US3898880A - Electronic supervisory monitoring method for drilling wells - Google Patents

Electronic supervisory monitoring method for drilling wells Download PDF

Info

Publication number
US3898880A
US3898880A US488364A US48836474A US3898880A US 3898880 A US3898880 A US 3898880A US 488364 A US488364 A US 488364A US 48836474 A US48836474 A US 48836474A US 3898880 A US3898880 A US 3898880A
Authority
US
United States
Prior art keywords
rotary motor
drill bit
computer
log
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US488364A
Inventor
Ray M Kelseaux
Harold J Dobbs
Frank D Priehe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cities Service Oil Co
Original Assignee
Cities Service Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cities Service Oil Co filed Critical Cities Service Oil Co
Priority to US488364A priority Critical patent/US3898880A/en
Application granted granted Critical
Publication of US3898880A publication Critical patent/US3898880A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B45/00Measuring the drilling time or rate of penetration

Definitions

  • This invention relates to a method for supervisory control during the drilling of wells. More particularly, the method of the present invention is an electronic supervisory control system for monitoring various drilling variables and through electronic manipulation of these variables obtaining useful information for the control and observation of the drilling operation.
  • the pene tration rate of the drill bit is applied over shale sections, to determine the rate of change in penetration rate as the drill bit enters the top of a geopressured shale.
  • the top of the geopressure section is detected by locating the depth at which the rate of change in the rate of penetration distinctly changes. Therefore, through the teaching of Jordon and a determination of the penetration rate, one finds a tool for determining the exact location and depth of the geopressured shale sections so that mud weights and drilling variables may be changed to anticipate well blowouts.
  • None of the disclosed prior art have shown a system and a method for the supervisory control of the entire drilling operation where it is particularly advantageous at all times to realize the lithology of the formations being penetrated by a drill bit, and to particularly understand and control the drilling operation through a knowledge of the lithology being penetrated. What is required is a method for determining in any time period during a drilling operation that lithology which is being encountered by the drill bit or will be encountered a considerable distance ahead of the drill bit. In conjunction with the method are means for monitoring and controlling the drilling variables in order that hazardous conditions may be avoided along with the curtailment of blowouts and other catastrophies.
  • the objects of the present invention may be'accomplished through an electronic supervisory control system for monitoring and recording of a drilling operation.
  • the electronic supervisory control system comprises computer means for computing, means for sensing the rotary motor power, means for sensing the rotary motor speed, means for sensing the weight on the drill bit, and means for sensing the penetration rate of the drill bit.
  • the means for sensing the weight on the drill bit and the means for sensingthe penetration rate of the drill bit are utilized in combination with a determination of the drilled hole size and mud weight ratios to compute a corrected d exponent.
  • the means for sensing the rotary motor power and the means for sensing the rotary motor speed are utilized to compute a rotary motor torque.
  • the computed d exponent, rotary motor torque and rate of penetration are simultaneously plotted on an electronic recorder as a function of actual drilled depth.
  • the electronic supervisory control system of of the present invention may further comprise a bit time integrator for recording operational drilling time utilized in conjunction with the sensor data recording.
  • Other preferred embodiments of the present invention also comprise the combination of the rotary motor power electrical signal with an electrical signal from the bit time integrator to produce a bit wear and exposure electrical signal, and the combination of the rotary motor'power electrical signal with the rate of penetration electrical signal to produce an energy expended per depth interval electrical signal.
  • the bit wear and exposure electrical signal and energy expended for depth electrical signal may also be plotted on an electronic recorder to give exacting monitoring of the drilling operation and allow for the supervisory control thereof.
  • the method for monitoring and recording of a drilling operation wherein a drill string having a kelly and a drill bit is turned by means of a rotary motor comprises inputting a drilled hole size and a mud weight ratio into a computer means for computing, and sensing each of the rotary motor power, the rotary motor speed, the weight on the drill bit and the penetration of the drill bit and feeding the sensed value of each into the computer means as an electrical signal.
  • the method additionally includes computing by the computer means a corrected d exponent from the weight on the drill bit, the penetration rate of the drill bit, the drilled hole size, and the mud weight ratio based upon the signaled value of each as fed into the computer means,
  • FIG. 1 schematically illustrates the preferred embodiment of the supervisory control system of the present invention with various sensors utilized and the recorded output provided;
  • FIGS. 21: and 2h represent an electronic schematic of one embodiment of the analog computer utilized in the present invention in order to compute a corrected d exponent for monitoring and supervisory control of the drilling operation;
  • FIG. 3 represents an analog schematic of one embodiment of an analog computer circuit utilized in order to compute the torque of the rotary table and drill string utilized for recordation in the supervisory control system of the present invention
  • FIG. 4 represents an electronic schematic of one embodiment of a power supply utilized in the supervisory control system of the present invention.
  • the present invention may be most easily understood by referral to the FIG. I in which the electronic supervisory control system of the present invention is depicted in a schematic representation. It can be readily seen that the supervisory control system consists of the sensing of various drilling variables of the drilling oper ation. comprising in particular rotary power. rotary speed. weight on drill bit and drill string. drill hole size. and penetration rate in conjunction with a mud weight ratio.
  • the computer means for computing is preferably an analog computer.
  • the means for sensing the rotary motor power is electrically connected to the computer means and may comprise a rotary motor power sensor mounted upon the shaft of the rotary motor in conjunction with means for converting the rotary motion of the shaft measured by the rotary motor power sensor to an electrical signal and electrical circuit means to transmit the electrical signal from the rotary motor power sensor to the other portions of the electronic supervisory control system.
  • the means for sensing the rotary motor power may comprise an electrical rotary motor power sensor connected to the power line of the rotary motor in conjunction with an electrical circuit means to transmit an electrical signal from the electrical rotary motor power sensor.
  • the means for sensing the rotary motor speed is electrically connected to the computer means and may comprise an electrical rotation sensor connected to the drill string or kelly of the drilling rig and an electrical circuit means to transmit an electrical sig nal from the electrical rotation sensor to other portions of the electronic supervisory control system.
  • the means for sensing the weight on the drill bit is electrically connected to the computer means and may comprise an electrical powered drill bit and drill string weight sensor and electrical circuit means to transmit an electrical signal from the electrical drill bit and drill string weight sensor.
  • the drill bit and drill string weight sensor may comprise a tension spring connected from the kelly to the drill string. having responsive electrical stops thereupon to convert the flexing of the mechanical spring into an electrical signal which is transmitted to the electronic supervisory control system.
  • the means for sensing the penetration .rate of the drill bit is electrically connected to the computer means and may comprise an electrical rotation sensor connected to the rotary table and an electrical depth sensor connected to the drill string, to measure vertical movement of the drill string, with means for integrating the electrical signals from the electrical rotary table rotation sensor and electrical depth sensor to produce a rate of penetration electrical signal.
  • An electrical circuit means is provided to transmit the rate of penetration electrical signal to the electronic supervisory control system.
  • Means are provided for inputting a drilled hole size into the computer means.
  • the drilled hole size may be manually measured and fed through a potentiometric electronic indicator into the supervisory control system. or it may actually be measured through electronic sensors contained within the drill bit or drill string with appropriate electronic potentiometric circuit means to transmit the electrical signal from the sensors to the supervisory control system.
  • Means are also provided for inputting a mud weight ratio into the computer means. The mud weight ratio may be measured by the electronic measurement of mut pit sensors showing the change in mud weight-in versus mud weight-out of the wellbore or in a preferred embodiment.
  • the normal gradient for the mud density in the geographical area of the well being drilled may be utilized in conjunction with the returned mud weight in order to derive the mud weight ratio utilized in combination with the potcntiometric signal of the weight on the bit. the predetermined hole size. and the electrical signal of penetration rate in order to compute a (I exponent value.
  • Means for recording is electrically connected to the computer means for recording computed values and penetration rate, and is preferably a depth driven electronic recorder.
  • the method for monitoring and recording of the drilling operation initially provides for inputting the drilled hole size and the mud weight ratio into a computer. Subsequently. the rotary motor power. the rotary motor speed, the weight on the drill bit, and the penetration rate of the drill bit are sensed and fed to the computer as electrical signals. The method further calls for the computer to compute a corrected :1 exponent from the weight on the drill bit. the penetration rate of the drill bit. the drilled hole size, and the mud weight ratio based upon the signaled value of each as it is fed to the computer. Simultaneously, the computer computes a rotary motor torque from the signal values of the rotary motor speed and the rotary motor power as they are fed into the computer. The final step for monitoring and recording of the drilling operation is the feeding of the corrected d exponent and the rotary motor torque from the computer into means for recording where each is recorded along with the rate of penetration of the bit.
  • the various components of rotary power. rotary speed. weight on the drill bit. hole size. and penetration rate are intro- .dueed into a buffer system of the supervisory control system.
  • the amplifiers are depicted in FIG. 1 as rotary power-buffer amplifier 101.
  • the amplifiers are utilized to convert the electrical signals to those signals required for the computation of the various drilling indicators. These drilling indicators are computed within an analog computer 106 in which the wherein R rate of penetration, feet per hour N rotary speed. revolutions per minute W weight on drill bit.
  • the numerator computed portion of the d exponent is calculated by taking the natural logarithm of the penetration rate divided by the rotary speed times 60 (in order to convert to hours).
  • the denominator computed portion of the d exponent is calculated by taking the natural logarithm of 12 times the weight on the drill bit and drill string divided by l times the hole size (in order to reduce to feet). Dividing the numerator computed portion by the denominator computed portion produces an electrical signal for the d exponent, which is transmitted through electrical circuit 108. A penetration rate signal is produced through electrical circuit 109.
  • the computed torque signal is fed to a driver gain amplifier 110 through electrical circuit 107 to transmit an appropriate electrical signal through electrical circuit 111 to be received by the recorder I12 and plotted on a strip chart 113.
  • the display of this signal is indicative of various operations. shown on the synthetic trace. such as a pipe jointing operation and washing operation.
  • the computed (I exponent signal produced through circuit 108 is fed to gain amplifier 115 which works through a potentiometer 114 having the mud weight ratio programmed therein to form a system which yields a corrected :1 exponent signal which is subsequently fed through electric circuit means 116 to the recorder 112 in order to he recorded on the strip chart 113.
  • the rate of penetration signal is also fed through electrical circuit 109 to gain amplifier 117 to transmit an appropriate electrical signal through electrical circuit 118 to be recorded on the strip chart 113 by the recorder 112.
  • a continuous monitoring of rate of penetration. 11 exponent. and rotary torque is given for the drilling operation by the electrical log of these various drilling operations provided by the supervisory control system of the present invention.
  • an electrical signal of finite time may be fed through electric circuit 1 19 to a bit time integrator 120 6 in order to record actual drilling time of the operation shown on the depth drive recorder 112.
  • FIG. 2. which embodies FIG. 2a and FIG. 2b. typifies the analog computer circuitry utilized in order to compute the corrected d exponent value from the electrical signals of rotary speed. N, weight-on the drill bit and drill string. W. hole size. D. penetration rate. R. and mud weight ratio.
  • the various components of the analog circuitry are comprised of the major amplifier sections shown in detail with the various and sundry resistors. capacitors. voltage inputs and circuitry depicted and numbered accordingly with each of the values of the component parts corresponding to those illustrated in FIGS. 21! and 2h shown in the following Table I:
  • FIG. 2a schematically illustrates the circuitry for a partial solution of the equation R log N N" 2 )(log 240)) (log 83.333)
  • operational amplifier module 85 there are five operational amplifiers enclosed within module 85. These are available through Optical Electronics. Inc., in Arlington, Arizona and are identified as amplifier module 9,432.
  • FIG. 2a shows electrical input R 97 coupled through input resistor to the inverting input of an operational amplifier having a fixed gain of two, developed by feedback resistor 5 being coupled from inverting input to output. This output is representative of inverted 2 R in the equation and is coupled through resistor 24 to the input of the logarithmic amplifier module 86.
  • an electrical input is connected to a balanced voltage divider.
  • the junction voltage between resistors 21 and 22 is equal to N/2 and coupled to the input of another logarithmic amplifier contained in module 86 through resistor 23.
  • the outputs of the two logarithmic amplifiers are connected to resistors 25 and 26 which together comprise a summing junction that is connected to the inverting input of an operational amplifier also included in module 86.
  • the gain of this amplifier is adjusted by feedback resistor 27 to cause the output at junction 202 of this amplifier to be the electrical representation of (log 2 R log N/Z).
  • the junction 202 is coupled back to an operational amplifier contained in module 85 through resistor 3 to the inverting input.
  • g put is shown at point C on FIG. 2a and is the electrical representation of At (log 2 R log (log 240).
  • D 98 is shown connected to the inverting input of another operational amplifier of module 85 through input resistor 7. The output of this amplifier is coupled back to the input through feedback resistor 8 which sets the gain at one.
  • the output shown as point E on FIG. 2a is also shown as point E of FIG. 2b.
  • FIG. 2! there is illustrated circuitry for solving the remaining portion of the equation:
  • point B is connected through resistor 28 to the input of a logarithmic amplifier contained in module 88.
  • Point C is connected to the input of a second logarithmic amplifier in module 88 through resistor 29.
  • point B is the electrical solution of (log W log D) (log 83.333) and point C is the solution of N (log 2 R lo 7-) (lo 240).
  • the next logarithmic amplifier in module 88 is utilized to divide point C by point B.
  • Point C is divided by point B by subtraction of log point B from log point C.
  • Point 203 is connected through resistor 33 to the input of anti-logarithmic amplifier 89.
  • the output of 89 is adjusted to the proper level by potentiometer 36 and offset resistor 3-! to give a voltage output that is equal to the anti-log of the input voltage.
  • This output voltage is then applied to potentiometer 204 which is set as a voltage divider proportional to the ratio of normal mud weight used in a particular area (region) to the measured mud weight actually being used in the drilling operation.
  • FIG. 3 the analog circuitry utilized for computing the torque T for recordation from the electrical signals of rotary speed N, rotary power P and the predetermined constant K is depicted with'the following Table 11 listing the values and component 'parts corresponding to the illustrated FIG. 3.
  • the electrical signal representinig rotary power P is obtained from junction 295 and is coupled to the inverting input of operational amplifier 92 through resistor 74.
  • the gain of amplifier 92 is adjustable to a gain of one or less by the connection of variable resistor 75 coupled from the output to the inverting input.
  • the variable resistor 75 also represents the constant K.
  • the output voltage of amplifier 92 will be the inverted product of electrical signal input P times the predetermined constant K.
  • the output of amplifier 92 is coupled to the input of a logarithmic amplifier contained in the monolithic module 90 through resistor 77.
  • the electrical signal representing rotary speed N is obtained from junction 296 and is coupled to a second logarithmic amplifier contained in module 90 through resistor 76.
  • the inputs of these two logarithmic amplifiers are of opposite polarity.
  • the outputs of the two logarithmic amplifiers are coupled to an amplifier input through the sum ming resistors 78 and 79.
  • the output of the module amplifier 90 is a voltage representative of log PK-log N.
  • the output of module 90 is coupled to an anti-log module 91 through trimming potentiometer 81.
  • Potentiometer 83 is used as offset and trimming of the anti-log module.
  • the anti-log of the difference between log PK and log N is arithmetically equal to PK divided by N. or PK/N. Proper ajdustment of potentiometers 81 and 83 will result in an electrical voltage output of anti-log module 91 that is representative of Torque when the equation Torque PK/N is considered.
  • FIG. 4 is a typical schematic representative of any off-theshelf" well-filtered, well-regulated, directcurrent power supply adjustable to plus and minus 13.3
  • the simulated chart on FIG. 1 depicts a typical recording of rate of penetration, corrected d exponent and torque for use in order to control the actual drilling operation such that the drilling operator is afforded a greater continuous recording of drilling information and the opportunity to store the'data and utilize it further for optimal drilling and prevention of catastrophies.

Abstract

An electronic supervisory control system is disclosed herein wherein rotary power, rotary speed, bit weight, hole size, penetration rate and mud weight ratio are utilized in conjunction with analog and electronic sensing means in order to afford drilling personnel a supervisory control system over drilling operation. Recorded information includes the rate of penetration, corrected d exponent and rotary torque, which may be visually recorded and electronically stored for use for both supervisory control and simultaneous understanding of the monitored drilling variables and their effect upon the drilling operation. A method for monitoring and recording of the drilling operation wherein a drill string having a kelly and a drill bit is turned by means of a rotary motor.

Description

8-12-75 OR 39898e880 United States Patent I 1 1 1 3,898,880 Kelseaux et a]. Aug. 12, 1975 [54] ELECTRONIC SUPERVISORY 3,368,400 2/1968 Jorden, Jr. et a1 73/1515 MONITORING METHOD FOR DRILLING WELLS Primary Examiner-Jerry W. Myracle [75] Inventors: Ray M. Kelseaux; Harold J. Dobbs, Attorney Agent or Firmjohn Carpenter both of Tulsa, Okla.; Frank D.
Priehe, Houston, Tex. 57] ABSTRACT [73] Asslgnee: Clues Servlce Company Tulsa An electronic supervisory control system is disclosed Okla.
herein wherein rotary power, rotary speed, bit welght,
[22] Filed: July 15, 1974 I hole size, penetration rate and mud weight ratio are utilized in conjunction with analog and electronic [2]] Appl' 488364 sensing means in order to afford drilling personnel a Related US. Application Data supervisory control system over drilling operation. Re- 3 Continuation of Sen 335,191 Feb 23 1973, corded information includes the rate of penetration, abandoned, which is a continuation-in-part of Ser. Corrected d exponent and rotary q which y be No. 156,645, June 25, 1971, P No 3,785,202, visually recorded and electronically stored for use for both supervisory control and simultaneous under- U.S. Cl. 73/1515 standing of the monitored drilling variables and their Int. Cl. E21B 49/00 effect upon the drilling operation. A method for moni- [58] Field of Search 73/151, 151.5 toring and recording of the drilling operation wherein a drill string having a kelly and a drill bit is turn'edby [56] References Cited means of a rotary motor. UNITED STATES PATENTS 2 Claims, 5 Drawing Figures 2.949.029 8/1960 Bayles et a] 73/l36 A I12 I11 RECORDER SUPERVISORY CONTROL SYSTEM R o T l Egg/IE? IoI f5 107 i i N TORQUE l N ROTARY I02 SPEED l I I l PIPE WT ON 103 i l JOINT BIT R I l W I d I2W D HOLE 104 I0 EXPONENT SIZE g 106d l I PENETRATION R 105 I09 IQ I WASHING M RITE l I20 ANALOG 9 COMPUTER BIT TIME I l INTEGRATOR l PATENTEB mi 21975 SHEET ELECTRONIC SUPERVISORY MONITORING METHOD FOR DRILLING WELLS This is a continuation application of our copending application, Ser. No. 335,191, filed Feb. 23, 1973, now abandoned, which was a continuation-in-part application of US. Pat. No. 3,785,202, patented .Ian. 15, 1974 (formerly patent application having Ser. No. 156,645, filed June 25, 1971).
This invention relates to a method for supervisory control during the drilling of wells. More particularly, the method of the present invention is an electronic supervisory control system for monitoring various drilling variables and through electronic manipulation of these variables obtaining useful information for the control and observation of the drilling operation.
In applying technology to a drilling operation, it is often a requisite criteria that one obtain a general concept and preferably an exact knowledge of the presence and lithology of formations being encountered or to be encountered by the drilling bit. Various and sundry methods have been proposed for prediction of formations to be encountered or for alarm systems for detecting when a drill bit enters certain formations. In particular, a patent to Jordon, et al., U.S. Pat. No. 3,368,400, METHOD FOR DETERMINING THE TOP OF ABNORMAL FORMATION PRESSURES, teaches a process for detecting when a bore hole enters a geopressured shale section, utilizing the penetration rate of the drill bit as the measured variable. The pene tration rate of the drill bit is applied over shale sections, to determine the rate of change in penetration rate as the drill bit enters the top of a geopressured shale. The top of the geopressure section is detected by locating the depth at which the rate of change in the rate of penetration distinctly changes. Therefore, through the teaching of Jordon and a determination of the penetration rate, one finds a tool for determining the exact location and depth of the geopressured shale sections so that mud weights and drilling variables may be changed to anticipate well blowouts.
Brown, et al., US. Pat. No. 3,541,852, ELEC- TRONIC SYSTEM FOR MONITORING DRILLING CONDITIONS RELATING TO OIL AND GAS WELLS, teaches the recordation of information by a system, including drilling depth, time, penetration rate, hook load. rotary speed, pump strokes, gas chromatography, and such drilling mud information as weight inweight out, viscosity, temperature, and flow rates. These data are utilized with the monitoring of drilling rig variables, (for example total depth, rate of penetration, and speed of rotation of the drill bit) to provide a new system for monitoring the rate of penetration of a drill bit used in drilling an oil and gas well.
None of the disclosed prior art have shown a system and a method for the supervisory control of the entire drilling operation where it is particularly advantageous at all times to realize the lithology of the formations being penetrated by a drill bit, and to particularly understand and control the drilling operation through a knowledge of the lithology being penetrated. What is required is a method for determining in any time period during a drilling operation that lithology which is being encountered by the drill bit or will be encountered a considerable distance ahead of the drill bit. In conjunction with the method are means for monitoring and controlling the drilling variables in order that hazardous conditions may be avoided along with the curtailment of blowouts and other catastrophies.
It is an object of the present invention to provide means for determining the lithological nature of formation encountered by a drill bit.
It is a further object of the present invention to provide means for the supervisory control of a drilling operation.
It is still a further object of the present invention to provide means and a method for monitoring, recording and supervisory control of a drilling operation through the measurement of specific drilling variables.
With these and other objects in mind, the present invention may be more fully understood through referral to the accompanying drawings and following description.
SUMMARY OF THE INVENTION The objects of the present invention may be'accomplished through an electronic supervisory control system for monitoring and recording of a drilling operation. The electronic supervisory control system comprises computer means for computing, means for sensing the rotary motor power, means for sensing the rotary motor speed, means for sensing the weight on the drill bit, and means for sensing the penetration rate of the drill bit. The means for sensing the weight on the drill bit and the means for sensingthe penetration rate of the drill bit are utilized in combination with a determination of the drilled hole size and mud weight ratios to compute a corrected d exponent. The means for sensing the rotary motor power and the means for sensing the rotary motor speed are utilized to compute a rotary motor torque. The computed d exponent, rotary motor torque and rate of penetration are simultaneously plotted on an electronic recorder as a function of actual drilled depth.
The electronic supervisory control system of of the present invention may further comprise a bit time integrator for recording operational drilling time utilized in conjunction with the sensor data recording. Other preferred embodiments of the present invention also comprise the combination of the rotary motor power electrical signal with an electrical signal from the bit time integrator to produce a bit wear and exposure electrical signal, and the combination of the rotary motor'power electrical signal with the rate of penetration electrical signal to produce an energy expended per depth interval electrical signal. The bit wear and exposure electrical signal and energy expended for depth electrical signal may also be plotted on an electronic recorder to give exacting monitoring of the drilling operation and allow for the supervisory control thereof.
The method for monitoring and recording of a drilling operation wherein a drill string having a kelly and a drill bit is turned by means of a rotary motor comprises inputting a drilled hole size and a mud weight ratio into a computer means for computing, and sensing each of the rotary motor power, the rotary motor speed, the weight on the drill bit and the penetration of the drill bit and feeding the sensed value of each into the computer means as an electrical signal. The method additionally includes computing by the computer means a corrected d exponent from the weight on the drill bit, the penetration rate of the drill bit, the drilled hole size, and the mud weight ratio based upon the signaled value of each as fed into the computer means,
and simultaneously computing by the computer means a rotary motor torque from the signal values of the rotary motor speed and the rotary motor power as are fed into the computer means; and feeding the corrected (1 exponent and the rotary motor torque from the computer means into means for recording where each is recorded along with the rate of penetration of the bit.
BRIEF DESCRIPTION OF THE DRAWING The present invention may be more fully understood by referral to the accompanying drawings in which:
FIG. 1 schematically illustrates the preferred embodiment of the supervisory control system of the present invention with various sensors utilized and the recorded output provided;
FIGS. 21: and 2h represent an electronic schematic of one embodiment of the analog computer utilized in the present invention in order to compute a corrected d exponent for monitoring and supervisory control of the drilling operation;
FIG. 3 represents an analog schematic of one embodiment of an analog computer circuit utilized in order to compute the torque of the rotary table and drill string utilized for recordation in the supervisory control system of the present invention; and
FIG. 4 represents an electronic schematic of one embodiment of a power supply utilized in the supervisory control system of the present invention.
DETAILED DESCRIPTION OF THE PRESENT INVENTION The present invention may be most easily understood by referral to the FIG. I in which the electronic supervisory control system of the present invention is depicted in a schematic representation. It can be readily seen that the supervisory control system consists of the sensing of various drilling variables of the drilling oper ation. comprising in particular rotary power. rotary speed. weight on drill bit and drill string. drill hole size. and penetration rate in conjunction with a mud weight ratio.
In general. it may be stated that these drilling operation variables are sensed by means for sensing the drilling variables. In particular. the computer means for computing is preferably an analog computer. The means for sensing the rotary motor power is electrically connected to the computer means and may comprise a rotary motor power sensor mounted upon the shaft of the rotary motor in conjunction with means for converting the rotary motion of the shaft measured by the rotary motor power sensor to an electrical signal and electrical circuit means to transmit the electrical signal from the rotary motor power sensor to the other portions of the electronic supervisory control system. Al-
ternatively. the means for sensing the rotary motor power may comprise an electrical rotary motor power sensor connected to the power line of the rotary motor in conjunction with an electrical circuit means to transmit an electrical signal from the electrical rotary motor power sensor. The means for sensing the rotary motor speed is electrically connected to the computer means and may comprise an electrical rotation sensor connected to the drill string or kelly of the drilling rig and an electrical circuit means to transmit an electrical sig nal from the electrical rotation sensor to other portions of the electronic supervisory control system. In further respect, the means for sensing the weight on the drill bit is electrically connected to the computer means and may comprise an electrical powered drill bit and drill string weight sensor and electrical circuit means to transmit an electrical signal from the electrical drill bit and drill string weight sensor. In particular. the drill bit and drill string weight sensor may comprise a tension spring connected from the kelly to the drill string. having responsive electrical stops thereupon to convert the flexing of the mechanical spring into an electrical signal which is transmitted to the electronic supervisory control system. Similarly. the means for sensing the penetration .rate of the drill bit is electrically connected to the computer means and may comprise an electrical rotation sensor connected to the rotary table and an electrical depth sensor connected to the drill string, to measure vertical movement of the drill string, with means for integrating the electrical signals from the electrical rotary table rotation sensor and electrical depth sensor to produce a rate of penetration electrical signal. An electrical circuit means is provided to transmit the rate of penetration electrical signal to the electronic supervisory control system.
Means are provided for inputting a drilled hole size into the computer means. The drilled hole size may be manually measured and fed through a potentiometric electronic indicator into the supervisory control system. or it may actually be measured through electronic sensors contained within the drill bit or drill string with appropriate electronic potentiometric circuit means to transmit the electrical signal from the sensors to the supervisory control system. Means are also provided for inputting a mud weight ratio into the computer means. The mud weight ratio may be measured by the electronic measurement of mut pit sensors showing the change in mud weight-in versus mud weight-out of the wellbore or in a preferred embodiment. the normal gradient for the mud density in the geographical area of the well being drilled may be utilized in conjunction with the returned mud weight in order to derive the mud weight ratio utilized in combination with the potcntiometric signal of the weight on the bit. the predetermined hole size. and the electrical signal of penetration rate in order to compute a (I exponent value. Means for recording is electrically connected to the computer means for recording computed values and penetration rate, and is preferably a depth driven electronic recorder.
The method for monitoring and recording of the drilling operation initially provides for inputting the drilled hole size and the mud weight ratio into a computer. Subsequently. the rotary motor power. the rotary motor speed, the weight on the drill bit, and the penetration rate of the drill bit are sensed and fed to the computer as electrical signals. The method further calls for the computer to compute a corrected :1 exponent from the weight on the drill bit. the penetration rate of the drill bit. the drilled hole size, and the mud weight ratio based upon the signaled value of each as it is fed to the computer. Simultaneously, the computer computes a rotary motor torque from the signal values of the rotary motor speed and the rotary motor power as they are fed into the computer. The final step for monitoring and recording of the drilling operation is the feeding of the corrected d exponent and the rotary motor torque from the computer into means for recording where each is recorded along with the rate of penetration of the bit.
Therefore. in the supervisory control system. the various components of rotary power. rotary speed. weight on the drill bit. hole size. and penetration rate are intro- .dueed into a buffer system of the supervisory control system. The amplifiers are depicted in FIG. 1 as rotary power-buffer amplifier 101. rotary speed-buffer amplifier 104 and penetration rate-buffer amplifier 105. The amplifiers are utilized to convert the electrical signals to those signals required for the computation of the various drilling indicators. These drilling indicators are computed within an analog computer 106 in which the wherein R rate of penetration, feet per hour N rotary speed. revolutions per minute W weight on drill bit. pounds D drill bit diameter, inches The numerator computed portion of the d exponent is calculated by taking the natural logarithm of the penetration rate divided by the rotary speed times 60 (in order to convert to hours). The denominator computed portion of the d exponent is calculated by taking the natural logarithm of 12 times the weight on the drill bit and drill string divided by l times the hole size (in order to reduce to feet). Dividing the numerator computed portion by the denominator computed portion produces an electrical signal for the d exponent, which is transmitted through electrical circuit 108. A penetration rate signal is produced through electrical circuit 109. The computed torque signal is fed to a driver gain amplifier 110 through electrical circuit 107 to transmit an appropriate electrical signal through electrical circuit 111 to be received by the recorder I12 and plotted on a strip chart 113. The display of this signal is indicative of various operations. shown on the synthetic trace. such as a pipe jointing operation and washing operation. The computed (I exponent signal produced through circuit 108 is fed to gain amplifier 115 which works through a potentiometer 114 having the mud weight ratio programmed therein to form a system which yields a corrected :1 exponent signal which is subsequently fed through electric circuit means 116 to the recorder 112 in order to he recorded on the strip chart 113. Similarly. the rate of penetration signal is also fed through electrical circuit 109 to gain amplifier 117 to transmit an appropriate electrical signal through electrical circuit 118 to be recorded on the strip chart 113 by the recorder 112.
A continuous monitoring of rate of penetration. 11 exponent. and rotary torque is given for the drilling operation by the electrical log of these various drilling operations provided by the supervisory control system of the present invention. In conjunction with the present apparatus. an electrical signal of finite time may be fed through electric circuit 1 19 to a bit time integrator 120 6 in order to record actual drilling time of the operation shown on the depth drive recorder 112.
FIG. 2. which embodies FIG. 2a and FIG. 2b. typifies the analog computer circuitry utilized in order to compute the corrected d exponent value from the electrical signals of rotary speed. N, weight-on the drill bit and drill string. W. hole size. D. penetration rate. R. and mud weight ratio. The various components of the analog circuitryare comprised of the major amplifier sections shown in detail with the various and sundry resistors. capacitors. voltage inputs and circuitry depicted and numbered accordingly with each of the values of the component parts corresponding to those illustrated in FIGS. 21! and 2h shown in the following Table I:
TABLE I Component Number Value 1 10.000 ohms. "l/2 watt. l7: 2 10.000 ohms. l/2 watt. 1'71 3 l0.000 ohms. I/2 watt. I71 4 l0.00() ohms. l/2 watt. 1'7: 5 20.000 ohms. l/2 watt. 1% 6 10.000 ohms. l/2 watt. l7: 5 I 7 10.000 ohms. l/2 watt. 1% 8 l().()()() ohms. I/2'watt. l7: 9 10.000 ohms. l/2 watt. 1% l0 2.700 ohms. l/2 watt. 5% l l 200 ohms. potentiometer 12 SH) ohms. l/2 watt. 5% 13 3.600 ohms. l/2 watt. 5% l I4 200 ohms. potentiometer l5 5 l0 ohms. 1/2 Watt. 571 I6 l0.()00 ohms. 1/2 watt. l71 l7 6.200 ohms. l/4 watt. 5% l8 6.200 ohms. l/4 watt. 5% I) 100.000 ohms. l/4 Watt. 5 71 20 l0.000 ohms. l/2 watt. l'/( 21 5.000 ohms. l/2 watt. 1% 22 5.000 ohms. l/2 watt. l/( 23 l0,000 ohms. 1/2 watt. V71 24 l().0()0 ohms. l/2 watt. /1 25 6.200 ohms. l/4 watt.5'/ 20 6.200 ohms. l/4 watt. 5'7: 27 l00.000 ohms. l/4 \vatt. 5'71 28 10.000 ohms. 1/2 watt. W. 29 10.000 ohms. l/2 watt. I7: 30 6.200 ohms. I/4 Watt. 5'71 3l l00.000 ohms. l/4 watt. 5% 32 6.200 ohms. l/4 watt. 5% 33 5.l00 ohms. l/2 watt. 5% 34 l(l() 000 ohms. l/4 watt. 5'71 35 82.000 ohms. l/2 watt. 5 /7 36 l0.000 ohms. potentiometer 85 9432 monolithic op amps. (5) O.E.l. X6 2457 monolithic universal logarithmic module O.E.I. 87 2457 monolithic universal logarithmic module O.E.l. 88 2457 monolithic universal logarithmic module ().E.l. 89 395 anti-logarithmic module O.F..l. I36 l0.000 ohmspotentiometer Referring to FIG. 2a which schematically illustrates the circuitry for a partial solution of the equation R log N N" 2 )(log 240)) (log 83.333)
log W log I) The solution for the numerator log 2R log N/2 (log 240) v is schematically illustrated by FIG. 2a.
It should be appreciated that with this particular type of operational amplifier module 85 there are five operational amplifiers enclosed within module 85. These are available through Optical Electronics. Inc., in Tucson, Arizona and are identified as amplifier module 9,432.
FIG. 2a shows electrical input R 97 coupled through input resistor to the inverting input of an operational amplifier having a fixed gain of two, developed by feedback resistor 5 being coupled from inverting input to output. This output is representative of inverted 2 R in the equation and is coupled through resistor 24 to the input of the logarithmic amplifier module 86.
Looking at input N 99, an electrical input is connected to a balanced voltage divider. The junction voltage between resistors 21 and 22 is equal to N/2 and coupled to the input of another logarithmic amplifier contained in module 86 through resistor 23. The outputs of the two logarithmic amplifiers are connected to resistors 25 and 26 which together comprise a summing junction that is connected to the inverting input of an operational amplifier also included in module 86. The gain of this amplifier is adjusted by feedback resistor 27 to cause the output at junction 202 of this amplifier to be the electrical representation of (log 2 R log N/Z). The junction 202 is coupled back to an operational amplifier contained in module 85 through resistor 3 to the inverting input. Also coupled to this inverting input through resistor 9 and adjusted by potentiometer 11 is g put is shown at point C on FIG. 2a and is the electrical representation of At (log 2 R log (log 240).
Referring again to FIG. 2a and to the denominator portion of the scaled equation (log W log D) (log 83.333) and electrical input, D 98 is shown connected to the inverting input of another operational amplifier of module 85 through input resistor 7. The output of this amplifier is coupled back to the input through feedback resistor 8 which sets the gain at one. The output shown as point E on FIG. 2a is also shown as point E of FIG. 2b.
Referring now to FIG. 2!). there is illustrated circuitry for solving the remaining portion of the equation:
N (log 2 R log 1 (log Z) (log lr log 1)) (log 83.333)
- through resistor l to another logarithmic amplifier of module 87. The outputs of these log amplifiers are connected to the input of an operational amplifier in module 87 through summing resistors 17 and IS. The gain of this amplifier is fixed by feedback resistor 19 to be the electrical representation of (log W log D) in the equation. Referring back to FIG. 2a at point 201, a
voltage of 1.92 volts [the electrical representation of log 83333)], is adjusted by potentiometer l4 and connected through resistor 96 to the inverting input of an operational amplifier again contained in module 85. Point A on FIG. 2b is the electrical output representing (log W log D) and it is shown on FIG. 2a as point A connected through resistor 6 to the junction of resistor 96. This provides a summing junction for the operational amplifier input. The gain of this amplifier is fixed by feedback resistor 4 coupled from output to inverting input. The output voltage of this operational amplifier is the sum of (log W log D) (log 83.333). This concludes the solution for the denominator portion of the scaled equation and this portion of the equation is represented on FIG. 2a and FIG. 2b as point B.
Referring to FIG. 2b point B is connected through resistor 28 to the input of a logarithmic amplifier contained in module 88. Point C is connected to the input ofa second logarithmic amplifier in module 88 through resistor 29. Note that point B is the electrical solution of (log W log D) (log 83.333) and point C is the solution of N (log 2 R lo 7-) (lo 240).
The next logarithmic amplifier in module 88 is utilized to divide point C by point B. Point C is divided by point B by subtraction of log point B from log point C. The
'output of the logarithmic amplifier producing log point where we have:
. N (log 2 R log T) (log 240) (log w- 10 1)) (10 83.333)
and the scaled equation for log D is:
, N (log 2 R log 7;) (log 24()) (log W-Iog 1)) (log 83.333)
By taking the anti-log of point 203 the equation is solvedv Point 203 is connected through resistor 33 to the input of anti-logarithmic amplifier 89. The output of 89 is adjusted to the proper level by potentiometer 36 and offset resistor 3-! to give a voltage output that is equal to the anti-log of the input voltage. This output voltage is then applied to potentiometer 204 which is set as a voltage divider proportional to the ratio of normal mud weight used in a particular area (region) to the measured mud weight actually being used in the drilling operation.
It should be understood that many of the component parts of the apparatus used in this invention must be carefully selected to minimize error and that the selected values for electrical components used in specific embodiments such as those described herein, may be critical to proper operation of the apparatus.
Referringto FIG. 3, the analog circuitry utilized for computing the torque T for recordation from the electrical signals of rotary speed N, rotary power P and the predetermined constant K is depicted with'the following Table 11 listing the values and component 'parts corresponding to the illustrated FIG. 3.
-1- torque output The electrical signal representinig rotary power P is obtained from junction 295 and is coupled to the inverting input of operational amplifier 92 through resistor 74. The gain of amplifier 92 is adjustable to a gain of one or less by the connection of variable resistor 75 coupled from the output to the inverting input. The variable resistor 75 also represents the constant K. The output voltage of amplifier 92 will be the inverted product of electrical signal input P times the predetermined constant K. The output of amplifier 92 is coupled to the input of a logarithmic amplifier contained in the monolithic module 90 through resistor 77. The electrical signal representing rotary speed N is obtained from junction 296 and is coupled to a second logarithmic amplifier contained in module 90 through resistor 76. The inputs of these two logarithmic amplifiers are of opposite polarity. The outputs of the two logarithmic amplifiers are coupled to an amplifier input through the sum ming resistors 78 and 79. The output of the module amplifier 90 is a voltage representative of log PK-log N. The output of module 90 is coupled to an anti-log module 91 through trimming potentiometer 81. Potentiometer 83 is used as offset and trimming of the anti-log module. The anti-log of the difference between log PK and log N is arithmetically equal to PK divided by N. or PK/N. Proper ajdustment of potentiometers 81 and 83 will result in an electrical voltage output of anti-log module 91 that is representative of Torque when the equation Torque PK/N is considered.
FIG. 4 is a typical schematic representative of any off-theshelf" well-filtered, well-regulated, directcurrent power supply adjustable to plus and minus 13.3
. 10 volts. The various components depicted in FIG. 4 are listed :in'Table I11 giving. the 'values of the components of FIG. 4 as enumerated." 1 3 TABLE I11 Component Number Value 37 120 volt. 60 Hz primary. dual,
' secondary 15 volts each 38 1 amp silicon rectifier GE 509 39 1 amp silicon rectifier GE 509 t 40 1 amp silicon rectifier GE 509,-
. 4] 1 amp silicon rectifierGE 509 42 1 lamp silicon rectifier GE 509 43 1 amp silicon rectifier GE 509 44 1 amp silicon rectifier GE 509 45 1 amp silicon rectifier GE 509 46 100 mf 50 volt condenser .47 100 mf 50 volt condenser 48 2.200 ohms 5%. /2 watt 4). 61 2Nl305 Transistor 50. 62 2N1305 Transistor 51 12 volt. 1 watt Zener diode 52 .001 mf condenser 53 5.100 ohms 5%. A: watt 54 GE 3 Transistor 55 6.800 ohms 5%. V; watt 56 50 mf 50 volt condenser 57 1.500 ohms 5%. V; watt 58 2.000 ohms potentiometer 59 250 ohms 5%. Va watt 60 100 mf 50 volt condenser 63 .001 mf condenser 64 5,000 ohms 571. Va watt 65 2.200 ohms 5%. V. watt 66 12 volt. 1 watt Zener diode 68 6.800 ohms 5%. V: watt 69 50 mf 50 volt condenser 70 1.500 ohms 5%. V1 watt 71 2.000 ohms potentiometer 72 250 ohms 5%. V; watt 73 mf 50 volt condenser Therefore. through the various sensors described herein. it can be seen how the supervisory control system may be utilized in order to convert electrical signals from the electronic sensors into useful supervisory control data for both monitoring and use with other systems. The simulated chart on FIG. 1 depicts a typical recording of rate of penetration, corrected d exponent and torque for use in order to control the actual drilling operation such that the drilling operator is afforded a greater continuous recording of drilling information and the opportunity to store the'data and utilize it further for optimal drilling and prevention of catastrophies.
While the invention as has been described above with respect to certain embodiments thereof. it will be understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention as set forth herein.
Therefore. we claim:
1. A method for monitoring and recording of a drilling operation wherein a drill string having a kelly and a drill bit is turned by means of a rotary motor. said method comprising:
a. inputting a drilled hole size and a mud weight ratio into a computer means for computing;
b. sensing each of the rotary motor power, the rotary motor speed. the weight on the drill bit and the penetration rate of the drill bit and feeding the sensed value of each into said computer means as an electrical signal;
c. computing by said computer means a corrected d exponent from said weight on the drill bit. said penetration rate of the drill bit. said drilled hole size.
and said mud weight ratio based upon the signaled value of each as fed into said computer means and simultaneously computing by said computer means a rotary motor torque from the signal values of said rotary motor speed and said rotary motor power as are fed into said computer means;
d. feeding said corrected d exponent-and said rotary motor torque from said computer means into means for recording where each is recorded along with said rate of penetration of the bit.
2. Method of monitoring and recording a drilling operation wherein a well hole is drilled by means of a drill bit turned with a rotary motor said method comprising:
a. inputting a drilled hole size and a mud weight ratio into a computer b. sensing each of the rotary motor power, the rotary motor speed. the weight on the drill bit and the penetration rate of the drill bit and feeding the sensed value of each into said computer as an electric signal, computing a corrected D exponent from weight on the drill bit. penetration rate of the bit, drilled hole size and the mud weight ratio based upon the signaled value of each as fed into the computer and simultaneously computing the rotary motor torque from the signal values of motor speed and motor power as are fed into the computer. and d. feeding corrected D exponent and rotary motor torque out of the computer and recording the value of each while also recording the penetration rate of the bit.

Claims (2)

1. A method for monitoring and recording of a drilling operation wherein a drill string having a kelly and a drill bit is turned by means of a rotary motor, said method comprising: a. inputting a drilled hole size and a mud weight ratio into a computer means for computing; b. sensing each of the rotary motor power, the rotary motor speed, the weight on the drill bit and the penetration rate of the drill bit and feeding the sensed value of each into said computer means as an electrical signal; c. computing by said computer means a corrected d exponent from said weight on the drill bit, said penetration rate of the drill bit, said drilled hole size, and said mud weight ratio based upon the signaled value of each as fed into said computer means and simultaneously computing by said computer means a rotary motor torque from the signal values of said rotary motor speed and said rotary motor power as are fed into said computer means; d. feeding said corrected d exponent and said rotary motor torque from said computer means into means for recording where each is recorded along with said rate of penetration of the bit.
2. Method of monitoring and recording a drilling operation wherein a well hole is drilled by means of a drill bit turned with a rotary motor, said method comprising: a. inputting a drilled hole size and a mud weight ratio into a computer, b. sensing each of the rotary motor power, the rotary motor speed, the weight on the drill bit and the penetration rate of the drill bit and feeding the sensed value of each into said computer as an electric signal, c. computing a corrected D exponent from weight on the drill bit, penetration rate of the bit, drilled hole size and the mud weight ratio based upon the signaled value of each as fed into the computer, and simultaneously computing the rotary motor torque from the signal values of motor speed and motor power as are fed into the computer, and d. feeding Corrected D exponent and rotary motor torque out of the computer and recording the value of each while also recording the penetration rate of the bit.
US488364A 1971-06-25 1974-07-15 Electronic supervisory monitoring method for drilling wells Expired - Lifetime US3898880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US488364A US3898880A (en) 1971-06-25 1974-07-15 Electronic supervisory monitoring method for drilling wells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15664571A 1971-06-25 1971-06-25
US488364A US3898880A (en) 1971-06-25 1974-07-15 Electronic supervisory monitoring method for drilling wells

Publications (1)

Publication Number Publication Date
US3898880A true US3898880A (en) 1975-08-12

Family

ID=26853378

Family Applications (1)

Application Number Title Priority Date Filing Date
US488364A Expired - Lifetime US3898880A (en) 1971-06-25 1974-07-15 Electronic supervisory monitoring method for drilling wells

Country Status (1)

Country Link
US (1) US3898880A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064749A (en) * 1976-11-11 1977-12-27 Texaco Inc. Method and system for determining formation porosity
US4627276A (en) * 1984-12-27 1986-12-09 Schlumberger Technology Corporation Method for measuring bit wear during drilling
US4685329A (en) * 1984-05-03 1987-08-11 Schlumberger Technology Corporation Assessment of drilling conditions
US4697650A (en) * 1984-09-24 1987-10-06 Nl Industries, Inc. Method for estimating formation characteristics of the exposed bottomhole formation
US4852399A (en) * 1988-07-13 1989-08-01 Anadrill, Inc. Method for determining drilling conditions while drilling
US4876886A (en) * 1988-04-04 1989-10-31 Anadrill, Inc. Method for detecting drilling events from measurement while drilling sensors
EP1443176A1 (en) * 2003-02-01 2004-08-04 HILTI Aktiengesellschaft Core drilling machine with controlled feed
US20140049401A1 (en) * 2012-08-14 2014-02-20 Yuxin Tang Downlink Path Finding for Controlling The Trajectory while Drilling A Well
US11097358B2 (en) 2016-09-23 2021-08-24 Hilti Aktiengesellschaft Core drill bit
SE2050340A1 (en) * 2020-03-27 2021-09-28 Epiroc Rock Drills Ab A method performed by a control device for controlling the feeding distance and feeding rate in a rock drilling unit, a rock drilling unit and a rock drilling rig

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949029A (en) * 1957-09-24 1960-08-16 Barney E Bayles Shaft horse power indicator and recorder
US3368400A (en) * 1964-07-14 1968-02-13 Shell Oil Co Method for determining the top of abnormal formation pressures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949029A (en) * 1957-09-24 1960-08-16 Barney E Bayles Shaft horse power indicator and recorder
US3368400A (en) * 1964-07-14 1968-02-13 Shell Oil Co Method for determining the top of abnormal formation pressures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064749A (en) * 1976-11-11 1977-12-27 Texaco Inc. Method and system for determining formation porosity
DE2748131A1 (en) * 1976-11-11 1978-05-18 Texaco Development Corp METHOD AND DEVICE FOR DETERMINING FORMATION POROSITY
FR2373053A1 (en) * 1976-11-11 1978-06-30 Texaco Development Corp METHOD AND APPARATUS FOR DETERMINING THE POROSITY OF FORMATIONS FROM INFORMATION OBTAINED DURING BORING
US4685329A (en) * 1984-05-03 1987-08-11 Schlumberger Technology Corporation Assessment of drilling conditions
US4697650A (en) * 1984-09-24 1987-10-06 Nl Industries, Inc. Method for estimating formation characteristics of the exposed bottomhole formation
US4627276A (en) * 1984-12-27 1986-12-09 Schlumberger Technology Corporation Method for measuring bit wear during drilling
US4876886A (en) * 1988-04-04 1989-10-31 Anadrill, Inc. Method for detecting drilling events from measurement while drilling sensors
US4852399A (en) * 1988-07-13 1989-08-01 Anadrill, Inc. Method for determining drilling conditions while drilling
EP1443176A1 (en) * 2003-02-01 2004-08-04 HILTI Aktiengesellschaft Core drilling machine with controlled feed
US20040253064A1 (en) * 2003-02-01 2004-12-16 Oliver Koslowski Feed adaptation core drill
US7210878B2 (en) 2003-02-01 2007-05-01 Hilti Aktiengesellschaft Feed adaptation core drill
US20140049401A1 (en) * 2012-08-14 2014-02-20 Yuxin Tang Downlink Path Finding for Controlling The Trajectory while Drilling A Well
US9970284B2 (en) * 2012-08-14 2018-05-15 Schlumberger Technology Corporation Downlink path finding for controlling the trajectory while drilling a well
US11097358B2 (en) 2016-09-23 2021-08-24 Hilti Aktiengesellschaft Core drill bit
SE2050340A1 (en) * 2020-03-27 2021-09-28 Epiroc Rock Drills Ab A method performed by a control device for controlling the feeding distance and feeding rate in a rock drilling unit, a rock drilling unit and a rock drilling rig
SE544030C2 (en) * 2020-03-27 2021-11-09 Epiroc Rock Drills Ab A method performed by a control device for controlling the feeding distance and feeding rate in a rock drilling unit, a rock drilling unit and a rock drilling rig

Similar Documents

Publication Publication Date Title
US3517553A (en) Method and apparatus for measuring and controlling bottomhole differential pressure while drilling
US4064749A (en) Method and system for determining formation porosity
US3324717A (en) System and method for optimizing drilling operations
US4324297A (en) Steering drill string
US4733233A (en) Method and apparatus for borehole fluid influx detection
US4662458A (en) Method and apparatus for bottom hole measurement
US4697650A (en) Method for estimating formation characteristics of the exposed bottomhole formation
US3777560A (en) Methods and apparatus for measuring the rate of penetration in well drilling
US3581564A (en) Method for detecting roller bit bearing failure
US4733232A (en) Method and apparatus for borehole fluid influx detection
US3898880A (en) Electronic supervisory monitoring method for drilling wells
US3774445A (en) Method and apparatus for monitoring the wear on a rotary drill bit
US3916684A (en) Method and apparatus for developing a surface well-drilling log
US4047430A (en) Method and apparatus for logging earth boreholes using self-contained logging instrument
US10221674B2 (en) Method and apparatus for casing thickness estimation
US3785202A (en) Electronic supervisory control system for drilling wells
US3660649A (en) Apparatus and method for computing drilling costs
US3722605A (en) Apparatus and method for determining relative orientation of two wells
US3541852A (en) Electronic system for monitoring drilling conditions relating to oil and gas wells
US3761701A (en) Drilling cost indicator
US3982432A (en) Well monitoring and analyzing system
US4739655A (en) Method of automatically determining drilling fluid lag time while drilling a well
US3899926A (en) Method and apparatus for continual compilation of a well data log
US3368400A (en) Method for determining the top of abnormal formation pressures
US3993127A (en) Apparatus for positioning a working implement in a borehole