open so that it communicates with the interior of body portion 60 when attached thereto and exhaled gases can be transmitted through the body and out of the exhaust outlet tubes 70 as shown by the arrows in FIG. 2. As shown, a down draft exhaust configuration is provided. A sump 71 is provided in the interior base of collection chamber 67 below the exhaust tube 70 for accumulation of condensate. The exhaust port and tube 70 is of a desirable size for ready connection to a hose attachment used in conventional spirometry procedures. (not shown). As shown in FIGS. 3 and 4 with the exhaust module being rotatable about the nebulizer module and the mounting post 23, it is possible to position the exhaust in any desired direction in a 360 vertical plane of revolution. In this manner, the effective sump area 71 can be varied as depicted in FIG. 4. Collection chamber 67 can also be rotated in a 360 horizontal plane.
The upper outer rim 72 of body 60 contains a bead on its circumference for interengagement with the beaded rim 73 ofa cap 74. Once again the nature of the resilient plastic materials facilitate the snap-on engagement of cap 74 on rim 72 of body 60. Concentric with rim 72 is a central tubular valve seat 75 open at the top and bottom to permit communication with the interior of body 60 and the exterior thereof. Seated over the upper edge of tubular valve seat 75 is a resilient diaphragm valve member 76. The central portion 77 of valve member 76 is of larger diameter than the valve seat 75 and occludes seat 75 when pressure is applied within the internal portion of cap 74 so as to prevent gases from flowing out of the interior of body 60. The remainder of valve member 76 extends outwardly from the center portion through a convolution portion 78 and a rim portion 79. The convolution portion is designed to permit the diaphragm 77 to be moved away from seat 75 with a minimum of force. The rim portion 79 is fixed in position between cap 74 and rim 72 on the upper edge of body 60 thus sealing this joint. This forms a rolling convolution valve diaphragm which is sensitive to small pressure changes and has a low exhalation retard.
The valve actuating pressure is provided through tube 28 which is connected to the secondary gas supply source and is mounted on the upright hollow extension 80 on cap 74. Thus, the tube 28 communicates with the interior of cap 74 above valve member 76.
As stated above, on inhalation, dome pressure seats the valve. When the patient exhales, the dome pressure is relieved and, central portion 77 of the valve is forced upward and unseated from the upper rim of valve seat 75. Gases can then escape into the main body portion 60 of exhaust module 22 and down through exhaust attachment 67 and out through exhaust port 70. This action is depicted by the phantom arrows in FIG. 2.
As previously stated, mounting post 23 is positioned on the exhaust module at the point where the exhaust module interengages with the nebulizer module. The interengagement between connectors 31 and 61 is of a frictional type and permits rotation therebetween so that the nebulizer module can rotate 360 with respect to the exhaust module without disconnecting the two modules or providing a leakage condition. The details of mounting post 23 are best depicted in FIG. of the drawings with the exception of mounting knob 81 on the distal end of the handle portion 82 of post 23. Knob 81 provides a means for mounting of the entire assembly during use.
As shown in FIG. 5, the outer surface of connector 61 contains a plurality of spaced longitudinal triangular ribs 83 about its circumference. The top and bottom diametrically opposed ribs include a central bead 84 for keying of the post in an upright position with re spect to the exhaust module. The handle 82 of the post terminates at the end distal from the end containing knob 81 in a ring portion 85. Ring portion 85 has an inner diameter substantially the same as the outer diameter as connector 61 but slightly larger. A plurality of grooves 86 about the inner circumference of ring 85 are provided for alignment with ribs 83 of connector 61. As shown, there are eight ribs and eight grooves so that post 23 can be oriented in eight different directions about a 360 revolution with respect to the exhaust module. This adds versatility to the modular arrangement of the system and is particularly useful in orienting the exhaust portion so that sump 71 is in any desired position as shown in FIG. 4. In fact, the rotation orientations of the system are many fold. By permitting 360 rotation between the nebulizer module 21 and the exhaust module 22 and also providing eight different positions for the post 23 on the exhaust module 22, it can be readily seen how many varied positions can be employed while still retaining the same flow paths for the system.
In actual operation with the arrangement of FIGS. 1 and 2, gas under pressure is supplied through tubes 24 and 25 into the nebulizer module 21. The main flow of gas continues through the nebulizer module and on through the exhaust module through the interconnection of the lateral connectors as described above. The secondary source of gas through tube 25 is passed through nozzle 41 which aspirates liquid medicament into the chamber 49. Baffles are provided to break down particle size to the desired degree. A portion of the main flow of gas is directed through ports into the chamber where it helps to gather the aerosol and carry it out of the bottom of the chamber and up into the main gas flow for transmittal to the patient. The aerosol flows through the exhaust module with the valve assembly closed by dome pressure exerted by the second gas source to the patient as he inhales.
When the patient exhales, the valve sealing dome pressure is relieved and the pressure of the exhalation gases unseat valve 76 and permit exit down through the exhaust passageways of body and out through exhaust tube 70. Condensate is collected in sump 71. When the exhalation is completed, the valve will once again return to its relaxed position 77 over valve seat 75.
The above described arrangement is used when it is desired to have the nebulizer module 21 and the exhaust module 22 in a series arrangement as for intermittent positive pressure breathing. The modular system is also adaptable for use in a parallel arrangement for ventilator procedures with the assistance of an alternate post 230. This type of system is depicted in FIGS. 6-9 of the drawings. Modules 21 and 22 are virtually identical with the modules of the previously discussed embodiment. There is no need for a pressure re ducer 37 and secondary supply tube 25 is fastened directly to tubular extension 35 of cap 29. Tube 28a can come from the original supply source as another sec ondary supply means and can be connected in a similar manner as in the previous embodiment to tubular extension 80 of the cap.
The one difference in the exhaust module lies in the provision of a removable plug 87 placed in the open end of connector 61 for sealing purposes since that opening is not required in this alternate embodiment. Plug 87 has an appropriate handle 88 and may be removed if the module 22 is to be used in another fashion as in the previous embodiment where lateral connector 61 is employed.
The remaining portions of modules 21 and 22 are identical to the previous embodiment. The modified post 23a is best depicted in FIG. 9. Mounting knob 81 is not changed however handle arm 820 now terminates in a connector base 89 which is different in structure than ring of post 23. The base 89 includes a pair of spaced horizontal rectangular plates 90 which support a pair of opposed rectangular shaped tongues 91 and 92. Each tongue is designed to recieve one of the modules 21 and 22 so that both modules are mounted to post 230. Module 21 has a pair of opposed cup shaped brackets 93 formed on the outer skirt portion of the cap. Brackets 93 are positioned on the cap of nebulizer module 21 so that when a bracket 93 is positioned on a tongue of the post. the lateral through passageway of the nebulizer module will be perpendicular to the position of the post mounting. Brackets are open on the underside thereof so as to receive either tongue 91 or 92 of post 23a therein. In this manner, nebulizer module 21 is mounted on tongue of the post.
Similarly, exhaust module 22 has a pair of opposed brackets 94 of the same Configuration and size as receptacles 93 so that the exhaust module can also be mounted on either of the two tongues 91 and 92 of post 23a. Brackets 94 are on the exterior of the body portion of the exhaust module and are diametrically positioned so that the lateral through passageway of the module is perpendicular to the point at which the post 23a is mounted. in this manner, the through passageways of both modules are parallel which is in contrast to the previously discussed embodiment where the modules are in series. It can be readily seen how the modules can be interchanged with respect to the mounting position on post 230.
The specific interengaging structural features of the post 230 and the modules can be best seen in FIG. 8. Tongues 91 and 92 extend upwardly into cup shaped brackets 93 and 94 so as to be captured within the U- shaped configuration of the brackets. Since the bracket is seated on the tongue in each case, the modules cannot be displaced in a downward direction and the end sides of each bracket retains the modules in a lateral position on the tongues of the post. Removal of the modules is retarded in an upward direction by the presence of beveled ribs 95 on the handle portion of post 230. The resilient nature of the plastic modules and post make it possible for the bracket to be deformed and snapped in and out of position around the tongues and past the interference caused by beveled ribs 95. The ribs will retain the modules in position from removal in an upward direction until sufficient force is applied to cause deformation of the part at which time the modules can be removed from the post.
FIG. 7 depicts the thermometer bushing 51 in open position with cap 51a having been removed from the opening in the top of the bushing 51. A thermometer 96 can then be passed through the opening and into the interior of the nebulizer module for the purpose of taking a gas temperature reading. When the thermometer 96 is removed, the integrally mounted cap 51a can then be replaced in position sealing the opening in the bushing 51. Cap 51a can be mounted to the bushing 51 in any convenient fashion such as by being integrally molded with the port with the addition of flexible resilient arm 97 as depicted in FIG. 7.
FIG. 6 shows the parallel embodiment 20a in assembled condition in a breathing system. Main supply tube 24 is connected as in the previous embodiment to nebulizer module 21. However, exit connector 31 of module 21 is connected to a first manifold hose 98 which terminates in connection with a manifold 99. One end of the manifold 99 is connected to the patient via currently used practice (for example, the mask 100 as shown). A further opening is in manifold 99 and is connected to an exhaust hose 101. The opposite end of the exhaust hose 101 is mounted on connector 62 of exhaust module 22.
Secondary supply hoses 25 and 28a provide secondary gas to power the nebulizer module 21 and the valve module 22 respectively.
Consequently, when air is being supplied through main supply hose 24 and secondary supply hoses 25 and 28 and the patient inhales, gas will be drawn into manifold nebulizer 20a and transmitted to the patient in the following manner.
Aerosol is produced within nebulizer module 21 in the same manner as in respect to nebulizer 20 and exits from nebulizer module 21 into hose 98. It then passes through manifold 99 and mouthpiece 100 to the patient. When the patient exhales, the valve assembly in exhaust module 22 will be opened in the same manner as in respect to manifold nebulizer 20 and the exhaled gases and other matter will pass through tube 101 into exhaust module 22. It will then pass out of the exhaust module in the same manner as in respect to manifold nebulizer 20.
Thus, the above discussed objectives of the invention are effectively attained.
We claim:
I. A manifold nebulizer system for use in a breathing circuit comprising:
a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
means on the cap portion forming at least one side of said through passageway for removable connection to a main source of gas to facilitate passage of gas through the cap portion;
the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
means forming an opening in the cap and for the cap to be removably connected to a secondary source of gas;
a nozzle depending inwardly of the cap in alignment with the opening in the cap and in fluid communication with the gas from the secondary source passing through the opening in the cap so as to direct the gas at high velocity into the chamber;
a tube in the cap and extending beyond the depending skirt so as to extend into the vial connected with the cap with one open end adjacent to and in fluid communication with the nozzle and the other open end in liquid contained in the vial so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
an exhaust module having a body portion with a through passageway and being removably connectable to the nebulizer module;
an exhaust valve assembly on the body portion including an exhaust opening;
means for removably coupling the part of the exhaust module containing one end opening of the through passageway therein to a patient connection;
adjustable surfaces on the manifold nabulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
the cap portion having a lateral tubular extension extending therefrom and the exhaust module having a lateral receiving tubular portion extending therefrom;
the lateral projection from the cap portion including means b sealingly removably engage with the lat eral extension of the exhaust module and to achieve communication between the passageways through the nebulizer module and the exhaust module;
a post being mounted on one of said lateral projecting portions and extending substantially perpendicular therefrom so that when the modules are interengaged and the post is mounted thereon, the post will provide mounting surfaces for the nebulizer; and
the post containing a series of spaced recesses and the corresponding portion of the module on which the post is to be mounted contains a plurality of spaced corresponding projections and the post rotatably mountable about the corresponding portion of the module so that when the post is mounted with the projections in the corresponding recesses, rotation of the post with respect to at least one of the modules will permit mounting of at least one module in any desired rotation.
2. A manifold nebulizer system for use in a breathing circuit comprising:
a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
means on the cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion;
the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
means forming an opening in the cap adapted to be connected to a secondary source of gas;
a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber;
a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
an exhaust module having a body portion with a through passageway and being removably connectable to the nebulizer module;
an exhaust valve assembly on the body portion including an exhaust opening;
the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection;
adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
at least one bracket projecting from the outer surface of the nebulizer module and at least one bracket extending from the outer surface of the exhaust module;
a post having a pair of locking tongues with each locking tongue removably inserted in the bracket of one of the nebulizer and exhaust modules so as 0 to mount both modules to a common support surface to form a manifold nebulizer unit; and
the post including a projecting arm extending from the base portion containing the tongues with the projecting arm forming a mounting surface for the manifold nebulizer.
3. A manifold nebulizer system for use in a breathing circuit comprising:
a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
means on the cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion;
the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
means forming an opening in the cap adapted to be connected to a secondary source of gas;
a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber;
a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
an exhaust module having a body portion with a through passageway and being removably connected to the nebulizer module;
an exhaust valve assembly on the body portion including an exhaust opening;
the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection;
adjustable surfaces on the manifold nebulizer to per mit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
the vial designed to contain liquid being removably interengaged with the depending skirt of the cap and having said other open end of the tube extending therein;
the vial being transparent and having liquid level gradations on the surface thereof;
the end of the vial remote from the skirt having a bulb-shaped configuration slightly larger than the said other open end of the tube permitting extension of the tube therein to facilitate complete usage of liquid in the vial; and
a rib extending inwardly of the vial from the bottom of the bulb portion thereof said other open end terminating in a rim normal to the longitudinal axis of the tube; said rim engaged with said rib to prevent occlusion thereof during use of the manifold nebulizer.
4. A manifold nebulizer system for use in a breathing circuit comprising:
a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross;
means on the cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion;
the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid;
means forming an opening in the cap adapted to be connected to a secondary source of gas;
a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber;
a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module;
an exaust module having a body portion with a through passageway and being removably connected to the nebulizer module;
an exhaust valve assembly on the body portion including an exhaust opening;
the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection;
adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit;
exhaust passageways in the exhaust module in a prethe rotatable downwardly extending tubular member forming a removable sump mounted on the exhaust module and positioned to facilitate accumulation of condensate and said sump being capable of 360 rotation; and
the sump having an annular rib extending from its upper surface portion and the exhaust module having a corresponding rib for receiving the rib of the sump in removable interengagement to retain the sump in position on the exhaust module while permitting relative rotation therebetween.

Claims (4)

1. A manifold nebulizer system for use in a breathing circuit comprising: a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross; means on the cap portion forming at least one side of said through passageway for removable connection to a main source of gas to facilitate passage of gas through the cap portion; the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid; means forming an opening in the cap and for the cap to be removably connected to a secondary source of gas; a nozzle depending inwardly of the cap in alignment with the opening in the cap and in fluid communication with the gas from the secondary source passing through the opening in the cap so as to direct the gas at high velocity into the chamber; a tube in the cap and extending beyond the depending skirt so as to extend into the vial connected with the cap with one open end adjacent to and in fluid communication with the nozzle and the other open end in liquid contained in the vial so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module; an exhaust module having a body portion with a through passageway and being removably connectable to the nebulizer module; an exhaust valve assembly on the body portion including an exhaust opening; means for removably coupling the part of the exhaust module containing one end opening of the through passageway therein to a patient connection; adjustable surfaces on the manifold nabulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit; the cap portion having a lateral tubular extension extending therefrom and the exhaust module having a lateral receiving tubular portion extending therefrom; the lateral projection from the cap portion including means to sealingly removably engage with the lateral extension of the exhaust module and to achieve communication between the passageways through the nebulizer module and the exhaust module; a post being mounted on one of said lateral projecting portions and extending substantially perpendicular therefrom so that when the modules are interengaged and the post is mounted thereon, the post will provide mounting surfaces for the nebulizer; and the post containing a series of spaced recesses and the corresponding portion of the module on which the post is to be mounted contains a plurality of spaced corresponding projections And the post rotatably mountable about the corresponding portion of the module so that when the post is mounted with the projections in the corresponding recesses, rotation of the post with respect to at least one of the modules will permit mounting of at least one module in any desired rotation.
2. A manifold nebulizer system for use in a breathing circuit comprising: a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross; means on the cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion; the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid; means forming an opening in the cap adapted to be connected to a secondary source of gas; a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber; a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module; an exhaust module having a body portion with a through passageway and being removably connectable to the nebulizer module; an exhaust valve assembly on the body portion including an exhaust opening; the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection; adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit; at least one bracket projecting from the outer surface of the nebulizer module and at least one bracket extending from the outer surface of the exhaust module; a post having a pair of locking tongues with each locking tongue removably inserted in the bracket of one of the nebulizer and exhaust modules so as to mount both modules to a common support surface to form a manifold nebulizer unit; and the post including a projecting arm extending from the base portion containing the tongues with the projecting arm forming a mounting surface for the manifold nebulizer.
3. A manifold nebulizer system for use in a breathing circuit comprising: a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross; means on the cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion; the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid; means forming an opening in the cap adapted to be connected to a secondary source of gas; a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber; a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module; an exhaust module having a body portion with a through passageway and being removably connected to the nebulizer module; an exhaust valve assembly on the body portion including an exhaust opening; the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection; adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of the circuit; the vial designed to contain liquid being removably interengaged with the depending skirt of the cap and having said other open end of the tube extending therein; the vial being transparent and having liquid level gradations on the surface thereof; the end of the vial remote from the skirt having a bulb-shaped configuration slightly larger than the said other open end of the tube permitting extension of the tube therein to facilitate complete usage of liquid in the vial; and a rib extending inwardly of the vial from the bottom of the bulb portion thereof said other open end terminating in a rim normal to the longitudinal axis of the tube; said rim engaged with said rib to prevent occlusion thereof during use of the manifold nebulizer.
4. A manifold nebulizer system for use in a breathing circuit comprising: a nebulizer module including a cap portion having a chamber therein and a through passageway thereacross; means on the cap portion forming at least one side of said through passageway adapted for connection to a main source of gas to facilitate passage of gas through the cap portion; the cap having a depending skirt with means thereon for receiving in sealed relationship a vial designed to contain liquid; means forming an opening in the cap adapted to be connected to a secondary source of gas; a nozzle depending inwardly of the cap in communication with the gas from the secondary source so as to direct the gas at high velocity into the chamber; a tube in the cap and vial with one open end adjacent to and in fluid communication with the nozzle and the other open end in the liquid so that when secondary gas passes from the nozzle it will entrain liquid from the tube and atomize said liquid into the gas stream baffle means in the cap to assist in removing large liquid particles in the chamber and to direct a portion of the primary flow of gas into the cap into communication with the aerosol to provide a homogenized mixture into the main gas flow passageway for discharge from the nebulizer module; an exaust module having a body portion with a through passageway and being removably connected to the nebulizer module; an exhaust valve assembly on the body portion including an exhaust opening; the part of the exhaust module containing one end opening of the through passageway therein adapted to be coupled to a patient connection; adjustable surfaces on the manifold nebulizer to permit relative movement between the modules thereof to thereby facilitate use of the nebulizer in a breathing circuit whereby when the nebulizer is connected to a primary gas source and a patient connection and a patient inhales an aerosol of liquid particles will be inhaled, and when the patient exhales, the valve assembly will open permitting the expired vapors to pass through the exhaust opening and out of tHe circuit; exhaust passageways in the exhaust module in a predetermined arrangement so that exhaust gases are directed from said nebulizer down and away from the patient and when the exhaust module is repositioned about a 360* arc, the exhaust passageways will be similarly repositioned, the exhaust passageways including a rotatable downwardly extending tubular member terminating in a continuous laterally extending tubular member open at its free end so that rotation of the downwardly and laterally extended portion can be accomplished as desired to direct the open free end away from the patient; the rotatable downwardly extending tubular member forming a removable sump mounted on the exhaust module and positioned to facilitate accumulation of condensate and said sump being capable of 360* rotation; and the sump having an annular rib extending from its upper surface portion and the exhaust module having a corresponding rib for receiving the rib of the sump in removable interengagement to retain the sump in position on the exhaust module while permitting relative rotation therebetween.
US388481A 1973-08-15 1973-08-15 Manifold nebulizer system Expired - Lifetime US3903884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US388481A US3903884A (en) 1973-08-15 1973-08-15 Manifold nebulizer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US388481A US3903884A (en) 1973-08-15 1973-08-15 Manifold nebulizer system

Publications (1)

Publication Number Publication Date
US3903884A true US3903884A (en) 1975-09-09

Family

ID=23534291

Family Applications (1)

Application Number Title Priority Date Filing Date
US388481A Expired - Lifetime US3903884A (en) 1973-08-15 1973-08-15 Manifold nebulizer system

Country Status (1)

Country Link
US (1) US3903884A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085231A (en) * 1976-10-08 1978-04-18 W. R. Grace & Co. Container evacuation process
DE2938857A1 (en) * 1978-09-29 1980-04-17 Bard Inc C R SPRAYER
US4243396A (en) * 1979-04-16 1981-01-06 Becton, Dickinson And Company Humidifier separator
US4276876A (en) * 1978-04-18 1981-07-07 Haekkinen Taisto Respirator apparatus
US4294778A (en) * 1978-10-18 1981-10-13 Georgia-Pacific Corporation Evaporative dispenser
US4350647A (en) * 1981-06-19 1982-09-21 Respiratory Care, Inc. Permanent adapter for a medical humidifier
US4541966A (en) * 1983-08-25 1985-09-17 Penlon Limited Gas humidifying apparatus and method
US5062419A (en) * 1991-01-07 1991-11-05 Rider Donald L Nebulizer with valved "T" assembly
EP0653218A1 (en) * 1993-11-15 1995-05-17 PAUL RITZAU PARI-WERK GmbH Atomizer device
US5490630A (en) * 1991-10-29 1996-02-13 Kendall Medizinische Erzeugnisse Gmbh Hand-held aerosol dispenser for therapeutic liquids
WO2001085244A1 (en) * 2000-05-05 2001-11-15 Aerogen (Ireland) Limited Apparatus and methods for the delivery of medicaments to the respiratory system
US6328030B1 (en) * 1999-03-12 2001-12-11 Daniel E. Kidwell Nebulizer for ventilation system
US6412481B1 (en) * 1999-12-23 2002-07-02 Robert Bienvenu Sealed backpressure attachment device for nebulizer
US6510846B1 (en) * 1999-12-23 2003-01-28 O'rourke Sam Sealed back pressure breathing device
US20030140921A1 (en) * 2000-05-05 2003-07-31 Aerogen, Inc. Methods and systems for operating an aerosol generator
US6631721B1 (en) * 1998-11-06 2003-10-14 Salter Labs Nebulizer mouthpiece and accessories
US20040060556A1 (en) * 2002-09-30 2004-04-01 Baby's Breath, Ltd. Downdraft nebulizer
USRE38700E1 (en) 1998-05-14 2005-02-15 Briggs Iii Stephen W Medical nebulization device
US20050150493A1 (en) * 2002-02-21 2005-07-14 Stephen Foster Breathing device
WO2005079898A2 (en) * 2004-02-20 2005-09-01 Weinmann Geräte für Medizin GmbH & Co. KG Modular device for humidifying respiratory air
US6978941B2 (en) 2001-05-02 2005-12-27 Aerogen, Inc. Base isolated nebulizing device and methods
US7032590B2 (en) 2001-03-20 2006-04-25 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US7040549B2 (en) 1991-04-24 2006-05-09 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US7066398B2 (en) 1999-09-09 2006-06-27 Aerogen, Inc. Aperture plate and methods for its construction and use
US20060213507A1 (en) * 2001-12-21 2006-09-28 Trudell Medical International Nebulizer apparatus and method
US20060231090A1 (en) * 2005-04-13 2006-10-19 Russell King Inhalation apparatus
US20060249158A1 (en) * 2005-05-03 2006-11-09 Dhuper Sunil K Aerosol inhalation system and interface accessory for use therewith
US20070023036A1 (en) * 1996-02-13 2007-02-01 Trudell Medical International Nebulizer apparatus and method
US7174888B2 (en) 1995-04-05 2007-02-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US7195011B2 (en) 2001-03-20 2007-03-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US7201167B2 (en) 2004-04-20 2007-04-10 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US20070107719A1 (en) * 2001-03-20 2007-05-17 Trudell Medical International Nebulizer apparatus and method
US20070137644A1 (en) * 2005-05-03 2007-06-21 Dhuper Sunil K Interface accessory for use with an aerosol inhalation system
US20070173099A1 (en) * 2002-06-25 2007-07-26 Resmed Limited Method and apparatus for control of appliance coupler retention and withdrawal forces
US20070209659A1 (en) * 1995-04-05 2007-09-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US7290541B2 (en) 2004-04-20 2007-11-06 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US20080087280A1 (en) * 2005-05-03 2008-04-17 Dhuper Sunil K Interface accessory for use with an aerosol inhalation system
US7360536B2 (en) 2002-01-07 2008-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US20080110451A1 (en) * 2006-11-13 2008-05-15 Dunsmore Thomas J Respiratory Therapy Device and Method
US20080245368A1 (en) * 2007-04-02 2008-10-09 Dunsmore Thomas J High frequency oscillation respiratory therapy
US20090126723A1 (en) * 2007-11-19 2009-05-21 Sunil Kumar Dhuper Patient interface member for use in an aerosol inhalation system
US7600511B2 (en) 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US7628339B2 (en) 1991-04-24 2009-12-08 Novartis Pharma Ag Systems and methods for controlling fluid feed to an aerosol generator
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
US7771642B2 (en) 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US8074642B2 (en) 2002-05-21 2011-12-13 Trudell Medical International Visual indicator for an aerosol medication delivery apparatus and system
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US8459252B2 (en) 2002-05-02 2013-06-11 Pari Innovative Manufacturers, Inc. Aerosol medication inhalation system
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
USRE45068E1 (en) 2000-04-11 2014-08-12 Trudell Medical International Aerosol delivery apparatus
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods
US9289568B2 (en) 2012-01-23 2016-03-22 Aeon Research And Technology, Inc. Gas delivery venturi
US9511202B1 (en) * 2012-12-04 2016-12-06 Mercury Enterprises, Inc. Breathing assistance device with nebulizer
USD848620S1 (en) * 2016-11-28 2019-05-14 Spirosure, Inc. Mouthpiece for a respiratory monitor
US10786638B2 (en) 2016-07-08 2020-09-29 Trudell Medical International Nebulizer apparatus and method
US10850050B2 (en) 2016-05-19 2020-12-01 Trudell Medical International Smart valved holding chamber
USD926308S1 (en) * 2018-05-30 2021-07-27 Medipines Corporation Breathing tube for a respiratory gas exchange monitor
US11351325B2 (en) 2013-01-22 2022-06-07 Fisher & Paykel Healthcare Limited Dual-connector wye piece
US11497867B2 (en) 2016-12-09 2022-11-15 Trudell Medical International Smart nebulizer
US11666801B2 (en) 2018-01-04 2023-06-06 Trudell Medical International Smart oscillating positive expiratory pressure device
US11712175B2 (en) 2019-08-27 2023-08-01 Trudell Medical International Smart oscillating positive expiratory pressure device with feedback indicia
US11839716B2 (en) 2016-07-08 2023-12-12 Trudell Medical International Smart oscillating positive expiratory pressure device
US11964185B2 (en) 2023-04-24 2024-04-23 Trudell Medical International Smart oscillating positive expiratory pressure device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US401502A (en) * 1889-04-16 Eduard krull
US3021840A (en) * 1957-04-17 1962-02-20 Baxter Don Inc Portable anesthesia apparatus
US3172406A (en) * 1962-04-05 1965-03-09 Forrest M Bird Nebulizer
US3191596A (en) * 1960-09-19 1965-06-29 Forrest M Bird Respirator
US3454005A (en) * 1966-09-23 1969-07-08 David H Eubanks Automatic bailing self-sealing water trap and emergency air inlet
US3630196A (en) * 1969-08-22 1971-12-28 Bird F M Manual positive pressure breathing device
US3664337A (en) * 1970-04-15 1972-05-23 Bio Logics Inc Respiration assembly and methods
US3667463A (en) * 1969-11-14 1972-06-06 David L Barnes Method and apparatus for treatment of respiratory disease
US3774602A (en) * 1972-01-03 1973-11-27 American Hospital Supply Corp Ultrasonic nebulizer for inhalation therapy
US3826255A (en) * 1972-06-22 1974-07-30 Hudson Oxygen Therapy Sales Co Intermittent positive pressure breathing manifold

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US401502A (en) * 1889-04-16 Eduard krull
US3021840A (en) * 1957-04-17 1962-02-20 Baxter Don Inc Portable anesthesia apparatus
US3191596A (en) * 1960-09-19 1965-06-29 Forrest M Bird Respirator
US3172406A (en) * 1962-04-05 1965-03-09 Forrest M Bird Nebulizer
US3454005A (en) * 1966-09-23 1969-07-08 David H Eubanks Automatic bailing self-sealing water trap and emergency air inlet
US3630196A (en) * 1969-08-22 1971-12-28 Bird F M Manual positive pressure breathing device
US3667463A (en) * 1969-11-14 1972-06-06 David L Barnes Method and apparatus for treatment of respiratory disease
US3664337A (en) * 1970-04-15 1972-05-23 Bio Logics Inc Respiration assembly and methods
US3774602A (en) * 1972-01-03 1973-11-27 American Hospital Supply Corp Ultrasonic nebulizer for inhalation therapy
US3826255A (en) * 1972-06-22 1974-07-30 Hudson Oxygen Therapy Sales Co Intermittent positive pressure breathing manifold

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085231A (en) * 1976-10-08 1978-04-18 W. R. Grace & Co. Container evacuation process
US4276876A (en) * 1978-04-18 1981-07-07 Haekkinen Taisto Respirator apparatus
DE2938857A1 (en) * 1978-09-29 1980-04-17 Bard Inc C R SPRAYER
DK154398B (en) * 1978-09-29 1988-11-14 Omnishell Inc NURSING APPLIANCE FOR THERAPY OF A PATIENT
US4294778A (en) * 1978-10-18 1981-10-13 Georgia-Pacific Corporation Evaporative dispenser
US4243396A (en) * 1979-04-16 1981-01-06 Becton, Dickinson And Company Humidifier separator
US4350647A (en) * 1981-06-19 1982-09-21 Respiratory Care, Inc. Permanent adapter for a medical humidifier
US4541966A (en) * 1983-08-25 1985-09-17 Penlon Limited Gas humidifying apparatus and method
US5062419A (en) * 1991-01-07 1991-11-05 Rider Donald L Nebulizer with valved "T" assembly
US7628339B2 (en) 1991-04-24 2009-12-08 Novartis Pharma Ag Systems and methods for controlling fluid feed to an aerosol generator
US7040549B2 (en) 1991-04-24 2006-05-09 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US5490630A (en) * 1991-10-29 1996-02-13 Kendall Medizinische Erzeugnisse Gmbh Hand-held aerosol dispenser for therapeutic liquids
EP0653218A1 (en) * 1993-11-15 1995-05-17 PAUL RITZAU PARI-WERK GmbH Atomizer device
US7174888B2 (en) 1995-04-05 2007-02-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US8561604B2 (en) 1995-04-05 2013-10-22 Novartis Ag Liquid dispensing apparatus and methods
US20070209659A1 (en) * 1995-04-05 2007-09-13 Aerogen, Inc. Liquid dispensing apparatus and methods
US7634995B2 (en) 1996-02-13 2009-12-22 Trudell Medical International Nebulizer apparatus and method
US20070023036A1 (en) * 1996-02-13 2007-02-01 Trudell Medical International Nebulizer apparatus and method
US8061352B2 (en) 1996-02-13 2011-11-22 Trudell Medical International Aerosol delivery apparatus and method
USRE38700E1 (en) 1998-05-14 2005-02-15 Briggs Iii Stephen W Medical nebulization device
US6631721B1 (en) * 1998-11-06 2003-10-14 Salter Labs Nebulizer mouthpiece and accessories
US20040040557A1 (en) * 1998-11-06 2004-03-04 Salter Peter W. Nebulizer mouthpiece and accessories
US6904906B2 (en) 1998-11-06 2005-06-14 Salter Labs Nebulizer mouthpiece and accessories
US6328030B1 (en) * 1999-03-12 2001-12-11 Daniel E. Kidwell Nebulizer for ventilation system
US8398001B2 (en) 1999-09-09 2013-03-19 Novartis Ag Aperture plate and methods for its construction and use
US20070023547A1 (en) * 1999-09-09 2007-02-01 Aerogen, Inc. Aperture plate and methods for its construction and use
US7066398B2 (en) 1999-09-09 2006-06-27 Aerogen, Inc. Aperture plate and methods for its construction and use
US6609515B2 (en) 1999-12-23 2003-08-26 Robert Bienvenu Sealed backpressure attachment device for nebulizer
US6510846B1 (en) * 1999-12-23 2003-01-28 O'rourke Sam Sealed back pressure breathing device
US6412481B1 (en) * 1999-12-23 2002-07-02 Robert Bienvenu Sealed backpressure attachment device for nebulizer
USRE45068E1 (en) 2000-04-11 2014-08-12 Trudell Medical International Aerosol delivery apparatus
USRE46050E1 (en) 2000-04-11 2016-07-05 Trudell Medical International Aerosol delivery apparatus
US20030140921A1 (en) * 2000-05-05 2003-07-31 Aerogen, Inc. Methods and systems for operating an aerosol generator
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
WO2001085244A1 (en) * 2000-05-05 2001-11-15 Aerogen (Ireland) Limited Apparatus and methods for the delivery of medicaments to the respiratory system
US7748377B2 (en) 2000-05-05 2010-07-06 Novartis Ag Methods and systems for operating an aerosol generator
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US6615824B2 (en) 2000-05-05 2003-09-09 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US7331339B2 (en) 2000-05-05 2008-02-19 Aerogen, Inc. Methods and systems for operating an aerosol generator
US6968840B2 (en) 2000-05-05 2005-11-29 Aerogen, Inc. Methods and systems for operating an aerosol generator
US7322349B2 (en) * 2000-05-05 2008-01-29 Aerogen, Inc. Apparatus and methods for the delivery of medicaments to the respiratory system
US7195011B2 (en) 2001-03-20 2007-03-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
US20070107719A1 (en) * 2001-03-20 2007-05-17 Trudell Medical International Nebulizer apparatus and method
US7905228B2 (en) 2001-03-20 2011-03-15 Trudell Medical International Nebulizer apparatus and method
US7032590B2 (en) 2001-03-20 2006-04-25 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US9364618B2 (en) 2001-03-20 2016-06-14 Trudell Medical International Nebulizer apparatus and method
US9907918B2 (en) 2001-03-20 2018-03-06 Trudell Medical International Nebulizer apparatus and method
US8196573B2 (en) 2001-03-20 2012-06-12 Novartis Ag Methods and systems for operating an aerosol generator
US6978941B2 (en) 2001-05-02 2005-12-27 Aerogen, Inc. Base isolated nebulizing device and methods
US7104463B2 (en) 2001-05-02 2006-09-12 Aerogen, Inc. Base isolated nebulizing device and methods
US7600511B2 (en) 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US8397712B2 (en) 2001-12-21 2013-03-19 Trudell Medical International Nebulizer apparatus and method
US8844520B2 (en) 2001-12-21 2014-09-30 Trudell Medical International Nebulizer apparatus and method
US7568480B2 (en) * 2001-12-21 2009-08-04 Trudell Medical International Nebulizer apparatus and method
US20060213507A1 (en) * 2001-12-21 2006-09-28 Trudell Medical International Nebulizer apparatus and method
US7559322B2 (en) 2001-12-21 2009-07-14 Trudell Medical International Nebulizer apparatus and method
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
US7360536B2 (en) 2002-01-07 2008-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids for inhalation
US8539944B2 (en) 2002-01-07 2013-09-24 Novartis Ag Devices and methods for nebulizing fluids for inhalation
US20070144517A1 (en) * 2002-02-21 2007-06-28 E.M.E. Limited Breathing device
US20050150493A1 (en) * 2002-02-21 2005-07-14 Stephen Foster Breathing device
US7331344B2 (en) * 2002-02-21 2008-02-19 Electro Medical Equipment Limited Breathing device
US8459252B2 (en) 2002-05-02 2013-06-11 Pari Innovative Manufacturers, Inc. Aerosol medication inhalation system
US9308335B2 (en) 2002-05-02 2016-04-12 Pre Holding, Inc. Aerosol medication inhalation system
US8973571B1 (en) 2002-05-02 2015-03-10 Pre Holding, Inc. Aerosol medication inhalation system
US7771642B2 (en) 2002-05-20 2010-08-10 Novartis Ag Methods of making an apparatus for providing aerosol for medical treatment
US8550067B2 (en) 2002-05-21 2013-10-08 Trudell Medical International Visual indicator for an aerosol medication delivery apparatus and system
US8074642B2 (en) 2002-05-21 2011-12-13 Trudell Medical International Visual indicator for an aerosol medication delivery apparatus and system
US10881816B2 (en) 2002-05-21 2021-01-05 Trudell Medical International Medication delivery apparatus and system and methods for the use and assembly thereof
US9814849B2 (en) 2002-05-21 2017-11-14 Trudell Medical International Medication delivery apparatus and system and methods for the use and assembly thereof
US9700689B2 (en) 2002-05-21 2017-07-11 Trudell Medical International Medication delivery apparatus and system and methods for the use and assembly thereof
US20070173099A1 (en) * 2002-06-25 2007-07-26 Resmed Limited Method and apparatus for control of appliance coupler retention and withdrawal forces
US20040060556A1 (en) * 2002-09-30 2004-04-01 Baby's Breath, Ltd. Downdraft nebulizer
US6883517B2 (en) * 2002-09-30 2005-04-26 Asaf Halamish Downdraft nebulizer
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
WO2005079898A3 (en) * 2004-02-20 2005-11-03 Weinmann G Geraete Med Modular device for humidifying respiratory air
WO2005079898A2 (en) * 2004-02-20 2005-09-01 Weinmann Geräte für Medizin GmbH & Co. KG Modular device for humidifying respiratory air
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US7290541B2 (en) 2004-04-20 2007-11-06 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7201167B2 (en) 2004-04-20 2007-04-10 Aerogen, Inc. Method and composition for the treatment of lung surfactant deficiency or dysfunction
US7267121B2 (en) 2004-04-20 2007-09-11 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US20060231090A1 (en) * 2005-04-13 2006-10-19 Russell King Inhalation apparatus
US7493898B2 (en) * 2005-04-13 2009-02-24 Healthline Medical, Inc. Inhalation apparatus
US20060260607A1 (en) * 2005-05-03 2006-11-23 Dhuper Sunil K Interface accessory for use with an aerosol inhalation system
US7926484B2 (en) * 2005-05-03 2011-04-19 Aeon Research And Technology, Inc. Interface accessory for use with an aerosol inhalation system
US7841342B2 (en) * 2005-05-03 2010-11-30 Aeon Research And Technology, Inc. Interface accessory for use with an aerosol inhalation system
US20070137644A1 (en) * 2005-05-03 2007-06-21 Dhuper Sunil K Interface accessory for use with an aerosol inhalation system
US7445006B2 (en) * 2005-05-03 2008-11-04 Dhuper Sunil K Aerosol inhalation system and interface accessory for use therewith
USRE46210E1 (en) 2005-05-03 2016-11-22 Aeon Research And Technology, Inc. Patient interface member for use in an aerosol inhalation system
US20060249158A1 (en) * 2005-05-03 2006-11-09 Dhuper Sunil K Aerosol inhalation system and interface accessory for use therewith
WO2006119191A3 (en) * 2005-05-03 2007-05-31 Sunil Kumar Dhuper Aerosol inhalation system and interface accessory for use therewith
WO2006119191A2 (en) * 2005-05-03 2006-11-09 Sunil Kumar Dhuper Aerosol inhalation system and interface accessory for use therewith
US7841341B2 (en) 2005-05-03 2010-11-30 Aeon Research And Technology, Inc. Interface accessory for use with an aerosol inhalation system
US20080087280A1 (en) * 2005-05-03 2008-04-17 Dhuper Sunil K Interface accessory for use with an aerosol inhalation system
US9108211B2 (en) 2005-05-25 2015-08-18 Nektar Therapeutics Vibration systems and methods
US8025054B2 (en) 2006-11-13 2011-09-27 Carefusion 2200, Inc. Passive respiratory therapy device
US8534284B2 (en) 2006-11-13 2013-09-17 Carefusion 2200, Inc. Respiratory therapy device
US20100307487A1 (en) * 2006-11-13 2010-12-09 Carefusion 2200, Inc. Respiratory therapy device and method
US7779841B2 (en) 2006-11-13 2010-08-24 Carefusion 2200, Inc. Respiratory therapy device and method
US20080110451A1 (en) * 2006-11-13 2008-05-15 Dunsmore Thomas J Respiratory Therapy Device and Method
WO2008089195A2 (en) * 2007-01-15 2008-07-24 Sunil Kumar Dhuper Interface accessory for use with an aerosol inhalation system
WO2008089195A3 (en) * 2007-01-15 2008-10-16 Sunil Kumar Dhuper Interface accessory for use with an aerosol inhalation system
US8528547B2 (en) 2007-04-02 2013-09-10 Carefusion 2200, Inc. High frequency oscillation respiratory therapy
US20080245368A1 (en) * 2007-04-02 2008-10-09 Dunsmore Thomas J High frequency oscillation respiratory therapy
US20090126723A1 (en) * 2007-11-19 2009-05-21 Sunil Kumar Dhuper Patient interface member for use in an aerosol inhalation system
US8534280B2 (en) 2007-11-19 2013-09-17 Aeon Research and Technolgy Inc. Patient interface member for use in an aerosol inhalation system
US9289568B2 (en) 2012-01-23 2016-03-22 Aeon Research And Technology, Inc. Gas delivery venturi
US9498592B2 (en) 2012-01-23 2016-11-22 Aeon Research And Technology, Inc. Modular pulmonary treatment system
US10052451B2 (en) 2012-01-23 2018-08-21 Aeon Research And Technology, Inc. Gas delivery venturi
US10525228B2 (en) 2012-01-23 2020-01-07 Aeon Research And Technology Modular pulmonary treatment system
US9511202B1 (en) * 2012-12-04 2016-12-06 Mercury Enterprises, Inc. Breathing assistance device with nebulizer
US11351325B2 (en) 2013-01-22 2022-06-07 Fisher & Paykel Healthcare Limited Dual-connector wye piece
US10850050B2 (en) 2016-05-19 2020-12-01 Trudell Medical International Smart valved holding chamber
US10786638B2 (en) 2016-07-08 2020-09-29 Trudell Medical International Nebulizer apparatus and method
US11839716B2 (en) 2016-07-08 2023-12-12 Trudell Medical International Smart oscillating positive expiratory pressure device
USD848620S1 (en) * 2016-11-28 2019-05-14 Spirosure, Inc. Mouthpiece for a respiratory monitor
US11497867B2 (en) 2016-12-09 2022-11-15 Trudell Medical International Smart nebulizer
US11666801B2 (en) 2018-01-04 2023-06-06 Trudell Medical International Smart oscillating positive expiratory pressure device
USD926308S1 (en) * 2018-05-30 2021-07-27 Medipines Corporation Breathing tube for a respiratory gas exchange monitor
US11712175B2 (en) 2019-08-27 2023-08-01 Trudell Medical International Smart oscillating positive expiratory pressure device with feedback indicia
US11964185B2 (en) 2023-04-24 2024-04-23 Trudell Medical International Smart oscillating positive expiratory pressure device

Similar Documents

Publication Publication Date Title
US3903884A (en) Manifold nebulizer system
US3874379A (en) Manifold nebulizer system
US3826255A (en) Intermittent positive pressure breathing manifold
EP1358901B1 (en) Aerosol medication inhalation system
US4805609A (en) Pressurized ventilation system for patients
US4198969A (en) Suction-operated nebulizer
US4770169A (en) Anaesthetic mask
US4253468A (en) Nebulizer attachment
US7201165B2 (en) Medication delivery apparatus and system having a visual indicator
US4320754A (en) Controllable partial rebreathing anesthesia circuit and respiratory assist device
US7261102B2 (en) Breath-enhanced ultrasonic nebulizer and dedicated unit dose ampoule
CA2223423C (en) Breathing circuit apparatus for a nebulizer
US8028697B2 (en) Ventilator circuit and method for the use thereof
KR19990082525A (en) Liquid spray device and its spraying method
US4907581A (en) Radioactive aerosol inhalation apparatus
JPS6336264B2 (en)
CN111214735A (en) Atomizer mist storage tank
US3793810A (en) Defoaming device for medical humidifier
US4741331A (en) Disposable radioactive aerosol inhalation apparatus
CN211675732U (en) Atomizing inhalation device for medical department of children
CN213252174U (en) Special atomizing cup for noninvasive assisted respiration technology
US11583654B1 (en) Multiple port and multiple configurational medical mask
CN212308593U (en) Atomizer mist storage tank
CN211611164U (en) Atomizing device for preventing liquid medicine from being omitted
CN209662363U (en) Multi-purpose atomizer

Legal Events

Date Code Title Description
AS Assignment

Owner name: DART INDUSTRIES, INC., 2211 SANDERS ROAD, NORTHBRO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BECTON, DICKINSON AND COMPANY;REEL/FRAME:004257/0066

Effective date: 19840229

AS Assignment

Owner name: PROFESSIONAL MEDICAL PRODUCTS, INC., 525 NORTH EME

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DART INDUSTRIES INC., A DE CORP;REEL/FRAME:004659/0818

Effective date: 19861027

Owner name: PROFESSIONAL MEDICAL PRODUCTS, INC., A DE CORP,SOU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DART INDUSTRIES INC., A DE CORP;REEL/FRAME:004659/0818

Effective date: 19861027

AS Assignment

Owner name: GENERAL ELECTRIC CREDIT CORPORATION, A CORP. OF N.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PROFESSIONAL MEDICAL PRODUCTS, INC.;REEL/FRAME:004665/0944

Effective date: 19860915

AS Assignment

Owner name: PROFESSIONAL MEDICAL PRODUCTS, INC., SOUTH CAROLIN

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, F/K/A GENERAL ELECTRIC CREDIT CORPORATION;REEL/FRAME:005300/0821

Effective date: 19900328