US3896039A - Dust entrapment composition - Google Patents

Dust entrapment composition Download PDF

Info

Publication number
US3896039A
US3896039A US337964A US33796473A US3896039A US 3896039 A US3896039 A US 3896039A US 337964 A US337964 A US 337964A US 33796473 A US33796473 A US 33796473A US 3896039 A US3896039 A US 3896039A
Authority
US
United States
Prior art keywords
composition
matter
mixture
layer
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US337964A
Inventor
Charles H Jacoby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzona Inc
Original Assignee
Akzona Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzona Inc filed Critical Akzona Inc
Priority to US337964A priority Critical patent/US3896039A/en
Priority to US05/573,701 priority patent/US4038443A/en
Application granted granted Critical
Publication of US3896039A publication Critical patent/US3896039A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/22Materials not provided for elsewhere for dust-laying or dust-absorbing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F5/00Means or methods for preventing, binding, depositing, or removing dust; Preventing explosions or fires
    • E21F5/16Layers of hygroscopic or other salts deposited on floors, walls, or the like, for binding dust; Deposition of such layers

Definitions

  • the wall coating system has an apparent advantage over the rock dusting technique, it has not been accepted by the mining industry because of side effects of the process and its relative ineffectiveness unless properly utilized.
  • the materials used in preparing the wall coating substance often have a corrosive effect on mining machinery.
  • Experience has also shown the difficulty in balancing the desired properties of the wall coating substrate, and compromises in these properties have lessened the overall effectiveness of the coating.
  • the present invention proposes to overcome the earlier objections to the wall coating process by the use of additives at various stages of the surface coating forming process, in contrast to the prior teaching of one step coating.
  • An advantage has been found in placing a first layer coating on mine surface walls to produce a satisfactory bonding surface, followed by a second layer of wall coating having maximum dust entrapment capability.
  • a first layer comprising NaCl, (attapulgite or bentonite) clay, and water in a paste solution .is placed on the walls, ceiling and exposed beams.
  • the mixture is placed in such a manner that a crust is formed on the wall surface.
  • the mixture may be placed on the wall in a number of known ways. Spraying the paste on the wall with conventional gunite machines is the preferred method, however.
  • Additives to the first layer such as sodium nitrite or sodium dichromate may be used as a corrosion inhibitor.
  • Surface active agents may also be employed.
  • non-ionic surfactants should be utilized, it has surprisingly been discovered that a more dust receptive crust surface may be formed if the use is made of anionic surfactants in the paste in a percentage of 0.01 to 0.05% with maximum effectiveness occurring when 0.02 0.03% anionic surfactant is incorporated in the paste.
  • the first layer may be allowed to accumulate dust for a period of time beforeapplication of the second layer.
  • an anionic surfactant such as dioctyl ester of sodium succinic acid (made commercially under the name of Aerosol OT by American Cyanimid) is helpful in forming a crust having better entrapmentv characteristics than non-treated salt crusts.
  • cationic surfactants similar to Ethomeen 8/25 and Ethomeen T/ 15, tertiary amine ethylene oxide condensation products of primary fatty amines manufactured by the Armak Company.
  • the second layer containing a dendritic crystal forming salt paste may be added to increase the dust entrapment capabilities of the first paste layer.
  • a preferred method of preparing this paste is to add a water soluble complex iron cyanide selected from the group consisting of alkali, metal ferrocyanide salts, alkaline earth metal ferricyanide salts, alkali metal ferricyanide salts and alkaline earth metal ferricyanide salts to salt paste similar to the first layer paste.
  • the addition of the complex iron cyanide tends to modify the crystal structure growth of NaCl into a dendritic form.
  • This paste containing the complex iron cyanide may be applied in a light coat over the first layer using similar spreading techniques.
  • the salt crust formed in mine workings must be rewetted at intervals to regenerate its dust entrapment capability. It is thought the rewetting is needed to urge previously trapped dust particles further into the interstices of the salt crust and further to enhance formation of salt crystals on the surface of the crust to cover existing dust particles and present new capture surfaces for the particles.
  • the present invention utilizes a brine solution to regenerate the crust formed in the mine workings.
  • the advantage in using a brine solution over the prior teaching of using water are threefold. Water sprayed on an existing crust must dissolve the crust until the water has become salt saturated. The crust may become substantially weakened and crumble or run if too much water is sprayed on the surface. The spraying with a saturated brine solution substantially eliminates the dissolving of the prior crust. Furthermore, the brine solution may begin the evaporation and crystal forming process on the salt crust immediately. The salt contained in the solution adds to the strength of the crust after the solution has evaporated.
  • the brine may also be formulated as required under the local conditions in the mine working to effectively control the corrosion rate within'the working and enhance crystalline growth of the already formed salt crust.
  • the second layer of salt crust of the present invention may be formed with advantage by spraying a saturated brine solution containing a complex iron cyanide.
  • the crystals so formed upon evaporation of the brine solution will be largely dendritic in nature. Heating the brine solution in the presence of additional sodium chloride crystals before spraying gives the added advantage of introducing additional sodium chloride into the crust, further enhancing the strength of the crust and dust entrapping characteristics.
  • deliquescent such as magnesium or calcium chloride
  • the deliquescent may be added in the original salt paste in minimal-amounts sufficient to prevent running of the salt paste on the gallery'wa'lls normally 2% or less of the paste condition.
  • the regenerating solution may also carry proportionat amounts of the deliquescent.
  • the clays added in the first layer should not exceed of the total mixture in order to present an acceptable dust entrapment surface. It has been found that at tapulgite and bentonite clays in the amount of 2.5 to 7% of the first layer mixture are quite acceptable for this purpose. The preferred percentage of clay in the first layer is 4 to 5%, however.
  • EXAMPLE II A salt paste mixture similar to Example [was pre- 4 pared; bu't'with the addition of 0.02% anionic surfactant Aerosol OT 75%. The surface structure resembled Example I, but additional salt crystal aggregates mushroomed through the surface and formed greater dust entrapment surfaces.
  • Example II The salt crust of Example I was sprayed generally with a saturated brine solution containing 13 ppm of sodium ferrocyanide.
  • the surface crystalline'growth structure was of a dendritic structure with high dust en trapment characteristics. i l
  • composition of matter of claim l wherein the clay is selected from the group consisting of attapulgite and bentonite clays.
  • composition of matter of claim 3 wherein the surface active agent is selected from the group consisting of anionic surface'active agents and cationic surface ac'tive agents.
  • composition of matter of 'cla'irn5 wherein the deliquescent is selected from the group consisting of calcium chloride and magnesium chloride.
  • composition of r natter of claim 1 wherein the clay in the first layer mixture is not greater than 10% of the mixture.
  • composition of matter of claim l wherein the percentage of clay in the first layer mixture is 2.5% to 9.
  • a composition of matter ,for dust entrapment consisting essentially of a mixture-of sodium chloride, water, and a water soluble complex iron cyanide selected from the group consisting of alkali metal ferro' cyanide salts, alkaline earth metal ferrocyanide salts, alkali metal ferricyanide salts, andalkaline earth metal ferricyanide salts.
  • i i v The composition of matterof claim 10 further consisting of an anionic surface active agent in an disodium phosphate, and sodium dichromate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention relates to improvements in binding dust particles such as coal dust in mining operations by coating exposed surfaces in mine workings with a dust binding agent. Additives to the binding agent enhance dust entrapment and may be coated on the exposed surfaces after an initial layer of binding agent has been structured in the mine workings.

Description

United States Patent [191 Jacoby 41 DUST ENTRAPMENT COMPOSITION [75] Inventor: Charles H. Jacoby, Dalton, Pa.
[73] Assignee: Akzona lncorporated,As heville,
[221 .Filed: Mar. 5, 1973 [21] Appl. NO.: 337,964
[52] US. Cl 252/88; 117/70 [51] 4 Int. Cl C09k 3/22 [58] Field of Search 252/88; 117/70 [56] v 7 References Cited UNITED STATES PATENTS 873,913 12/1907 Vernon et a]. 252/88 1 July 22, 1975 Primary Examihm-Stephen J. Lechert, Jr. Attorney, Agent, 0r FirmFrancis W. Young; Tom R.
Vestal Y [57] 1 ABSTRACT 12 Claims, No Drawings 1 DUST ENTRAPMENT COMPOSITION Dust particles floating in air in an underground mine working constitute a nuisance to mining operations. In the instance of combustible dust particles, combustion of the particles resulting in an explosion is a constant hazard, and numerous proposals have been made to reduce or eliminate the hazard. The present approach authorizedfor reducing the explosion hazard is to add rock dust in the mine working to inhibit coal dust combustion and absorb heat energy which may be released by the ignition of the combustible dust particles. This addition of rock dust adds to the unpleasantness of the mining operation as well as being a health hazard. The dust can cause silicosis or pneumoconiosis in workers exposed to the dust for long periods of time.
An alternativeto rock dusting has been known for quite some time. This alternative embodies the coating of exposed surfaces in a mine working with a dust 'entrapment agent. An early embodiment can be found in the U.S. Pat. No. 995,26l in which a hygroscopic, pappy mass was made in such a consistancy that it could be thrown on the walls by means of compressed air apparatus. Later disclosures, such as US. Pat. No. 2,786,815, teach the incorporation of non-ionic surfactants to the wall coating substance to reduce fluid surface tension in the coating for increased dust entrapment capabilities.
Even though the wall coating system has an apparent advantage over the rock dusting technique, it has not been accepted by the mining industry because of side effects of the process and its relative ineffectiveness unless properly utilized. The materials used in preparing the wall coating substance often have a corrosive effect on mining machinery. Experience has also shown the difficulty in balancing the desired properties of the wall coating substrate, and compromises in these properties have lessened the overall effectiveness of the coating.
The present invention proposes to overcome the earlier objections to the wall coating process by the use of additives at various stages of the surface coating forming process, in contrast to the prior teaching of one step coating. An advantage has been found in placing a first layer coating on mine surface walls to produce a satisfactory bonding surface, followed by a second layer of wall coating having maximum dust entrapment capability.
It has now been determined that a surface coating consisting of a salt paste with a modified crystalline structure has maximum dust entrapment capability due to the characteristic flaky, branchlike crystalline surfaces it presents to the dust laden atmosphere. Examples of these structures are dendritic and acicular crystalline structures. This crystalline structure is, however, inherently weak and not sufficiently capable of supporting itself adequately in a surface crust as required in mining operations.
It has also been found that a mixture of NaCl of the common cubic crystalline structure and certain clays in a salt paste has very good binding qualities on surfaces such as found in mine workings. The adding of clays to the mixture also increases the strength of the coating on thesurface to make it more supportive. Bentonite and attapulgite clays have proven to be the effective clays in preparing the salt paste in view of their moisture retaining properties. It has been surprisingly found that attapulgite clays increase the recrystallization of the salt paste in high humidities. This mixture does not have the dust entrapment capabilities of the dendritic structure discussed above, however.
In .the present invention, a first layer comprising NaCl, (attapulgite or bentonite) clay, and water in a paste solution .is placed on the walls, ceiling and exposed beams. The mixture is placed in such a manner that a crust is formed on the wall surface. The mixture may be placed on the wall in a number of known ways. Spraying the paste on the wall with conventional gunite machines is the preferred method, however.
Additives to the first layer such as sodium nitrite or sodium dichromate may be used as a corrosion inhibitor. Surface active agents may also be employed. Although prior art teaching indicates non-ionic surfactants should be utilized, it has surprisingly been discovered that a more dust receptive crust surface may be formed if the use is made of anionic surfactants in the paste in a percentage of 0.01 to 0.05% with maximum effectiveness occurring when 0.02 0.03% anionic surfactant is incorporated in the paste.
The first layer may be allowed to accumulate dust for a period of time beforeapplication of the second layer. The use of an anionic surfactant such as dioctyl ester of sodium succinic acid (made commercially under the name of Aerosol OT by American Cyanimid) is helpful in forming a crust having better entrapmentv characteristics than non-treated salt crusts. Of lesser, but still increased effectiveness are cationic surfactants similar to Ethomeen 8/25 and Ethomeen T/ 15, tertiary amine ethylene oxide condensation products of primary fatty amines manufactured by the Armak Company.
The second layer containing a dendritic crystal forming salt paste may be added to increase the dust entrapment capabilities of the first paste layer. A preferred method of preparing this paste is to add a water soluble complex iron cyanide selected from the group consisting of alkali, metal ferrocyanide salts, alkaline earth metal ferricyanide salts, alkali metal ferricyanide salts and alkaline earth metal ferricyanide salts to salt paste similar to the first layer paste. The addition of the complex iron cyanide tends to modify the crystal structure growth of NaCl into a dendritic form. This paste containing the complex iron cyanide may be applied in a light coat over the first layer using similar spreading techniques.
As is known in the prior art, the salt crust formed in mine workings must be rewetted at intervals to regenerate its dust entrapment capability. It is thought the rewetting is needed to urge previously trapped dust particles further into the interstices of the salt crust and further to enhance formation of salt crystals on the surface of the crust to cover existing dust particles and present new capture surfaces for the particles.
The present invention utilizes a brine solution to regenerate the crust formed in the mine workings. The advantage in using a brine solution over the prior teaching of using water are threefold. Water sprayed on an existing crust must dissolve the crust until the water has become salt saturated. The crust may become substantially weakened and crumble or run if too much water is sprayed on the surface. The spraying with a saturated brine solution substantially eliminates the dissolving of the prior crust. Furthermore, the brine solution may begin the evaporation and crystal forming process on the salt crust immediately. The salt contained in the solution adds to the strength of the crust after the solution has evaporated. The brine may also be formulated as required under the local conditions in the mine working to effectively control the corrosion rate within'the working and enhance crystalline growth of the already formed salt crust.
Thirdly, it is known-that weak saline solutions are more corrosive than saturated brine solutions For example, it has been shown that a 5 percent saline solution is four times as corrosive as a thirty percent saline solution on mild steel. Also, salt mining has shown little corrosive problems in machinery exposed to 100% saline conditions.
The second layer of salt crust of the present invention may be formed with advantage by spraying a saturated brine solution containing a complex iron cyanide. The crystals so formed upon evaporation of the brine solution will be largely dendritic in nature. Heating the brine solution in the presence of additional sodium chloride crystals before spraying gives the added advantage of introducing additional sodium chloride into the crust, further enhancing the strength of the crust and dust entrapping characteristics.
It has also been determined that minimum amounts of a deliquescent substance such as magnesium or calcium chloride can be used to advantage to maintain sufficient moisture content in the salt crust to create a condition for crystal growth. The deliquescent may be added in the original salt paste in minimal-amounts sufficient to prevent running of the salt paste on the gallery'wa'lls normally 2% or less of the paste condition. The regenerating solution may also carry proportionat amounts of the deliquescent.
The clays added in the first layer should not exceed of the total mixture in order to present an acceptable dust entrapment surface. It has been found that at tapulgite and bentonite clays in the amount of 2.5 to 7% of the first layer mixture are quite acceptable for this purpose. The preferred percentage of clay in the first layer is 4 to 5%, however.
It has been found that a number of additives previously discussed serve a dual purpose as a corrosion inhibitor also, for example, sodium ferrocyanide acts both as a dendritic crystal forming additive and a corrosion inhibitor. Similarly, Ethomeen S/l5 (a tertiary amineand condensation product of primary fatty acid marketed by the Armak Company) acts as a surfaceactive agent and corrosion inhibitoryOther examples of corrosion inhibitors are zinc sulphate, borax, disodium phosphate, and ammonium salts of amido-polyphosphate.
I EXAMPLE I A salt paste mixture containing 81% sodium chloride, H 0, and 4%.bentonite clay was spread on a simulated mine surface in an atmosphere containing a relative humidity of 85%. The salt acted as a coagulant for the bentonite clay and the mixture quickly obtained sufficientstructure to cling to the surface and become self-supportive. Crystalline growth structure was observed for a period of 7 days without rewetting. The surface structure formed was uneven, but generally smooth.
EXAMPLE II A salt paste mixture similar to Example [was pre- 4 pared; bu't'with the addition of 0.02% anionic surfactant Aerosol OT 75%. The surface structure resembled Example I, but additional salt crystal aggregates mushroomed through the surface and formed greater dust entrapment surfaces.
EXAMPLE II] The salt crust of Example I was sprayed generally with a saturated brine solution containing 13 ppm of sodium ferrocyanide. The surface crystalline'growth structure was of a dendritic structure with high dust en trapment characteristics. i l
What is claimed is;
l. A coating of at least two layers to be applied to the surface of a mine working for dust entrapment, the'first layer adjacent the mine working surface consisting essentially of a mixture of sodium chloride, clay and water, and at least one additional layer consisting essentially of a mixture of sodium chloride, water and a water soluble complex iron cyanide selected from the group consisting of alkali metal ferrocyanide salts,.alkaline earth metal ferrocyanide salts, alkali metal ferricyanide salts and alkaline earth. metal ferricyanide salts. 1
2. The composition of matter of claim l wherein the clay is selected from the group consisting of attapulgite and bentonite clays.
3. The composition of matter of claim '1 wherein the first layer mixture further consists of a surface active agent. I I
4. The composition of matter of claim 3 wherein the surface active agent is selected from the group consisting of anionic surface'active agents and cationic surface ac'tive agents.
5. The composition of matter of claim 1 wherein the first layer further consists of a deliquescent in an amount not greater than 2%.
6 The composition of matter of 'cla'irn5 wherein the deliquescent is selected from the group consisting of calcium chloride and magnesium chloride.
7; The composition of r natter of claim 1 wherein the clay in the first layer mixture is not greater than 10% of the mixture. g
'8. The composition of matter of claim l wherein the percentage of clay in the first layer mixture is 2.5% to 9. The composition of matter of claim 1 wherein the percentage of clay in the firstlayeris 4% 95%.
10. A composition of matter ,for dust entrapment consisting essentially of a mixture-of sodium chloride, water, and a water soluble complex iron cyanide selected from the group consisting of alkali metal ferro' cyanide salts, alkaline earth metal ferrocyanide salts, alkali metal ferricyanide salts, andalkaline earth metal ferricyanide salts. i i v 11. The composition of matterof claim 10 further consisting of an anionic surface active agent in an disodium phosphate, and sodium dichromate.

Claims (12)

1. A COATING OF AT LEAST TWO LAYERS TO BE APPLIED TO THE SURFACE OF A MINE WORKING FOR DUST ENTRAPMENT, THE FIRST LAYER ADJACENT THE MINE WORKING SURFACE CONSISTING ESSENTIALLY OF A MIXTURE OF SODIUM CHLORIDE, CLAY AND WATER, AND AT LEAST ONE ADDITIONAL LAYER CONSISTING ESSENTIALLY OF A MIXTURE OF SODIUM CHLORIDE, WATER AND A WATER SOLUBLE COMPLEX IRON CYANIDE SELECTED FROM THE GROUP CONSISTING OF ALKALI METAL FERROCYANDE SALTS, ALKALINE EARTH METAL FERROCYANIDE SALTS.
2. The composition of matter of claim 1 wherein the clay is selected from the group consisting of attapulgite and bentonite clays.
3. The composition of matter of claim 1 wherein the first layer mixture further consists of a surface active agent.
4. The composition of matter of claim 3 wherein the surface active agent is selected from the group consisting of anionic surface active agents and cationic surface active agents.
5. The composition of matter of claim 1 wherein the first layer further consists of a deliquescent in an amount not greater than 2%.
6. The composition of matter of claim 5 wherein the deliquescent is selected from the group consisting of calcium chloride and magnesium chloride.
7. The composition of matter of claim 1 wherein the clay in the first layer mixture is not greater than 10% of the mixture.
8. The composition of matter of claim 1 wherein the percentage of clay in the first layer mixture is 2.5% to 7%.
9. The composition of matter of claim 1 wherein the percentage of clay in the first layer is 4% - 5%.
10. A composition of matter for dust entrapment consisting essentially of a mixture of sodium chloride, water, and a water soluble complex iron cyanide selected from the group consisting of alkali metal ferrocyanide salts, alkaline earth metal ferrocyanide salts, alkali metal ferricyanide salts, and alkaline earth metal ferricyanide salts.
11. The composition of matter of claim 10 further consisting of an anionic surface active agent in an amount not less than 0.01% and not greater than 0.05%.
12. The composition of matter of claim 10 further consisting of a corrosion inhibitor selected from the group consisting of zinc sulphate, sodium nitrite, borax, disodium phosphate, and sodium dichromate.
US337964A 1973-03-05 1973-03-05 Dust entrapment composition Expired - Lifetime US3896039A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US337964A US3896039A (en) 1973-03-05 1973-03-05 Dust entrapment composition
US05/573,701 US4038443A (en) 1973-03-05 1975-05-01 Dust entrapment composition and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US337964A US3896039A (en) 1973-03-05 1973-03-05 Dust entrapment composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/573,701 Division US4038443A (en) 1973-03-05 1975-05-01 Dust entrapment composition and method therefor

Publications (1)

Publication Number Publication Date
US3896039A true US3896039A (en) 1975-07-22

Family

ID=23322799

Family Applications (1)

Application Number Title Priority Date Filing Date
US337964A Expired - Lifetime US3896039A (en) 1973-03-05 1973-03-05 Dust entrapment composition

Country Status (1)

Country Link
US (1) US3896039A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021361A (en) * 2001-09-05 2003-03-15 박종은 Dust scatter prevention material of land and contract method for dust scatter prevention material
US6881008B1 (en) 2003-11-26 2005-04-19 Sequoia Pacific Research Company, Ltd. Particle binding compositions and methods of making and using such compositions
US20050111923A1 (en) * 2003-11-26 2005-05-26 Maile Richard L. Soil bind and revegetation compositions and methods of making and using such compositions
US20050111924A1 (en) * 2003-11-26 2005-05-26 Maile Richard L. Soil binding and revegetation compositions and methods of making and using such compositions
US20190025268A1 (en) * 2017-07-19 2019-01-24 American Sterilizer Company Chemical indicator for monitoring hydrogen peroxide sterilization and disinfection processes
CN112807893A (en) * 2021-01-05 2021-05-18 神华神东煤炭集团有限责任公司 Dust falling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US873913A (en) * 1907-07-05 1907-12-17 Charles M Vernon Composition to be used in sweeping.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US873913A (en) * 1907-07-05 1907-12-17 Charles M Vernon Composition to be used in sweeping.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021361A (en) * 2001-09-05 2003-03-15 박종은 Dust scatter prevention material of land and contract method for dust scatter prevention material
US6881008B1 (en) 2003-11-26 2005-04-19 Sequoia Pacific Research Company, Ltd. Particle binding compositions and methods of making and using such compositions
US20050111923A1 (en) * 2003-11-26 2005-05-26 Maile Richard L. Soil bind and revegetation compositions and methods of making and using such compositions
US20050111924A1 (en) * 2003-11-26 2005-05-26 Maile Richard L. Soil binding and revegetation compositions and methods of making and using such compositions
US7005005B2 (en) 2003-11-26 2006-02-28 Sequoia Pacific Research Company, Llc Soil bind and revegetation compositions and methods of making and using such compositions
US7021864B2 (en) 2003-11-26 2006-04-04 Sequoia Pacific Research Company, Llc Soil binding and revegetation compositions and methods of making and using such compositions
US20190025268A1 (en) * 2017-07-19 2019-01-24 American Sterilizer Company Chemical indicator for monitoring hydrogen peroxide sterilization and disinfection processes
US10823715B2 (en) * 2017-07-19 2020-11-03 American Sterilizer Company Chemical indicator for monitoring hydrogen peroxide sterilization and disinfection processes
CN112807893A (en) * 2021-01-05 2021-05-18 神华神东煤炭集团有限责任公司 Dust falling device

Similar Documents

Publication Publication Date Title
US4038443A (en) Dust entrapment composition and method therefor
DE69523176T2 (en) METHOD FOR ACID TREATING SILICATIC STONE INFORMATION
US3896039A (en) Dust entrapment composition
US3017351A (en) Shale hydration inhibitors for clear water drilling fluids
US2128161A (en) Well treating fluid
CA2939258C (en) Method and composition for dust control
US4778615A (en) Composition for treating particulate materials and a method for treating particles
US3956538A (en) Flame retardation
US2858895A (en) Methods and compositions for controlling fires
US3740346A (en) Treatment of granulated fertilisers
US4469612A (en) Agglomeration of mineral-derived fines
US2700652A (en) Inhibiting corrosion due to sulfur compounds
US3681246A (en) Medium for consolidating dust in coal-mines
US4269721A (en) Dust abatement with calcium sulfate
CA1282556C (en) Concrete and aggregate benefaction technology
US2894851A (en) Method of forming a protective coating on cyanidation tailings and the resulting product
SU867323A3 (en) Agent for preventing coal self-ignition
DE718565C (en) Process for combating dust and dust explosions
Bremner et al. Effects of potassium azide on transformations of urea nitrogen in soils
US3732698A (en) Method for stabilizing soils and abating active slides
RU2784756C1 (en) Agent for suppressing rock and coal dust distribution
US2063761A (en) Coal mining
US2204580A (en) Process for increasing the productivity of wells
US2300965A (en) Method for treating mercury mines
DE943701C (en) Process for disarming dust in underground mining