US3894847A - Steel sheet having a nickel composite film and a method for manufacturing the same - Google Patents

Steel sheet having a nickel composite film and a method for manufacturing the same Download PDF

Info

Publication number
US3894847A
US3894847A US395841A US39584173A US3894847A US 3894847 A US3894847 A US 3894847A US 395841 A US395841 A US 395841A US 39584173 A US39584173 A US 39584173A US 3894847 A US3894847 A US 3894847A
Authority
US
United States
Prior art keywords
aqueous solution
nickel
steel sheet
ion
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US395841A
Inventor
Hidejiro Asano
Yashichi Ohyagi
Takatoshi Egawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of US3894847A publication Critical patent/US3894847A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/102Pretreatment of metallic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • This invention relates to a steel sheet having a nickel composite film containing at least one member of the group consisting of Mo, W, Cu and K in the nickel film, and a method for manufacturing the same.
  • a steel sheet having a nickel composite film containing at least one member selected from the group consisting of Mo, W, Cu and K in the nickel film According to this invention, there is also provided a method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment, coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution containing a metallic ion of Ni at least one member selected from the group consisting of an aqueous solution containing a metallic ion of Mo.
  • an aqueous solution containing a metallic ion of W an aqueous solution containing a metallic ion of Cu and an aqueous solution containing a metallic ion of K, heating the same in the atmosphere of a non-oxidizing gas, and thereby forming on said steel sheet a film consisting of Ni and at least one member selected from Mo, W, Cu and K.
  • One or more than one aqueous solutions containing metallic ions of Mo, W, Cu or K is added to an aqueous solution containing a metallic ion of Ni whereby a treating aqueous solution is obtained.
  • This is coated on the surface of a steel sheet, which is then heated in the atmosphere of a non-oxidizing gas.
  • a film composed of Ni and one member selected from the member consisting of Mo, W, Cu and K is then formed on the surface of the steel sheet.
  • the temperature for heating is preferably between 200C and 750 C.
  • the way of coating the treating aqueous solution may vary with the particular operation used, such as a spraying method, a rolling method or a dipping method, etc. If necessary, a surface active agent may be added.
  • the film obtained on the surface of the steel sheet is considered to be a film consisting of two layers, the lower layer being Fe-Ni alloy and the upper layer being a mixed film of Ni with one or more selected from Mo, W, Cu and K. It has an excellent anti-corrosion property and lacquerability as shown in the example hereinafter described.
  • a steel sheet which is cheap, has an excellent anti-corrosion and lacquerability and is particularly adapted for use as a material for a can or container can be obtained according to this invention.
  • the amount adhering to the steel sheet from the treatment with aqueous solution may vary remarkably with the particular coating method used.
  • the effective range is lg/l to lOOg/l, preferably 5g/l to 25g/l for the Ni ion, and 20g/l or less, preferably 5g/l or less for the Mo, W, Cu or K ion, respectively.
  • EXAMPLE A steel sheet which has been subjected to the ordinary treatment or the cold rolling by means of a strip mill was electrolytically degreased and then coated by means of a dipping process with a treatment of aqueous solution which had been prepared by adding ammonium molybdate, ammonium tungstate, copper acetate, tri-potassium phosphate, or combination thereof, to an aqueous solution of nickel acetate. Immediately thereafter the coated steel sheet was heated to 650C in a furnace of bright annealing gas consisting of 7% H and the rest N whereby a nickel alloy film was formed.
  • the coated steel sheet was then subjected to a skin pass by 1% and a rolling by 30% reduction, and then the rustprevention property, the resistance to the underfilm ((mmmrisnn of properties) Composition of the treating aqueous solution Resistance to corrosion underfilm After skin pass
  • Non-treated steel sheet Remarks The treating method: dipping; heating atmosphere H 7%.
  • a method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment. coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution containing a metallic ion of nickel at least one member selected from the group consisting of an aqueous solution containing a metallic ion of molybdenum, an aqueous solution containing a metallic ion of tungsten, an aqueous solution containing a metallic ion of copper and an aqueous solution containing a metallic ion of potassium, heating the same in the atmosphere of a non-oxidizing gas, and thereby forming on said steel sheet a film consisting of nickel and at least one member selected from molybdenum, tungsten, copper and potassium.
  • a method according to claim 1 in which the amount adhering from the treatment with aqueous solution is lg/l to g/l for the nickel ion, and 20g/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.
  • a method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment, coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution of nickel acetate at least one member selected from the group consisting of an aqueous solution of ammonium molybdate, an aqueous solution of ammonium tungstate, an aqueous solution of copper acetate and an aqueous solution of tri-potassium phosphate, heating the same in the atmosphere of a nonoxidizing gas, and thereby forming on said steel sheet a film consisting of nickel and at least one member selected from molybdenum, tungsten, copper and potassium.
  • a method according to claim 9 in which the amount adhering from the treatment with aqueous solution is lg/l to l00g/I for the nickel ion and 20g/l or less for the molybdenum, tungsten, copper and potassium ion, respectively.
  • a method according to claim 13 in which the amount adhering from the treatment with aqueous solution is Sg/l to 25g/l for the nickel ion and Sg/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.

Abstract

A steel sheet is cleaned and coated with a particular treating solution. This solution is obtained by adding Mo, W, Cu or K ion to Ni ion as the respective aqueous solutions. The film formed thereon is excellent in anti-corrosion property and paintadherence property and the product steel sheet is suitable for use as a can or container for drinks, etc.

Description

United States Patent Asano et a1.
[4 1 July 15, 1975 STEEL SHEET HAVING A NICKEL COMPOSITE FILM AND A METHOD FOR MANUFACTURING THE SAME Inventors: Hidejiro Asano, Takami; Yashichi Ohyagi; Takatoshi Egawa, both of Kitakyushu, all of Japan Assignee: Nippon Steel Corporation, Tokyo,
Japan Filed: Sept. 10, 1973 Appl. No.: 395,841
Foreign Application Priority Data Sept. 19, 1972 Japan 47-93223 US. Cl. 29/1963; 29/470; 106/1;
29/1966; 427/229 Int. Cl B05d 3/10 Field of Search 117/71 M, 130 R, 160 R;
[5 6] References Cited UNITED STATES PATENTS 3,677,797 7/1972 Asano et a1. 117/71 M 3,715,231 2/1973 Ng et a1. 117/160 R 3,801,363 4/1974 Buck 117/160 R Primary Examiner-William E. Schulz Attorney, Agent, or FirmWatson, Leavenworth, Kelton & Taggart [57] ABSTRACT 14 Claims, No Drawings STEEL SHEET HAVING A NICKEL COMPOSITE FILM AND A METHOD FOR MANUFACTURING THE SAME BACKGROUND OF THE INVENTION As is well known. tin-free steel sheet of a Cr-plated type as well as tin-plated steel sheet have received much attention in recent years with the drastically increasing demands for containers for beer or other drinks.
However, the material tin becomes more expensive year after year and moreover the resources therefor tend to be drained. The tin-free steel sheet of the Crplated type has been developed for taking the place of the tin-plated steel sheet. It necessitates, however, electrolytic treatment for the manufacture thereof and thus requires expensive apparatus, labor and maintenance. Thus it cannot be said to be a decisive material as well.
In US. Pat. No. 3,677,797, it is disclosed that an aqueous solution is coated on the surface of a steel sheet. followed by a mere heat treatment, so that a film having an excellent anti-corrosive property may be formed; and that said aqueous solution is obtained by adding the nitrate or acetate of Cr, Mn, etc. to the nitrate or acetate of Ni or the mixture thereof. As compared with the conventional product of the same kind, the product obtained by the method disclosed in this US. patent shows that the anti-corrosive property is identical to, or better than, that of the conventional product. In addition, since the method of the US. patent only requires a simple heat treatment, it is quite advantageous with respect to the apparatus, labor, maintenance. etc. Moreover, it is very economical in view of public pollution since it does not produce any waste liquid.
The method of the US. patent exerts ideal effects in application to ordinary material or material to be subjected to a skin pass after annealing.
However, it has now been found that when the method of the US. patent is used under the condition that a greater part of the material to be used for carbonated beverage have recently become the 2 CR material or the material subjected to two cold rolling steps the film formed thereon is sometimes destroyed during the cold rollings, whereby it is difficult to expect as stable the maintenance of the anti-corrosive property of the material as that of the ordinary material.
It is therefore an object of the invention to provide a steel sheet and a method for manufacturing the same which overcome the above stated disadvantages encountered in the prior art.
It is another object of the invention to provide a method for the manufacture of a steel sheet having an extremely tough anti-corrosive film, which method is capable of being applied to 2 CR material as well as ordinary material with a mere heat treatment and yet preserves the advantages of low cost for apparatus, labor and maintenance and of the waste liquid.
SUMMARY OF THE INVENTION:
This invention relates to a steel sheet having a nickel composite film containing at least one member of the group consisting of Mo, W, Cu and K in the nickel film, and a method for manufacturing the same.
According to this invention there is provided a steel sheet having a nickel composite film containing at least one member selected from the group consisting of Mo, W, Cu and K in the nickel film. According to this invention, there is also provided a method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment, coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution containing a metallic ion of Ni at least one member selected from the group consisting of an aqueous solution containing a metallic ion of Mo. an aqueous solution containing a metallic ion of W, an aqueous solution containing a metallic ion of Cu and an aqueous solution containing a metallic ion of K, heating the same in the atmosphere of a non-oxidizing gas, and thereby forming on said steel sheet a film consisting of Ni and at least one member selected from Mo, W, Cu and K.
One preferred embodiment of the method of the invention is described below.
One or more than one aqueous solutions containing metallic ions of Mo, W, Cu or K is added to an aqueous solution containing a metallic ion of Ni whereby a treating aqueous solution is obtained. This is coated on the surface of a steel sheet, which is then heated in the atmosphere of a non-oxidizing gas. A film composed of Ni and one member selected from the member consisting of Mo, W, Cu and K is then formed on the surface of the steel sheet. The temperature for heating is preferably between 200C and 750 C. The way of coating the treating aqueous solution may vary with the particular operation used, such as a spraying method, a rolling method or a dipping method, etc. If necessary, a surface active agent may be added. The film obtained on the surface of the steel sheet is considered to be a film consisting of two layers, the lower layer being Fe-Ni alloy and the upper layer being a mixed film of Ni with one or more selected from Mo, W, Cu and K. It has an excellent anti-corrosion property and lacquerability as shown in the example hereinafter described.
As set forth above, a steel sheet which is cheap, has an excellent anti-corrosion and lacquerability and is particularly adapted for use as a material for a can or container can be obtained according to this invention.
The amount adhering to the steel sheet from the treatment with aqueous solution may vary remarkably with the particular coating method used. The effective range is lg/l to lOOg/l, preferably 5g/l to 25g/l for the Ni ion, and 20g/l or less, preferably 5g/l or less for the Mo, W, Cu or K ion, respectively.
A specific example of the invention is described below.
EXAMPLE A steel sheet which has been subjected to the ordinary treatment or the cold rolling by means of a strip mill was electrolytically degreased and then coated by means of a dipping process with a treatment of aqueous solution which had been prepared by adding ammonium molybdate, ammonium tungstate, copper acetate, tri-potassium phosphate, or combination thereof, to an aqueous solution of nickel acetate. Immediately thereafter the coated steel sheet was heated to 650C in a furnace of bright annealing gas consisting of 7% H and the rest N whereby a nickel alloy film was formed. The coated steel sheet was then subjected to a skin pass by 1% and a rolling by 30% reduction, and then the rustprevention property, the resistance to the underfilm ((mmmrisnn of properties) Composition of the treating aqueous solution Resistance to corrosion underfilm After skin pass
After skin pass After 2 CR 1. Nickel acetate (ISg/l) plus ammonium molyhdate (fig/l) Nickel acetate (l5g/l) plus ammonium tungstate (Sg/l) 3. Nickel acetate (lSg/l) plus tri-potassium phosphate (Sg/l) 4. Nickel acetate (l5g/l) plus ammonium molybdate (3g/l) plus Copper ace tate (3g/l) 5. Nickel acetate (ZOg/l) 6. Nickel nitrate (ZOg/l) 2,0
plus chromium acetate (IOg/l) 7. Nickel nitrate (ZOg/l) plus aluminum nitrate (Sg/l) plus chromium acetate (5g/l) 8. Non-treated steel sheet Remarks The treating method: dipping; heating atmosphere H 7%.
N the rest; heating temperature 650C The number l to 4: this invention The number 5 to 8: the prior art The skin pass: 1% rolling The ZCR: rolling.
corrosion and the adhesion of lacquer were tested. The result is shown in Table 1.
1n the Table l, the figures shown are based upon the following definitions. l. The rust-prevention property It is indicated by the percentage area (0-100%) of the rust occurring within two months by a Pack Rust test (RH (Relativity humidity) 80%, C) which is a test simulating rust occurring before the use by the consumer. 2. The resistance to underfilm corrosion The steel sheet was coated with an epoxy resin lacquer, given a scratch of 0.1 mm width, and dipped in a solution of 1.5% NaCl plus 15% citric acid for 4 days. The degreeof the undertilm corrosion at the scratch portion was observed with the evaluation of 10 steps as follows.
10: Peel-off of the film is not observed at all.
9: Peel-off of 0.10 to 0.15 mm is observed. 8: Peel-off of 0.15 to 0.20 mm is observed. 7: Peel-off of 0.20 to 0.25 mm is observed. 6: Peel-off of 0.25 to 0.30 mm is observed. 5: Peel-off of 0.30 to 0.35 mm is observed. 4: Peel-off of 0.35 to 0.40 mm is observed. 3: Peel-off of 0.40 to 0.45 mm is observed. 2: Peel-off of 0.45 to 0.50 mm is observed.
1: Peel-off of 0.50 mm or more is observed.
3. The adhesion of lacquer After coated with lacquer, the steel sheet was sticked by a binder and the tensile strength was measured, whereby the maximum value was designated as 5 and the minimum value as 1 for the scale of the binding strength of the lacquer.
We claim:
1. A method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment. coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution containing a metallic ion of nickel at least one member selected from the group consisting of an aqueous solution containing a metallic ion of molybdenum, an aqueous solution containing a metallic ion of tungsten, an aqueous solution containing a metallic ion of copper and an aqueous solution containing a metallic ion of potassium, heating the same in the atmosphere of a non-oxidizing gas, and thereby forming on said steel sheet a film consisting of nickel and at least one member selected from molybdenum, tungsten, copper and potassium.
2. A method according to claim 1 in which the heating is held at temperatures between 200C and 750C.
3. A method according to claim 1 in which the coating is held by means of spraying, rolling or dipping.
4. A method according to claim 1 in which a surface active agent is added in the coating.
. 5. A method according to claim 1 in which the amount adhering from the treatment with aqueous solution is lg/l to g/l for the nickel ion, and 20g/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.
6. A steel sheet having a nickel composite film containing at least one member selected from the group consisting of molybdenum, tungsten, copper and potassium in the nickel film.
'7. A steel sheet having a nickel composite film consisting of two layers, the lower layer being iron-nickel alloy and the upper layer being a mixed film of nickel with one or more member selected from the group consisting of molybdenum, tungsten, copper and potassium.
8. A method according to claim 5 in which the amount adhering from the treatment with aqueous solution is 5g/l to 25g/l for the nickel ion and Sg/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.
9. A method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment, coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution of nickel acetate at least one member selected from the group consisting of an aqueous solution of ammonium molybdate, an aqueous solution of ammonium tungstate, an aqueous solution of copper acetate and an aqueous solution of tri-potassium phosphate, heating the same in the atmosphere of a nonoxidizing gas, and thereby forming on said steel sheet a film consisting of nickel and at least one member selected from molybdenum, tungsten, copper and potassium.
10. A method according to claim 9 in which the heating is held at temperatures between 200C and 750C.
11. A method according to claim 9 in which the coating is held by means of spraying, rolling or dipping.
12. A method according to claim 9 in which a surface active agent is added to the coating.
13. A method according to claim 9 in which the amount adhering from the treatment with aqueous solution is lg/l to l00g/I for the nickel ion and 20g/l or less for the molybdenum, tungsten, copper and potassium ion, respectively.
14. A method according to claim 13 in which the amount adhering from the treatment with aqueous solution is Sg/l to 25g/l for the nickel ion and Sg/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.

Claims (14)

1. A METHOD FOR THE MANUFACTURE OF A STEEL SHEET HAVING A NICKEL COMPOSITE FILM WHICH COMPRISES SUBJECTING A SURFACE OF A STEEL SHEET TO A CLEANING TREATMENT, COATING AN AQUEOUS SOLUTION ON SAID CLEANED SURFACE, SAID AQUEOUS SOLUTION BEING OBTAINED BY ADDING TO AN AQUEOUS SOLUTION CONTAINING A METALLIC ION OF NICKEL AT LEAST ONE MEMBER SELECTED FROM THE GROUP CONSISTING OF AN AQUEOUS SOLUTION CONTAINING A METALLIC ION OF MOLYBDENUM, AN AQUEOUS SOLUTION CONTAINING A METALLIC ION OF TUNGSTEN, AN AQUEOUS SOLUTION CONTAINING A METALLIC ION OF COPPER AND AN AQUEOUS SOLUTION CONTAINING A METALLIC ION OF POTASSIUM, HEATING THE SAME IN THE ATMOSPHERE OF A NON-OXIDIZING GAS, AND THEREBY FORMING ON SAID STEEL SHEET A FILM CONSISTING OF NICKEL AND AT LEAST ONE MEMBER SELECTED FROM MOLYBDENUM, TUNGSTEN, COPPER AND POTASSIUM.
2. A method according to claim 1 in which the heaTing is held at temperatures between 200*C and 750*C.
3. A method according to claim 1 in which the coating is held by means of spraying, rolling or dipping.
4. A method according to claim 1 in which a surface active agent is added in the coating.
5. A method according to claim 1 in which the amount adhering from the treatment with aqueous solution is 1g/l to 100g/l for the nickel ion, and 20g/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.
6. A steel sheet having a nickel composite film containing at least one member selected from the group consisting of molybdenum, tungsten, copper and potassium in the nickel film.
7. A steel sheet having a nickel composite film consisting of two layers, the lower layer being iron-nickel alloy and the upper layer being a mixed film of nickel with one or more member selected from the group consisting of molybdenum, tungsten, copper and potassium.
8. A method according to claim 5 in which the amount adhering from the treatment with aqueous solution is 5g/l to 25g/l for the nickel ion and 5g/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.
9. A method for the manufacture of a steel sheet having a nickel composite film which comprises subjecting a surface of a steel sheet to a cleaning treatment, coating an aqueous solution on said cleaned surface, said aqueous solution being obtained by adding to an aqueous solution of nickel acetate at least one member selected from the group consisting of an aqueous solution of ammonium molybdate, an aqueous solution of ammonium tungstate, an aqueous solution of copper acetate and an aqueous solution of tri-potassium phosphate, heating the same in the atmosphere of a non-oxidizing gas, and thereby forming on said steel sheet a film consisting of nickel and at least one member selected from molybdenum, tungsten, copper and potassium.
10. A method according to claim 9 in which the heating is held at temperatures between 200*C and 750*C.
11. A method according to claim 9 in which the coating is held by means of spraying, rolling or dipping.
12. A method according to claim 9 in which a surface active agent is added to the coating.
13. A method according to claim 9 in which the amount adhering from the treatment with aqueous solution is 1g/l to 100g/l for the nickel ion and 20g/l or less for the molybdenum, tungsten, copper and potassium ion, respectively.
14. A method according to claim 13 in which the amount adhering from the treatment with aqueous solution is 5g/l to 25g/l for the nickel ion and 5g/l or less for the molybdenum, tungsten, copper or potassium ion, respectively.
US395841A 1972-09-19 1973-09-10 Steel sheet having a nickel composite film and a method for manufacturing the same Expired - Lifetime US3894847A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9322372A JPS5332343B2 (en) 1972-09-19 1972-09-19

Publications (1)

Publication Number Publication Date
US3894847A true US3894847A (en) 1975-07-15

Family

ID=14076544

Family Applications (1)

Application Number Title Priority Date Filing Date
US395841A Expired - Lifetime US3894847A (en) 1972-09-19 1973-09-10 Steel sheet having a nickel composite film and a method for manufacturing the same

Country Status (3)

Country Link
US (1) US3894847A (en)
JP (1) JPS5332343B2 (en)
CA (1) CA1003710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035248A (en) * 1975-06-23 1977-07-12 Nippon Steel Corporation Method for the manufacture of a steel sheet having a Ni-diffused base layer which is treated with a chromic acid
US4235947A (en) * 1974-09-25 1980-11-25 Nippon Steel Corporation Method for the manufacture of a steel sheet adapted for use in ironing processing having good lubrication property
US4780342A (en) * 1987-07-20 1988-10-25 General Electric Company Electroless nickel plating composition and method for its preparation and use
US6022837A (en) * 1996-11-26 2000-02-08 Fujimi Incorporated Method for rinsing a polished memory hard disk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013732U (en) * 1983-07-07 1985-01-30 日本ケミコン株式会社 Flat plate electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677797A (en) * 1969-04-28 1972-07-18 Nippon Steel Corp Method of forming corrosion resistant films on steel plates
US3715231A (en) * 1971-05-28 1973-02-06 Us Army Storage of liquid hydrazine rocket fuels
US3801363A (en) * 1970-02-16 1974-04-02 Coors Porcelain Co Method for metalizing ceramic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677797A (en) * 1969-04-28 1972-07-18 Nippon Steel Corp Method of forming corrosion resistant films on steel plates
US3801363A (en) * 1970-02-16 1974-04-02 Coors Porcelain Co Method for metalizing ceramic
US3715231A (en) * 1971-05-28 1973-02-06 Us Army Storage of liquid hydrazine rocket fuels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235947A (en) * 1974-09-25 1980-11-25 Nippon Steel Corporation Method for the manufacture of a steel sheet adapted for use in ironing processing having good lubrication property
US4035248A (en) * 1975-06-23 1977-07-12 Nippon Steel Corporation Method for the manufacture of a steel sheet having a Ni-diffused base layer which is treated with a chromic acid
US4780342A (en) * 1987-07-20 1988-10-25 General Electric Company Electroless nickel plating composition and method for its preparation and use
US6022837A (en) * 1996-11-26 2000-02-08 Fujimi Incorporated Method for rinsing a polished memory hard disk

Also Published As

Publication number Publication date
CA1003710A (en) 1977-01-18
JPS4951130A (en) 1974-05-17
JPS5332343B2 (en) 1978-09-07

Similar Documents

Publication Publication Date Title
EP3589772B1 (en) Method for producing a hot-formed coated steel product
CN103038398B (en) Steel sheet for hot stamping, and process for manufacturing hot-stamped steel products using steel sheet for hot stamping
US4999258A (en) Thinly tin coated steel sheets having excellent rust resistance and weldability
US3894847A (en) Steel sheet having a nickel composite film and a method for manufacturing the same
US3849176A (en) Surface-treated steel plates high in anticorrosiveness
JPS60184688A (en) Surface treated steel sheet for welded can
US4035248A (en) Method for the manufacture of a steel sheet having a Ni-diffused base layer which is treated with a chromic acid
US4790913A (en) Method for producing an Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
JPS62297491A (en) Production of chromium electroplated steel sheet for vessel
JP2761025B2 (en) Aluminum alloy can lid and beverage can container
JP3261069B2 (en) Surface-treated steel sheet, polyester resin-coated steel sheet having excellent content resistance, and method for producing the same
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JPS60230995A (en) Manufacture of surface terated steel sheet for vessel
JP2820990B2 (en) Surface treated steel sheet excellent in weldability and method for producing the same
JP2642284B2 (en) High strength and high ductility alloyed hot-dip galvanized steel sheet
JPS57177991A (en) Steel plate plated with multiple dissimilar layers for can making
JPH03126888A (en) Surface-treated steel sheet excellent in workability and weldability
JPH05106091A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
EP0562115A1 (en) Aluminum alloy plate with excellent formability and production thereof
Cho Weathering Resistance of Hot Dipped Aluminum Coatings on Iron and Steel
JPS61113774A (en) Lead-tin alloy plated steel sheet having superior corrosion resistance
JPH06293996A (en) Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint
JPS63270581A (en) Coated welded can for canning
EP0946777A1 (en) METHOD OF HEAT-TREATING THIN SHEET COATED WITH ZnAl BY HOT DIP GALVANIZATION
DE2115052A1 (en) Tin-plate of superior corrosion resistance - by overcoating electrolytically with nickel-contg layers