US3899130A - Atomizer with graduated liquid feed and manufacturing method - Google Patents

Atomizer with graduated liquid feed and manufacturing method Download PDF

Info

Publication number
US3899130A
US3899130A US446909A US44690974A US3899130A US 3899130 A US3899130 A US 3899130A US 446909 A US446909 A US 446909A US 44690974 A US44690974 A US 44690974A US 3899130 A US3899130 A US 3899130A
Authority
US
United States
Prior art keywords
liquid
nozzle
atomizer
inlet
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US446909A
Inventor
Jr Frank S Bell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonic Development Corporation of America
Original Assignee
Sonic Development Corporation of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonic Development Corporation of America filed Critical Sonic Development Corporation of America
Priority to US446909A priority Critical patent/US3899130A/en
Application granted granted Critical
Publication of US3899130A publication Critical patent/US3899130A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0692Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0433Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of gas surrounded by an external conduit of liquid upstream the mixing chamber

Definitions

  • the atomizer has a conduit for distributing liquid from a single supply inlet to a plurality of feed holes spaced apart from one another.
  • the cross-sectional area of the distribution conduit decreases at increasing distances from the inlet, thus promoting even distribution of liquid among the multiple feed holes at both high and low flow rates.
  • the rate of decrease of crosssectional area preferably is made inversely proportional to the viscosity of the liquid.
  • the atomizer utilizes a converging-diverging nozzle with a cavity resonator to generate sonic pressure waves to atomize the liquid.
  • the distribution conduit of decreasing cross-sectional area is formed by using eccentric cylinders, one inside the other, with the cylinders being farthest apart near the liquid inlet, and nearest together 180 from the liquid inlet.
  • the atomizer generates sonic pressure waves by means of a converging-diverging nozzle and a cavity resonator, and uses the pressure waves to atomize a liquid.
  • Liquids are introduced into the high-speed gas stream moving through and issuing from the nozzle, at various positions within or outside of the nozzle.
  • the resonant sonic pressure wave energy atomizes the liquids into minute droplets of a highly uniform size.
  • Such atomizers produce flames of excellent quality over a relatively wide range of fuel flow rates.
  • Such atomizers are shown in US. Pat. Nos. 3,240,253 and 3,240,254.
  • an atomizer liquid feed arrangement in which multiple feed holes are supplied from a single inlet through a conduit whose cross-sectional area decreases with increasing distances from the inlet. This provides even and steady feeding of the liquids at many different flow rates, including both high and low rates.
  • This structure is provided, quite simply, by forming the distribution passageway between two eccentrically aligned cylinders, one within the other. This forms two branch feed paths, each decreasing in cross-sectional area from the inlet.
  • the rate of decrease in crosssectional area be inversely proportional to the viscosity of the. liquid to be atomized by the device.
  • FIG. 1 is a cross-sectional view of the preferred form of a device constructed in accordance with the present invention, the section being taken along line ll of FIG. 2;
  • FIG. 2 is a cross-sectional view taken along line 22 of FIG. 1. converging opposite GENERAL DESCRIPTION
  • the atomizer device 10 shown in FIGS. 1 and 2 includes a housing 12 and a nozzle insert 14 force-fitted into the housing 12. As it is shown in FIG. 1, the nozzle insert 14 forms a central gas flow passageway having a converting portion 20, a cylindrical intermediate portion 22 and a diverging outlet portion 24.
  • a resonator member 16 with a resonator cavity 26 is positioned ooposite the exit opening of the nozzle.
  • the resonator 16 is supported by a pair of support legs 18, only one of which appears in FIG. 1, both support legs being secured to the housing 12.
  • a pressurized gas preferably air
  • the nozzle is believed to accelerate and expand the gas, and to generate pressure waves.
  • the resonator cavity 26 is believed to resonate and amplify the pressure waves, thus producing high-intensity sonic or ultra-sonic pressure waves.
  • a liquid is fed into the gas stream and is atomized by the pressure waves.
  • Liquid is fed into the gas stream by means of a single fluid inlet hole 28 in the housing 12, together with a liquid distribution conduit 30 and a plurality of feed holes 32 in the diverging section 24 of the nozzle.
  • the conduit 30 is a groove of uniform depth.
  • that construction has proved quite satisfactory in many uses, such as in burning relatively viscous fuels, special problems have been experienced when it is desired to atomize and burn low viscosity fuels such as gasoline. It has been found that at very low flow rates, the liquid tends to fiow into the gas stream in pulses or surges. At high flow rates, the liquid tends to flow unevenly through the various feed holes; specifically, feed holes 32 which are from the inlet 28 conduct more liquid than those near the inlet. Both of these phenomena tend to cause undesirable distortions in the atomization and burning of the fuel.
  • the conduit 30 is formed by an eccentric groove in the nozzle insert 14. This forms two eccentric cylinders 36 and 38, one inside of the other. Cylinder 36 is formed by a cylindrical bore in the housing 12, and forms the outer wall of the conduit 30. The inner wall of the conduit 30 is formed by the exterior of the second cylinder 38, that is, by the bottom of the eccentric groove. The eccentric relationship of the two cylinders gives the conduit 30 a decreasing cross-sectional area at points increasing farther from the inlet 28.
  • the cross-sectional area of the conduit 30 is greatest at the point 40 nearest the inlet 28, and is smallest at the point 34, 180 away from point 40, where a throat is formed. As it is indicated in FIG. 2 by arrows in the conduit 30, the liquid flows in both directions and around the cylinder 38. Thus, the flow path has two branches. It is preferred that the inlet 28 be at the lower-most position of the nozzle when it is in use.
  • the volume of liquid in the conduit 30 varies inversely with the distance from the inlet 28. At high flow rates, this tends to reduce the volume of flow through the openings 32 near point 34, while increasing the volume through the holes 32 near the point 40, thus producing a relatively even distribution of fuel among the eight holes 32 and ensuring a uniform symmetrical spray pattern and uniform burning.
  • the feed holes 32 be located symmetrically with respect to one another, with their axes coinciding at the longitudinal axis 42 of the cylindrical bore 36 and the nozzle throat .22. It also is preferred that the holes be spaced symmetrically with respect to the points 40 and 34.
  • the angle A defining the angular separation of the first hole 32 from the vertical center line of FIG. 2 is 22 /2, and the angle between adjacent holes is 45, when eight holes are used as shown. It is preferred to use as many feed holes 32 as possible so as to promote a more uniform spray pattern.
  • the inlet 28 is aligned with the point 40 which is midway between two adjacent holes so as to ensure symmetrical flow paths along both of the two branches of the conduit 30.
  • the feed holes 32 are located fairly close to the start of the diverging section where, as it has been noted above, there is a certain amount of suction which helps draw liquids into the gas stream.
  • the location of the feed holes in or outside of the nozzle can vary considerably depending upon the particular use to which the atomizer is to be put.
  • the dimensions of the sonic generator portion of the atomizer are substantially as described in U.S. Pat. No. 3,758,033 in columns 4 through 6
  • the half-angle of divergence of the nozzle outlet section24 range from approximately 40 to 25, preferably between 7 and 15.
  • the diameter D of the resonator cavity 26 preferably is approximately equal to or slightly less than the flow rate ranges and 3 to 250 gallons per hour, and 20 diameter D*, the throat diameter of the nozzle.
  • the depth L of the resonator cavity 26 preferably is equal to either M2 or AM where A is given approximately by the following equation:
  • the gas can be supplied at a wide range of pressures from values below 1 pound per square inch gauge (p.s.i.g.) to or more p.s.i.g.
  • p.s.i.g. 1 pound per square inch gauge
  • the air pressure differential through the carburetor venturi seldom is greater than 3 or 4 p.s.i.g., and usually is considerably lower. Therefore, it is anticipated that such low pressures will be the most desirable.
  • the pressure at which the liquid issupplied to the inlet 28 can vary considerably from negative values to relatively high positive pressures.
  • the suction in the diverging section usually is enough to draw the liquid into the gas stream without pumping.
  • the fuel can be supplied by an automotive fuel pump through a needle valve close to or within the inlet 28 of the atomizer. The valve controls the liquid flow volume.
  • an atomizer including a nozzle with gas and liquid inlets and a plurality of spaced apart liquid feed passageways for feeding the liquid into the gas, a liquid manifold for distributing liquid from said liquid inlet to said feed passageways, said manifold having a distribution conduit connecting said inlet with said passageways which conduit decreases in cross-sectional area with increasing distance from said liquid inlet.
  • An atomizer as in claim 2 in which said loop has two halves, with each half starting at said inlet and decreasing in cross-sectional area at increasing distances from said inlet until a throat is reached.
  • a sonic pressure wave-actuated atomizer including a converging-diverging gas nozzle and a cavity resonator opposite the exit of said nozzle, a plurality of feed holes spaced around the perimeter of said nozzle and positioned to deliver a liquid into the gas flowing through the nozzle, liquid inlet conduit means, and
  • manifold means forming a distribution conduit of generally circular configuration interconnecting said feed holes with said inlet conduit, said distribution conduit having a cross-sectional area which decreases at increasing distances from said inlet conduit.
  • said manifold means comprises a first member forming a generally cylindrically-shaped outerwall for said conduit, a second member, of generally cylindrical shape and having a diameter smaller than the first cylinder forming said outer wall, said second member being positioned eccentrically within said first cylinder.

Landscapes

  • Nozzles (AREA)

Abstract

The atomizer has a conduit for distributing liquid from a single supply inlet to a plurality of feed holes spaced apart from one another. The cross-sectional area of the distribution conduit decreases at increasing distances from the inlet, thus promoting even distribution of liquid among the multiple feed holes at both high and low flow rates. The rate of decrease of cross-sectional area preferably is made inversely proportional to the viscosity of the liquid. In its preferred form, the atomizer utilizes a converging-diverging nozzle with a cavity resonator to generate sonic pressure waves to atomize the liquid. The distribution conduit of decreasing cross-sectional area is formed by using eccentric cylinders, one inside the other, with the cylinders being farthest apart near the liquid inlet, and nearest together 180* from the liquid inlet.

Description

'United States Patent Bell, Jr.
ATOMIZER WITH GRADUATED LIQUID FEED AND MANUFACTURING METHOD Frank S. Bell, Jr., Tuxedo Park, N.Y.
Inventor:
Assignee: Sonic Development Corporation,
Upper Saddle River, NJ.
Filed: Feb. 28, 1974 Appl. No 446,909
References Cited UNITED STATES PATENTS 2/1952 Andermatt 239/430 X 3/1966 Hughes 239/102 X 8/1966 Denis 239/430 7/1972 Schun'g et al 239/102 X FOREIGN PATENTS OR APPLICATIONS 11/1942 Netherlands 239/424.5
Primary ExaniinerM. Henson Wood, Jr. Assistant ExaminerAndres Kashnikow Attorney, Agent, or Firm-Curtis, Morris & Safford [5 7] ABSTRACT The atomizer has a conduit for distributing liquid from a single supply inlet to a plurality of feed holes spaced apart from one another. The cross-sectional area of the distribution conduit decreases at increasing distances from the inlet, thus promoting even distribution of liquid among the multiple feed holes at both high and low flow rates. The rate of decrease of crosssectional area preferably is made inversely proportional to the viscosity of the liquid. In its preferred form, the atomizer utilizes a converging-diverging nozzle with a cavity resonator to generate sonic pressure waves to atomize the liquid. The distribution conduit of decreasing cross-sectional area is formed by using eccentric cylinders, one inside the other, with the cylinders being farthest apart near the liquid inlet, and nearest together 180 from the liquid inlet.
10 Claims, 2 Drawing Figures ATOMIZER WITH GRADUATED LIQUID FEED AND MANUFACTURING METHOD This invention relates to atomizers and mixers for fluent materials, and particularly to liquid feed systems for such devices.
In a preferred embodiment of the invention disclosed herein, the atomizer generates sonic pressure waves by means of a converging-diverging nozzle and a cavity resonator, and uses the pressure waves to atomize a liquid. Liquids are introduced into the high-speed gas stream moving through and issuing from the nozzle, at various positions within or outside of the nozzle. The resonant sonic pressure wave energy atomizes the liquids into minute droplets of a highly uniform size. When used in burners, such atomizers produce flames of excellent quality over a relatively wide range of fuel flow rates. Such atomizers are shown in US. Pat. Nos. 3,240,253 and 3,240,254. The sonic generators used in those atomizers are shown in US. Pat. Nos. 3,230,923 and 3,230,924. Modified atomizers of the same type are shown in US Pat. Nos. 3,667,525, 3,758,033 and 3,774,846. Each of the above-identified patents is assigned to the assignee of this patent application, and its disclosure hereby is incorporated herein by reference.
Although atomizers and burners constructed in accordance with the above-identified patents are superior to other prior devices and are highly satisfactory for most purposes, a problem has been found in the feeding of liquids, especially low-viscosity liquids such as gasoline, etc., into the atomizers. As it will be explained in greater detail below, at relatively high and relatively low flow rates, the feeding of such liquids sometimes has been uneven. Therefore, it is an object of the present invention to improve upon such atomizers, burners, etc., and upon all atomizers in which similar problems exist, by improving the feeding of liquids into the atomizers so as to make the liquid flow more uniform and to make the spray pattern more symmetrical, at both low and high liquid flow rates. It is a further object to provide such improvements relatively simply and at a relatively low cost.
In accordance with the present invention, the foregoing objects are met by the provision of an atomizer liquid feed arrangement in which multiple feed holes are supplied from a single inlet through a conduit whose cross-sectional area decreases with increasing distances from the inlet. This provides even and steady feeding of the liquids at many different flow rates, including both high and low rates. This structure is provided, quite simply, by forming the distribution passageway between two eccentrically aligned cylinders, one within the other. This forms two branch feed paths, each decreasing in cross-sectional area from the inlet. In manufacturing the device, it is preferred that the rate of decrease in crosssectional area be inversely proportional to the viscosity of the. liquid to be atomized by the device.
Further objects, aspects and advantages of the present invention will be set forth in and apparent from the following description and drawings:
In the drawings:
FIG. 1 is a cross-sectional view of the preferred form of a device constructed in accordance with the present invention, the section being taken along line ll of FIG. 2; and
FIG. 2 is a cross-sectional view taken along line 22 of FIG. 1. converging opposite GENERAL DESCRIPTION The atomizer device 10 shown in FIGS. 1 and 2 includes a housing 12 and a nozzle insert 14 force-fitted into the housing 12. As it is shown in FIG. 1, the nozzle insert 14 forms a central gas flow passageway having a converting portion 20, a cylindrical intermediate portion 22 and a diverging outlet portion 24. A resonator member 16 with a resonator cavity 26 is positioned ooposite the exit opening of the nozzle. The resonator 16 is supported by a pair of support legs 18, only one of which appears in FIG. 1, both support legs being secured to the housing 12.
As it is described in greater detail in the abovementioned U.S. patents, a pressurized gas, preferably air, is introduced into the converging section 20 of the nozzle, and the nozzle is believed to accelerate and expand the gas, and to generate pressure waves. The resonator cavity 26 is believed to resonate and amplify the pressure waves, thus producing high-intensity sonic or ultra-sonic pressure waves. A liquid is fed into the gas stream and is atomized by the pressure waves.
Liquid is fed into the gas stream by means of a single fluid inlet hole 28 in the housing 12, together with a liquid distribution conduit 30 and a plurality of feed holes 32 in the diverging section 24 of the nozzle.
In some prior nozzles, the conduit 30 is a groove of uniform depth. Although that construction has proved quite satisfactory in many uses, such as in burning relatively viscous fuels, special problems have been experienced when it is desired to atomize and burn low viscosity fuels such as gasoline. It has been found that at very low flow rates, the liquid tends to fiow into the gas stream in pulses or surges. At high flow rates, the liquid tends to flow unevenly through the various feed holes; specifically, feed holes 32 which are from the inlet 28 conduct more liquid than those near the inlet. Both of these phenomena tend to cause undesirable distortions in the atomization and burning of the fuel.
In accordance with the present invention, the foregoing problems have been solved neatly and simply in the manner best illustrated in FIG. 2 of the drawings. The conduit 30 is formed by an eccentric groove in the nozzle insert 14. This forms two eccentric cylinders 36 and 38, one inside of the other. Cylinder 36 is formed by a cylindrical bore in the housing 12, and forms the outer wall of the conduit 30. The inner wall of the conduit 30 is formed by the exterior of the second cylinder 38, that is, by the bottom of the eccentric groove. The eccentric relationship of the two cylinders gives the conduit 30 a decreasing cross-sectional area at points increasing farther from the inlet 28. The cross-sectional area of the conduit 30 is greatest at the point 40 nearest the inlet 28, and is smallest at the point 34, 180 away from point 40, where a throat is formed. As it is indicated in FIG. 2 by arrows in the conduit 30, the liquid flows in both directions and around the cylinder 38. Thus, the flow path has two branches. It is preferred that the inlet 28 be at the lower-most position of the nozzle when it is in use.
With high liquid flow rates in the prior arrangement in which the two cylinders 36 and 38 were concentric, it is believed that low viscosity fuel such as gasoline would tend to rush past the openings 32 nearest the inlet 28, with the result that relatively little fuel would 3 flow through those holes. However, when the two streams met at the point 34, the liquid stopped. The result was that more fuel would be fed through the holes near point 34 than those near point 40. The result of this was an uneven distribution of the fuel to the gas flowing through the nozzle, and an asymmetrical spray pattern,;with resulting inefficiencies and undesirable burningipatterns.
At low liquid flow rates in the prior concentric cylinder arrangement, since the holes 32 exit into the di verging portion of the nozzle where a negative pressure exists, liquid tended to be drawn through the feed holes 32. The result, it is believed, was that fuel would be drawn out of the inlet opening 28 before it had a chance to accumulate in any great quantity, would be dispersed through the holes 32, and there would be no further fuel feeding for a time until more fuel accumulated. The result of this was a pulsation of the fuel feeding which led to an uneven atomization pattern, uneven burning of the fuel, etc.
It is believed that the eccentric cylinder arrangement shown in FIG. 2 solved these problems in the following way. The volume of liquid in the conduit 30 varies inversely with the distance from the inlet 28. At high flow rates, this tends to reduce the volume of flow through the openings 32 near point 34, while increasing the volume through the holes 32 near the point 40, thus producing a relatively even distribution of fuel among the eight holes 32 and ensuring a uniform symmetrical spray pattern and uniform burning.
At low flow rates, for some reason which is not fully understood at the present time, the pulsations in the liquid feed have been completely or almost completely eliminated. Thus, the spray pattern is steady, even at low flow rates.
DETAILED DESCRIPTION .Still referring to FIG. 2, it is preferred that the feed holes 32 be located symmetrically with respect to one another, with their axes coinciding at the longitudinal axis 42 of the cylindrical bore 36 and the nozzle throat .22. It also is preferred that the holes be spaced symmetrically with respect to the points 40 and 34. Thus, the angle A defining the angular separation of the first hole 32 from the vertical center line of FIG. 2 is 22 /2, and the angle between adjacent holes is 45, when eight holes are used as shown. It is preferred to use as many feed holes 32 as possible so as to promote a more uniform spray pattern. The inlet 28 is aligned with the point 40 which is midway between two adjacent holes so as to ensure symmetrical flow paths along both of the two branches of the conduit 30.
It is preferred that full advantage be taken of the ability of the sonic-actuated atomizer to operate with a high turn down ratio; that is, with a large ratio between the maximum flow rate and minimum flow rate of liquid atomized by the device. In a device which has been built and successfully tested, the tum-down ratio was around 100 to l; a minimum of A gallon per hour to a maximum of 18 gallons per hour. Other typical at points successively further away from the inlet 28 is made to vary inversely with the viscosity of the fluid to be atomized. Apparently, the problems described above are related to the speeds reached or ease of movement by the fluids in the conduit 30. Therefore, less change in volume of the conduit 30 is needed to produce the desired effect when higher viscosity liquids are used.
The principle used in designing the specific arrangement shown in FIG. 2, which is intended for use with gasoline, a low viscosity fuel, was that the volume of fluid immediately outside of the last hole 32 in each of the two flow path branches should be approximately one-fourth of the volume outside the first hole 32 in each of those branches. Thus, the distance F between the point and the inlet 28 is approximately four times the distance'G between the inner cylinder 38 and outer cylinder 36 at point 34. The eccentricity E of cylinder 40 with respect to cylinder 36 is selected so as to produce the desired amount of volume change.
Referring again to FIG. 1, the feed holes 32 are located fairly close to the start of the diverging section where, as it has been noted above, there is a certain amount of suction which helps draw liquids into the gas stream. However, the location of the feed holes in or outside of the nozzle can vary considerably depending upon the particular use to which the atomizer is to be put.
The dimensions of the sonic generator portion of the atomizer are substantially as described in U.S. Pat. No. 3,758,033 in columns 4 through 6 In particular, it is preferred that the half-angle of divergence of the nozzle outlet section24 range from approximately 40 to 25, preferably between 7 and 15.
The diameter D of the resonator cavity 26 preferably is approximately equal to or slightly less than the flow rate ranges and 3 to 250 gallons per hour, and 20 diameter D*, the throat diameter of the nozzle. The depth L of the resonator cavity 26 preferably is equal to either M2 or AM where A is given approximately by the following equation:
A 1.307 D* M l in which M E is the Mach number of the gas flowing at the exit of the diverging section 24 of the nozzle, and D* is the nozzle throat diameter.
The gas can be supplied at a wide range of pressures from values below 1 pound per square inch gauge (p.s.i.g.) to or more p.s.i.g. However, in automotive applications, the air pressure differential through the carburetor venturi seldom is greater than 3 or 4 p.s.i.g., and usually is considerably lower. Therefore, it is anticipated that such low pressures will be the most desirable.
The pressure at which the liquid issupplied to the inlet 28 can vary considerably from negative values to relatively high positive pressures. The suction in the diverging section usually is enough to draw the liquid into the gas stream without pumping. In use in an automotive engine, the fuel can be supplied by an automotive fuel pump through a needle valve close to or within the inlet 28 of the atomizer. The valve controls the liquid flow volume.
For other details of the sonic pressure wave generator and nozzle, reference should be had to the above-.
identified prior patents.
The dimensions of the parts of the device in the drawings are drawn to scale relative to one another and are taken from an atomizer which has been built and successfully tested. Therefore, the relative dimensions of the parts are to be considered as part of the invention disclosure herein.
The above description of the invention is intended to be illustrative and not limiting. Various changes or modifications in the embodiments described may occur to those skilled in the art and these can be made without departing from the spirit or scope of the invention.
1 claim:
1. In an atomizer including a nozzle with gas and liquid inlets and a plurality of spaced apart liquid feed passageways for feeding the liquid into the gas, a liquid manifold for distributing liquid from said liquid inlet to said feed passageways, said manifold having a distribution conduit connecting said inlet with said passageways which conduit decreases in cross-sectional area with increasing distance from said liquid inlet.
2. An atomizer as in claim 1 in which said feed passageways are spaced around the perimeter of said nozzle, and said distribution conduit is loop-shaped.
3. An atomizer as in claim 2 in which said loop has two halves, with each half starting at said inlet and decreasing in cross-sectional area at increasing distances from said inlet until a throat is reached.
4. An atomizer as in claim 1 in which the rate of decrease in said cross-sectional area is inversely proportional to the viscosity of the liquid to be supplied to said liquid inlet.
5. A sonic pressure wave-actuated atomizer including a converging-diverging gas nozzle and a cavity resonator opposite the exit of said nozzle, a plurality of feed holes spaced around the perimeter of said nozzle and positioned to deliver a liquid into the gas flowing through the nozzle, liquid inlet conduit means, and
manifold means forming a distribution conduit of generally circular configuration interconnecting said feed holes with said inlet conduit, said distribution conduit having a cross-sectional area which decreases at increasing distances from said inlet conduit.
6. An atomizer as in claim 5 in which said manifold means comprises a first member forming a generally cylindrically-shaped outerwall for said conduit, a second member, of generally cylindrical shape and having a diameter smaller than the first cylinder forming said outer wall, said second member being positioned eccentrically within said first cylinder.
7. An atomizer as in claim 6 in which said second member has a central gas flow passageway through it forming a portion of said nozzle, and said feed holes extend from the outside wall into said gas flow passageway.
8. An atomizer as in claim 5 in which said feed holes exit into the diverging portion of said nozzle.
9. An atomizer as in claim 5 in which said nozzle has a throat of constant diameter, and the diameter of said cavity is approximately the same as the throat diameter.
10. An atomizer as in claim 5 in which the diverging portion of said nozzle has a half-angle of divergence of between 4 and 25, preferably between 7 and 15, said cavity has a depth of approximately M2 or M4, where:
D*, and said feed holes exit into said diverging section.

Claims (10)

1. In an atomizer including a nozzle with gas and liquid inlets and a plurality of spaced apart liquid feed passageways for feeding the liquid into the gas, a liquid manifold for distributing liquid frOm said liquid inlet to said feed passageways, said manifold having a distribution conduit connecting said inlet with said passageways which conduit decreases in cross-sectional area with increasing distance from said liquid inlet.
2. An atomizer as in claim 1 in which said feed passageways are spaced around the perimeter of said nozzle, and said distribution conduit is loop-shaped.
3. An atomizer as in claim 2 in which said loop has two halves, with each half starting at said inlet and decreasing in cross-sectional area at increasing distances from said inlet until a throat is reached.
4. An atomizer as in claim 1 in which the rate of decrease in said cross-sectional area is inversely proportional to the viscosity of the liquid to be supplied to said liquid inlet.
5. A sonic pressure wave-actuated atomizer including a converging-diverging gas nozzle and a cavity resonator opposite the exit of said nozzle, a plurality of feed holes spaced around the perimeter of said nozzle and positioned to deliver a liquid into the gas flowing through the nozzle, liquid inlet conduit means, and manifold means forming a distribution conduit of generally circular configuration interconnecting said feed holes with said inlet conduit, said distribution conduit having a cross-sectional area which decreases at increasing distances from said inlet conduit.
6. An atomizer as in claim 5 in which said manifold means comprises a first member forming a generally cylindrically-shaped outer wall for said conduit, a second member, of generally cylindrical shape and having a diameter smaller than the first cylinder forming said outer wall, said second member being positioned eccentrically within said first cylinder.
7. An atomizer as in claim 6 in which said second member has a central gas flow passageway through it forming a portion of said nozzle, and said feed holes extend from the outside wall into said gas flow passageway.
8. An atomizer as in claim 5 in which said feed holes exit into the diverging portion of said nozzle.
9. An atomizer as in claim 5 in which said nozzle has a throat of constant diameter, and the diameter of said cavity is approximately the same as the throat diameter.
10. An atomizer as in claim 5 in which the diverging portion of said nozzle has a half-angle of divergence of between 4* and 25*, preferably between 7* and 15*, said cavity has a depth of approximately lambda /2 or lambda /4, where: lambda 1.307 D* Square Root ME2 - 1, in which ME is the Mach number of the gas flowing at the exit of the diverging section of the nozzle, with only gas flow through the nozzle, and D* is the nozzle throat diameter, the cavity diameter is approximately equal to D*, and said feed holes exit into said diverging section.
US446909A 1974-02-28 1974-02-28 Atomizer with graduated liquid feed and manufacturing method Expired - Lifetime US3899130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US446909A US3899130A (en) 1974-02-28 1974-02-28 Atomizer with graduated liquid feed and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US446909A US3899130A (en) 1974-02-28 1974-02-28 Atomizer with graduated liquid feed and manufacturing method

Publications (1)

Publication Number Publication Date
US3899130A true US3899130A (en) 1975-08-12

Family

ID=23774287

Family Applications (1)

Application Number Title Priority Date Filing Date
US446909A Expired - Lifetime US3899130A (en) 1974-02-28 1974-02-28 Atomizer with graduated liquid feed and manufacturing method

Country Status (1)

Country Link
US (1) US3899130A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004736A (en) * 1976-06-01 1977-01-25 The Boeing Company Ultrasonic water jet
FR2481782A1 (en) * 1980-05-05 1981-11-06 Wanson Constr Mat Therm LIQUID SPRAY NOZZLE, PARTICULARLY FOR SPRAYING LIQUID EFFLUENTS TO BE BURNED
US4378088A (en) * 1979-06-25 1983-03-29 Ewing James W Liquid atomizing method and apparatus
US4397050A (en) * 1981-02-02 1983-08-09 Davis Clifford E S Quick shower or power shower
EP0234077A1 (en) * 1986-02-25 1987-09-02 Council of Scientific and Industrial Research Improved burner for furnaces employing acoustic energy
FR2662376A1 (en) * 1990-05-25 1991-11-29 Chartrey Jean Luc Sound-wave air-jet atomiser (fine-mist device)
US5810260A (en) * 1994-02-25 1998-09-22 Flow Research Evaluation Diagnostics Limited Liquid distributors
TWI380854B (en) * 2003-09-12 2013-01-01 Gloster Sante Europ Spray nozzle and apparatus and method for spraying a liquid into the atmosphere
WO2013019952A1 (en) * 2011-08-03 2013-02-07 Spraying Systems Co. Pressurized air assisted spray nozzle assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2587083A (en) * 1945-03-17 1952-02-26 Luwa S A Apparatus for atomizing fluids
US3240254A (en) * 1963-12-23 1966-03-15 Sonic Dev Corp Compressible fluid sonic pressure wave apparatus and method
US3266552A (en) * 1959-02-21 1966-08-16 Siderurgie Fse Inst Rech Burner for producing a stable flame with a high concentration of heat stabilized by a shock wave
US3677525A (en) * 1969-12-31 1972-07-18 Sonic Dev Corp Pressure wave atomizing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2587083A (en) * 1945-03-17 1952-02-26 Luwa S A Apparatus for atomizing fluids
US3266552A (en) * 1959-02-21 1966-08-16 Siderurgie Fse Inst Rech Burner for producing a stable flame with a high concentration of heat stabilized by a shock wave
US3240254A (en) * 1963-12-23 1966-03-15 Sonic Dev Corp Compressible fluid sonic pressure wave apparatus and method
US3677525A (en) * 1969-12-31 1972-07-18 Sonic Dev Corp Pressure wave atomizing apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004736A (en) * 1976-06-01 1977-01-25 The Boeing Company Ultrasonic water jet
US4378088A (en) * 1979-06-25 1983-03-29 Ewing James W Liquid atomizing method and apparatus
FR2481782A1 (en) * 1980-05-05 1981-11-06 Wanson Constr Mat Therm LIQUID SPRAY NOZZLE, PARTICULARLY FOR SPRAYING LIQUID EFFLUENTS TO BE BURNED
US4397050A (en) * 1981-02-02 1983-08-09 Davis Clifford E S Quick shower or power shower
EP0234077A1 (en) * 1986-02-25 1987-09-02 Council of Scientific and Industrial Research Improved burner for furnaces employing acoustic energy
WO1991018680A1 (en) * 1990-05-25 1991-12-12 Chartrey Jean Luc Sonic wave air jet atomizer
FR2662376A1 (en) * 1990-05-25 1991-11-29 Chartrey Jean Luc Sound-wave air-jet atomiser (fine-mist device)
US5810260A (en) * 1994-02-25 1998-09-22 Flow Research Evaluation Diagnostics Limited Liquid distributors
US5941460A (en) * 1994-02-25 1999-08-24 Flow Research Evaluation Diagnostics Limited Liquid distributors
TWI380854B (en) * 2003-09-12 2013-01-01 Gloster Sante Europ Spray nozzle and apparatus and method for spraying a liquid into the atmosphere
WO2013019952A1 (en) * 2011-08-03 2013-02-07 Spraying Systems Co. Pressurized air assisted spray nozzle assembly
US8820663B2 (en) 2011-08-03 2014-09-02 Spraying Systems Co. Pressurized air assisted spray nozzle assembly
CN103842094B (en) * 2011-08-03 2016-04-06 喷雾系统公司 Compressed air assisting nozzle

Similar Documents

Publication Publication Date Title
US3774846A (en) Pressure wave atomizing apparatus
CN109909086B (en) Gas-liquid two-phase flow atomizing nozzle and design method thereof
US4726522A (en) Vibrating element for ultrasonic atomization having curved multi-stepped edged portion
US4756478A (en) Vibrating element for use on an ultrasonic injection nozzle
US4733820A (en) Vibrating element for use on an ultrasonic injection nozzle
US3474970A (en) Air assist nozzle
US4415275A (en) Swirl mixing device
US4041984A (en) Jet-driven helmholtz fluid oscillator
US3945574A (en) Dual orifice spray nozzle using two swirl chambers
US4742810A (en) Ultrasonic atomizer system
US3899130A (en) Atomizer with graduated liquid feed and manufacturing method
US4708293A (en) Atomizer for viscous liquid fuels
CN108348933B (en) Nozzle and method of mixing fluid streams
US3371869A (en) Compressible fluid sonic pressure wave atomizing apparatus
US4893754A (en) Generation of flat liquid sheet and sprays by means of simple cylindrical orifices
JPS61259782A (en) Vibrator for ultrasonic atomization having multistage edge part
EP0202100A1 (en) Vibrating element for ultrasonic atomization
US3677525A (en) Pressure wave atomizing apparatus
US3758033A (en) Pressure wave atomizing method
US4189101A (en) Stable vortex generating device
JPS6148987B2 (en)
US3731877A (en) Apparatus for generating sonic and ultra-sonic vibrations in fluids
US20100327081A1 (en) Low pressure air-blast atomizer
US3531048A (en) Supersonic streaming
EP0128805A2 (en) Twin fluid atomizer