US3894261A - No-crossover electron gun - Google Patents
No-crossover electron gun Download PDFInfo
- Publication number
- US3894261A US3894261A US377366A US37736673A US3894261A US 3894261 A US3894261 A US 3894261A US 377366 A US377366 A US 377366A US 37736673 A US37736673 A US 37736673A US 3894261 A US3894261 A US 3894261A
- Authority
- US
- United States
- Prior art keywords
- cathode
- electron gun
- electron
- electrons
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000003993 interaction Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/488—Schematic arrangements of the electrodes for beam forming; Place and form of the elecrodes
Definitions
- This invention relates to an electron gun for use in storage, scan converter and vidicon type tubes which have a storage target.
- This electron gun is character- [52] U.S. C].2 313/449; 313/452 i by a beam of electrons having an energy distribw [51] Int. Cl. H01J 29/48; HOIJ 29 62 i approaching that f a MaxwelLBoltzman distri [58] held of Search 313/65 65 452 bution characteristic of the cathode temperature.
- an electron beam may be used to discharge a storage surface to cathode potential (cathode stabilization) or, alternatively, its flow through an electrode may be controlled by a charge pattern on a dielectric storage surface which is close to cathode potential.
- the energy distribution in the beam is substantially wider than the theoretical Maxwell-Boltzman distribution, the electrons with excessively high energy can land on the dielectric of the target and cause the target potential to go negative with respect to the desired value.
- the wide energy distribution has a harmful effect on storage time and on the stability of cathode stabilization.
- an object of the present invention to provide an electron gun which will generate a beam of electrons with a narrow energy distribution to increase storage time and to improve the stability of cathode stabilization.
- Another object of the present invention is to provide an electron gun capable of achieving higher resolution in cathode ray type tubes incorporating a storage target.
- Still another object of the present invention is to provide a diode type electron gun for use in cathode ray type tubes having a storage target without an electrostatic field cross-over between the cathode surface and anode thereof.
- a further object of thepresent invention is to provide an electron gun capable of generating a beam of electrons having an energy distribution approaching that of the cathode Maxwell-Boltzman distribution.
- a typical planar thermionic cathode is closely spaced to a planar anode wherein there is disposed a small hole or trimming aperture of the order of 0.002 inch in diameter.
- FIG. 1 illustrates a cross-section drawing of the nocrossover electron gun of the present invention
- FIG. 2 shows a detail of the cathode-grid 2 aperture of the no-crossover electron gun of FIG. 1.
- FIG. 1 of the drawings there is shown a cross-sectional view of one embodiment of the no-crossover electron gun of the present invention which comprises a cathode assembly 10 which includes a cylindrical sleeve 11 having a closed end 12 at the right extremity thereof, as viewed in the drawing, with electron emissive material 14, FIG. 2, deposited on the outer surface thereof to provide a planar cathode surface.
- a cathode assembly 10 which includes a cylindrical sleeve 11 having a closed end 12 at the right extremity thereof, as viewed in the drawing, with electron emissive material 14, FIG. 2, deposited on the outer surface thereof to provide a planar cathode surface.
- an electric heater 15 positioned within cylindrical sleeve 11, provides the heat necessary for the activation of electrons from emissive material 14 onthe planar cathode surface.
- the cathode support cup Spaced concentrically about and substantially coextensive with the cathode assembly 10 is the cathode support cup which constitutes a cup-shaped electrode 16 with a circular aperture 17 in the center portion of the right extremity thereof, as viewed in the drawing, which has a diameter greater than that of sleeve 11 of the cathode assembly 10.
- grid 1, grid 2, and grid 3 Spaced from the cathode assembly 10 in the order named and in proper alignment along the path of electron travel are grid 1, grid 2, and grid 3.
- Grid 1 constitutes a lens cup 18 including a cylindrical portion 19 of substantially the same diameter as that of the cathodesupport cup 16 with a circular aperture 20 in the center portion of the left extremity thereof, as viewed in the drawing, of a diameter substantially equal to that of sleeve 11 of cathode assembly 10.
- Lens cup 18 additionally includes a lip portion 21 at the extremity thereof farthest from cathode assembly 10 and a circular disc 22 of a diameter less than the diameter of aperture 17 of cup-shaped electrode 16 but larger than that of aperture 20.
- Disc 22 is disposed concentrically over aperture 20 in electrical contact with lens cup 18 and onv the side thereof nearest the cathode assembly 10. Referring to FIG.
- disc 22 may, for example, have a thickness of the order of 0.010 inch and is spaced of the order of 0.006 inch from the planar cathode surface of cathode assembly 10.
- a hole 23 is disposed through the center of disc 22 and expands outwards from 0.002 inch on the side of disc 23 nearest the planar cathode surface to 0.010 inch on the oppo site side.
- grid 2 constitutes a cylindrical electrode 28 stepped-down in the center region thereof from a diameter equal to that of lens cup 18 to a diameter small enough to allow electrode 28 to be inserted into lens cup 18 without contact.
- grid 3 constitutes electrode 30 of substantially the same diameter as the larger diameter of cylindrical electrode 28 and extends from adjacent thereto to the right extremity of the electron gun as viewed in the drawing.
- the extremity of electrode 30 nearest electrode 28 is curved outwards and the opposite extremity is curved slightly inwards.
- An electron gun consisting of a cathode assembly including a metallic sleeve having a closed end at one extremity thereof thereby to provide a planar surface, and electron emissivematerial on said planar surface, and a heating element within said sleeve for heating said electron emissive surface; a cup-shaped electrode disposed concentrically about and substantially coextensive with said sleeve with a centrally disposed aperture surrounding said planar surface means for providing a control electrode having an aperture therein disposed adjacent and parallel to said planar surface for producing an electron beam; and means for providing a plurality of cylindrical accelerating elements about the path of said electron beam.
Landscapes
- Electron Beam Exposure (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US377366A US3894261A (en) | 1973-07-09 | 1973-07-09 | No-crossover electron gun |
FR7423679A FR2237308B1 (enrdf_load_stackoverflow) | 1973-07-09 | 1974-07-08 | |
JP49077954A JPS5039869A (enrdf_load_stackoverflow) | 1973-07-09 | 1974-07-09 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US377366A US3894261A (en) | 1973-07-09 | 1973-07-09 | No-crossover electron gun |
Publications (1)
Publication Number | Publication Date |
---|---|
US3894261A true US3894261A (en) | 1975-07-08 |
Family
ID=23488827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US377366A Expired - Lifetime US3894261A (en) | 1973-07-09 | 1973-07-09 | No-crossover electron gun |
Country Status (3)
Country | Link |
---|---|
US (1) | US3894261A (enrdf_load_stackoverflow) |
JP (1) | JPS5039869A (enrdf_load_stackoverflow) |
FR (1) | FR2237308B1 (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2927371A1 (de) * | 1978-07-20 | 1980-03-06 | Philips Nv | Aufnahmeroehre und verfahren zu deren herstellung |
DE3025886A1 (de) * | 1979-07-12 | 1981-05-21 | Naamloze Vennootschap Philips' Gloeilampenfabrieken, Eindhoven | Vorrichtung mit einer fernsehkameraroehre und fernsehkameraroehre fuer eine derartige vorrichtung |
DE3142777A1 (de) * | 1980-10-29 | 1982-07-08 | Hitachi, Ltd. | Elektronenkanone |
US4388556A (en) * | 1978-02-13 | 1983-06-14 | U.S. Philips Corporation | Low noise electron gun |
US4549113A (en) * | 1981-02-06 | 1985-10-22 | U.S. Philips Corporation | Low noise electron gun |
DE3628321A1 (de) * | 1985-08-23 | 1987-02-26 | Hitachi Ltd | Verfahren und vorrichtung zur steuerung der staerke des elektronenstrahls einer bildaufnahmeroehre |
EP1168412A1 (en) * | 2000-06-26 | 2002-01-02 | Sony Corporation | Electron gun, cathode ray tube and image display device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54129871A (en) * | 1978-02-13 | 1979-10-08 | Philips Nv | Device having camera tube |
NL7809345A (nl) * | 1978-09-14 | 1980-03-18 | Philips Nv | Kathodestraalbuis. |
US4540916A (en) * | 1981-10-30 | 1985-09-10 | Nippon Hoso Kyokai | Electron gun for television camera tube |
JPS5882763U (ja) * | 1981-11-30 | 1983-06-04 | 日本電気ホームエレクトロニクス株式会社 | 電子銃 |
NL8200253A (nl) * | 1982-01-25 | 1983-08-16 | Philips Nv | Televisiekamerabuis. |
JPS6129045A (ja) * | 1984-07-18 | 1986-02-08 | Hitachi Ltd | 撮像管装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3008064A (en) * | 1957-10-28 | 1961-11-07 | Rauland Corp | Cathode-ray tube |
US3295001A (en) * | 1963-06-04 | 1966-12-27 | Sylvania Electric Prod | Cathode ray tube gun having a second grid with an effective thickness |
US3436583A (en) * | 1966-03-15 | 1969-04-01 | Gen Electric | Electron gun |
US3628077A (en) * | 1970-02-26 | 1971-12-14 | Sylvania Electric Prod | Electron gun having concave coined grid and annular rib |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB519111A (en) * | 1938-06-09 | 1940-03-18 | Pye Ltd | Improvements in and relating to cathode ray tubes |
-
1973
- 1973-07-09 US US377366A patent/US3894261A/en not_active Expired - Lifetime
-
1974
- 1974-07-08 FR FR7423679A patent/FR2237308B1/fr not_active Expired
- 1974-07-09 JP JP49077954A patent/JPS5039869A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3008064A (en) * | 1957-10-28 | 1961-11-07 | Rauland Corp | Cathode-ray tube |
US3295001A (en) * | 1963-06-04 | 1966-12-27 | Sylvania Electric Prod | Cathode ray tube gun having a second grid with an effective thickness |
US3436583A (en) * | 1966-03-15 | 1969-04-01 | Gen Electric | Electron gun |
US3628077A (en) * | 1970-02-26 | 1971-12-14 | Sylvania Electric Prod | Electron gun having concave coined grid and annular rib |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4388556A (en) * | 1978-02-13 | 1983-06-14 | U.S. Philips Corporation | Low noise electron gun |
DE2927371A1 (de) * | 1978-07-20 | 1980-03-06 | Philips Nv | Aufnahmeroehre und verfahren zu deren herstellung |
US4309638A (en) * | 1978-07-20 | 1982-01-05 | U.S. Philips Corporation | Electron gun cathode support |
DE3025886A1 (de) * | 1979-07-12 | 1981-05-21 | Naamloze Vennootschap Philips' Gloeilampenfabrieken, Eindhoven | Vorrichtung mit einer fernsehkameraroehre und fernsehkameraroehre fuer eine derartige vorrichtung |
US4376907A (en) * | 1979-07-12 | 1983-03-15 | U.S. Philips Corporation | Television camera tube with diode electron gun |
DE3142777A1 (de) * | 1980-10-29 | 1982-07-08 | Hitachi, Ltd. | Elektronenkanone |
US4467243A (en) * | 1980-10-29 | 1984-08-21 | Hitachi, Ltd. | Electron gun |
US4549113A (en) * | 1981-02-06 | 1985-10-22 | U.S. Philips Corporation | Low noise electron gun |
DE3628321A1 (de) * | 1985-08-23 | 1987-02-26 | Hitachi Ltd | Verfahren und vorrichtung zur steuerung der staerke des elektronenstrahls einer bildaufnahmeroehre |
EP1168412A1 (en) * | 2000-06-26 | 2002-01-02 | Sony Corporation | Electron gun, cathode ray tube and image display device |
Also Published As
Publication number | Publication date |
---|---|
FR2237308A1 (enrdf_load_stackoverflow) | 1975-02-07 |
FR2237308B1 (enrdf_load_stackoverflow) | 1977-10-07 |
JPS5039869A (enrdf_load_stackoverflow) | 1975-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3894261A (en) | No-crossover electron gun | |
US3374386A (en) | Field emission cathode having tungsten miller indices 100 plane coated with zirconium, hafnium or magnesium on oxygen binder | |
US3980919A (en) | Rectangular beam laminar flow electron gun | |
US2971118A (en) | Electron discharge device | |
US2852716A (en) | Cathode ray tube and electron gun therefor | |
US2748312A (en) | Cathode-ray storage tube system | |
US4540916A (en) | Electron gun for television camera tube | |
US3377492A (en) | Flood gun for storage tubes having a dome-shaped cathode and dome-shaped grid electrodes | |
KR860001678B1 (ko) | 전 자 총 | |
US4023061A (en) | Dual mode gridded gun | |
US2049781A (en) | Braun tube especially for television purposes | |
US2877369A (en) | Electron beam tube | |
US2735032A (en) | bradley | |
US3139552A (en) | Charged particle gun with nonspherical emissive surface | |
US2971108A (en) | Electron discharge device | |
US3217200A (en) | Internal magnetic lens for electron beams | |
US3046442A (en) | High perveance beam forming system | |
US2228958A (en) | Cathode ray tube | |
US3363961A (en) | Cathode arrangement of an electron microscope for reducing the occurrence of virtualcathodes | |
US2564743A (en) | Charged particle beam forming apparatus | |
US2922072A (en) | Image reproduction device | |
US3278780A (en) | Storage display tube with a shield separator between the writing gun and the flood gun | |
US2582402A (en) | Ion trap type electron gun | |
US3202864A (en) | Electron beam device having divergent emission electron gun | |
US4048534A (en) | Radial flow electron gun |