US3897526A - Evaporative coolers - Google Patents
Evaporative coolers Download PDFInfo
- Publication number
- US3897526A US3897526A US365949A US36594973A US3897526A US 3897526 A US3897526 A US 3897526A US 365949 A US365949 A US 365949A US 36594973 A US36594973 A US 36594973A US 3897526 A US3897526 A US 3897526A
- Authority
- US
- United States
- Prior art keywords
- air flow
- passageways
- space
- primary air
- secondary air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims abstract description 50
- 238000009434 installation Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 14
- 230000000694 effects Effects 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 26
- 238000007599 discharging Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000007921 spray Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000009917 Crataegus X brevipes Nutrition 0.000 description 1
- 235000013204 Crataegus X haemacarpa Nutrition 0.000 description 1
- 235000009685 Crataegus X maligna Nutrition 0.000 description 1
- 235000009444 Crataegus X rubrocarnea Nutrition 0.000 description 1
- 235000009486 Crataegus bullatus Nutrition 0.000 description 1
- 235000017181 Crataegus chrysocarpa Nutrition 0.000 description 1
- 235000009682 Crataegus limnophila Nutrition 0.000 description 1
- 235000004423 Crataegus monogyna Nutrition 0.000 description 1
- 240000000171 Crataegus monogyna Species 0.000 description 1
- 235000002313 Crataegus paludosa Nutrition 0.000 description 1
- 235000009840 Crataegus x incaedua Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3202—Cooling devices using evaporation, i.e. not including a compressor, e.g. involving fuel or water evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0035—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/54—Free-cooling systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S261/00—Gas and liquid contact apparatus
- Y10S261/04—Auto humidifiers
Definitions
- ABSTRACT A method of and installation for evaporatively cooling a defined space in which the moisture laden but cooled air into which moisture is evaporated is dis charged into the space rather than to the exterior of the space.
- This invention relates to cooling installations of the type in which the cooling effect is derived from the evaporation ofa liquid in the path of an air flow.
- the invention relates to installations of the type in which there are two air flows, a primary air flow and a secondary air flow, and in which moisture is evaporated into the secondary air flow thereby to effect cooling of that flow and by heat exchange of the primary air flow.
- the required heat exchange occurs between the primary air and the cooled secondary air and/or between the primary air and surfaces from which the moisture has been evaporated in, for example, a plate type heat exchanger.
- an air flow is drawn from outside a space to be cooled and split into primary and secondary flows.
- the primary air flow is passed through a first set of air passageways formed in a heat exchanger and discharged to the interior of the space.
- the secondary air is passed through a second set of air passageways in the heat exchanger. It is evaporatively cooled as it passes through the heat exchanger and assists in cooling the air in the primary air flow.
- This air stream is then, according to the prior proposals, discharged outside the space to be cooled.
- the secondary air has been used to cool the primary air, it is still nevertheless substantially cooler than the outside air. Hitherto it has been regarded as necessary to discharge this air outside the space to be cooled because of its high humidity.
- the outside air temperature might have a dry bulb temperature of 37C and a relative humidity of about 25%.
- the secondary air after evaporative cooling and heat exchange in the heat exchanger with the primary air might have a dry bulb temperature of 26C but such air, though it is cooler than the outside air, does not provide a comfortable condition because of its high relative humidity, say, 80%.
- This invention is, however, based on the realization that whilst this moist secondary air flow may not in itself provide a comfortable condition if it is directed at the occupants of the space or is used to provide an overall ambient condition, it can nevertheless, be used to improve the overall cooling effect by being discharged to particular areas of the space separately from the primary air flow.
- a vehicle such as a motor-car, bus or truck
- use can be made of the relatively lower temperature of this secondary air to improve the net cooling effect obtained in the passanger cabin by directing it against or along the principal heat radiating surfaces of the cabin such as the windscreen and the roof, while the relatively drier and cooler primary air is used to provide what may be termed jet" cooling of the passengers.
- the invention also provides an evaporative cooling installation comprising:
- a heat exchanger constructed and arranged to define a first set of passageways and a second set of passageways in heat exchange relation with each other;
- the heat exchanger is preferably a plate type heat exchanger having spaced apart plates arranged to define the said sets of passageways.
- the secondary air flow is preferably separated from the cooled primary air flow before the primary air flow is discharged into the space. This separation may be so arranged that the secondary air flow enters the second set of passageways at the lowest possible wet bulb temperature.
- Installations constructed in accordance with the above principles are particularly useful in providing personal cooling, since the relatively dry and cool primary air flow can be so directed as to provide an immediate cooling effect for the occupants of the space, whereas the relatively moister and warmer secondary air flow can be used to cool heat radiating surfaces exposed to the interior of the space.
- the secondary air flow should preferably be discharged to the upper part of the vehicle cabin to cool the windscreen and roof of the cabin thereby reducing the amount of heat radiated from these surfaces to the occupants of the vehicle.
- the principles of this invention can also be advantageously used to provide an improved cooling effect in a room, particularly where there are large heat radiating surfaces such as extensive glass window areas.
- the primary air flow would be directed into the space whilst the secondary air flow would be directed over the principal heat radiating window surfaces.
- FIG. 1 is a diagrammatic sectional side elevation through a cooler as fitted to a motor car, mounted under the dashboard.
- FIG. 2 is a diagrammatic sectional side elevation through a cooler of compact design to provide personal jet" cooling within a room.
- FIG. 3 is a side elevation of a larger installation in, for example a room, in which the primary air flow is directed inwardly of the space whilst the secondary air flow is directed over the principal heat radiating surfaces.
- FIG. 4 is a portion of a psychometric chart for a cooler according to the arrangement shown in FIG. 1.
- FIG. 1 illustrates the application of the invention to a motor car using, so far as possible, the existing heater installation as part of the cooling apparatus.
- the installation can, when modified in accordance with the invention, serve a dual purpose as either a cooler or a heater.
- outside air is taken in through transverse bonnet grating 4 past heater coil 5, which is inoperative when the installation is functioning as a cooler, by means of a fan 6 as in the existing heater arrangement of the vehicle.
- This air forms a primary air flow 7 at one inlet of a parallel plate type heat exchanger 3 constructed to provide alternating primary and secondary air passageways, the primary air passageways being arranged to be transverse to the secondary air passageways.
- the air flow passes through the primary air passageways, as indicated by the arrow A in FIG. 1, where it is cooled in a manner hereinafter described and, on leaving these passageways, is directed upwardly through a duct 14. Fromthis duct, a portion P of the cooled air flow is discharged via flexible conduits 17 through register outlets 1 to the interior of the car to provide jet cooling for the front seat passengers.
- the register outlets are those which normally serve to provide flow-through ventilation of the car interior.
- the remaining part of the original primary air flow becomes a secondary air flow 9.
- the secondary air flow is subsequently directed downwardly through the secondary air passageways, as indicated by the arrow B, water or other liquid being provided by sprays 2 for evaporative cooling of the air flow within the secondary air passageways.
- Heat necessary to facilitate evaporation of the liquid is derived partly from the secondary air flow itself and partly through transfer of heat through the heat exchanger plates from the primary air flow.
- Water or other liquid which has not been evaporated within the secondary air passages drains under gravity and flows through holes at 16 into a water tank 10 from where it flows via tubing 19 to a sump 18. Water or other liquid for the sprays 2 is circulated from sump 18 by means of a pump (not shown).
- the secondary air flow passes downwardly through the heat exchanger rather than upwardly. Although this serves to appreciably increase the total flow path length, it has been found that an upwardly moving secondary air flow tends to carry a considerable proportion of the water or liquid droplets sprayed at 2 through register 13 onto the windscreen of the vehicle. Thus it is preferred, in order to minimize water or liquid loss, to so arrange the installation that the secondary air flow passes downwardly through the heat exchanger.
- FIG. 1 need not be located forwardly of the passenger compartment. It may indeed be desirable, on converting existing vehicles to incorporate the installation, that at least part of the installation be located in the boot of the vehicle.
- the personal cooler shown in FIG. 2 can be similar in basic structure to known personal coolers and can be either portable or fixed in a location such as near a window or a wall.
- air 23 to be cooled is drawn in at 24 by a fan 25 and cooled as it passes through the primary air passageways of a plate type heat exchanger 26, as indicated by arrow A.
- a portion P of this primary air flow is discharged at an outlet 27 to provide jet" cooling for the person using the cooler.
- the remaining portion of the primary air flow becomes a secondary air flow 28, and flows downwardly through the secondary air passageways (arrow B) where it is evaporatively cooled by water or liquid provided by sprays 29.
- Liquid not evaporated within the secondary air passages drains into a tank 30 from where it is recirculated by a pump 31 which supplies liquid to the sprays 29.
- the cooled and moist secondary air is turned upwardly through a duct 33 past the heat exchanger and discharged (arrow S) at outlet 32 in a direction upwardly and away from the body of the person using the cooler.
- the primary air to be cooled may be drawn from outside the space to be conditioned or from within that space.
- a room 40 to be cooled may typically have a large window 41 in an outwardly facing wall 42.
- the cooler 43 is installed in the lower part of the wall, and may be of the same general type as that shown in FIG. 2. Outside air is drawn into the cooler at 24 and forms the primary air flow as previously described. A portion of the primary air is discharged inwardly to the room through the register 27 and the secondary air S is discharged upwardly over the interior surface of the window 41 thereby cooling that surface and reducing the amount of heat radiated by it to the interior of the room.
- the psychometric chart of FIG. 4 depicts the condition of the air at various stages in the cycle of operation of the car cooler of FIG. 1.
- condition A a typical summer outdoor condition
- the primary air is cooled to condition B without increase in moisture content and a fraction of this air is discharged to the car interior to provide jet cooling as shown in FIG. 1.
- the remaining fraction of the primary air at condition B then becomes the secondary air, enters the heat exchanger and is discharged through register outlet 13 at condition C.
- the process from B to C involves the simultaneous evaporative cooling of the secondary air and the heating of it by means of heat transferred from the primary air flow. Similar chart changes can be plotted for the conditions at the various points in FIGS. 2 and 3.
- condition B represents the condition of the laterally discharged air stream P
- condition C represents the condition of the secondary air stream S which is discharged over the window surface.
- a method for cooling a defined space comprising the steps of:
- said secondary air flow being so discharged into the space as to be directed onto or along a surface therein which radiates heat into the space whereby to effect cooling of the surface.
- An evaporative cooling installation comprising:
- a heat exchanger constructed and arranged to define a first set of passageways and a second set of passageways in heat exchange relation with each other;
- thermoelectric heat exchanger is a plate type heat exchanger having spaced apart plates arranged to define the said sets of passageways.
- a vehicle comprising:
- a heat exchanger arranged to define a first set of passageways and a second set of passageways in heat exchange relation with each other;
- 3,897,526 7 8 means to supply a liquid to the secondary air flow dary air flow and to effect cooling of the primary within the second set of passageways; air flow by heat exchange between the respective whereby the liquid is evaporated within the second set of passageways. set of passageways to effect cooling of the secon-
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AUPA920572 | 1972-06-02 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3897526A true US3897526A (en) | 1975-07-29 |
Family
ID=3765098
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US365949A Expired - Lifetime US3897526A (en) | 1972-06-02 | 1973-06-01 | Evaporative coolers |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US3897526A (show.php) |
| JP (1) | JPS4950740A (show.php) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6003593A (en) * | 1995-10-31 | 1999-12-21 | Denso International America, Inc. | Automotive vehicle climate control system |
| US6827141B2 (en) * | 2001-02-23 | 2004-12-07 | International Truck Intellectual Property Company, Llc | Vehicle heating and air conditioning modules |
| US20160018118A1 (en) * | 2014-07-15 | 2016-01-21 | Sharon Lee Pirozzi | Mist projector for a riding lawnmower |
| US20210387502A1 (en) * | 2018-11-05 | 2021-12-16 | Michael Andrews | Cooling systems and methods for vehicle cabs |
| US12030368B2 (en) | 2020-07-02 | 2024-07-09 | Tiger Tool International Incorporated | Compressor systems and methods for use by vehicle heating, ventilating, and air conditioning systems |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1986529A (en) * | 1931-05-27 | 1935-01-01 | William W Varney | Conditioning liquids and air and other gases |
| US2257639A (en) * | 1940-03-29 | 1941-09-30 | Nash Kelvinator Corp | Car cooling |
| US2587197A (en) * | 1948-04-05 | 1952-02-26 | Canellen K Mousel | Cooling system for motor vehicles |
| US2998714A (en) * | 1960-02-15 | 1961-09-05 | G & B Mfg Co Inc | Portable car and beverage cooler |
| US3606982A (en) * | 1969-11-10 | 1971-09-21 | Everkool Inc | Evaporative cooler |
| US3738621A (en) * | 1969-11-10 | 1973-06-12 | Everkool Inc | Evaporative cooler |
-
1973
- 1973-06-01 US US365949A patent/US3897526A/en not_active Expired - Lifetime
- 1973-06-01 JP JP48061064A patent/JPS4950740A/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1986529A (en) * | 1931-05-27 | 1935-01-01 | William W Varney | Conditioning liquids and air and other gases |
| US2257639A (en) * | 1940-03-29 | 1941-09-30 | Nash Kelvinator Corp | Car cooling |
| US2587197A (en) * | 1948-04-05 | 1952-02-26 | Canellen K Mousel | Cooling system for motor vehicles |
| US2998714A (en) * | 1960-02-15 | 1961-09-05 | G & B Mfg Co Inc | Portable car and beverage cooler |
| US3606982A (en) * | 1969-11-10 | 1971-09-21 | Everkool Inc | Evaporative cooler |
| US3738621A (en) * | 1969-11-10 | 1973-06-12 | Everkool Inc | Evaporative cooler |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6003593A (en) * | 1995-10-31 | 1999-12-21 | Denso International America, Inc. | Automotive vehicle climate control system |
| US6196308B1 (en) | 1995-10-31 | 2001-03-06 | Denso International America, Inc. | Automotive vehicle climate control system |
| US6827141B2 (en) * | 2001-02-23 | 2004-12-07 | International Truck Intellectual Property Company, Llc | Vehicle heating and air conditioning modules |
| US6962195B2 (en) * | 2001-02-23 | 2005-11-08 | International Truck Intellectual Property Company, Llc | Vehicle heating and air conditioning modules |
| US20160018118A1 (en) * | 2014-07-15 | 2016-01-21 | Sharon Lee Pirozzi | Mist projector for a riding lawnmower |
| US20210387502A1 (en) * | 2018-11-05 | 2021-12-16 | Michael Andrews | Cooling systems and methods for vehicle cabs |
| US11993130B2 (en) * | 2018-11-05 | 2024-05-28 | Tiger Tool International Incorporated | Cooling systems and methods for vehicle cabs |
| US12030368B2 (en) | 2020-07-02 | 2024-07-09 | Tiger Tool International Incorporated | Compressor systems and methods for use by vehicle heating, ventilating, and air conditioning systems |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS4950740A (show.php) | 1974-05-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3862549A (en) | Modular environmental control system | |
| US7181918B2 (en) | Vehicle cooler | |
| EP0186507B1 (en) | Carboxyl group-containing siloxane compounds | |
| US2151097A (en) | Means and method for cooling vehicle bodies | |
| US2171622A (en) | Vehicle ventilating system | |
| US3329078A (en) | Air-conditioning installations for motor vehicles | |
| CN109421757A (zh) | 用于高速列车的动力车厢 | |
| US3897526A (en) | Evaporative coolers | |
| EP3127803B1 (en) | Aircraft insulation system and aircraft air conditioning and insulation arrangement | |
| JPS59192663A (ja) | 旅客列車車両の温度調節装置 | |
| US3008694A (en) | Coach heating, cooling and ventilating system | |
| US6651453B2 (en) | Air-conditioning device for a motor vehicle | |
| US2187982A (en) | Air-conditioning system and apparatus | |
| US2155632A (en) | Air conditioning system | |
| US3259051A (en) | Ventilating system for the passenger compartment of motor vehicles | |
| US2271158A (en) | Heating and ventilating system | |
| US3896872A (en) | Temperature-control system for automotive vehicles | |
| US2238585A (en) | Automobile underseat air conditioning unit | |
| JP7251975B2 (ja) | 外板冷却システム | |
| US2883161A (en) | Systems for modifying heat content of air introduced into vehicles | |
| US4562883A (en) | Air conditioning method and installation | |
| US2154263A (en) | Air conditioning system for railroad cars | |
| JPS5657508A (en) | Air conditioning system for vehicle | |
| US2718186A (en) | Fresh-air vehicle ventilating and heating system and units therefor | |
| US2831327A (en) | Vehicle air conditioning systems |