US3892968A - Electron capture detector systems - Google Patents
Electron capture detector systems Download PDFInfo
- Publication number
- US3892968A US3892968A US42161573A US3892968A US 3892968 A US3892968 A US 3892968A US 42161573 A US42161573 A US 42161573A US 3892968 A US3892968 A US 3892968A
- Authority
- US
- United States
- Prior art keywords
- detector
- output signal
- electrodes
- potential
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005264 electron capture Effects 0.000 title claims abstract description 16
- 239000007789 gases Substances 0.000 claims abstract description 26
- 239000006096 absorbing agents Substances 0.000 claims abstract description 13
- 230000000051 modifying Effects 0.000 claims abstract description 8
- 230000001360 synchronised Effects 0.000 claims description 8
- 239000003574 free electron Substances 0.000 claims description 7
- 230000001808 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reactions Methods 0.000 claims 1
- 239000000126 substances Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 2
- 230000002285 radioactive Effects 0.000 description 2
- 210000004556 Brain Anatomy 0.000 description 1
- 239000011149 active materials Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical methods Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001809 detectable Effects 0.000 description 1
- 238000005755 formation reactions Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 methods Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound   O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode
- G01N27/64—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
- G01N27/66—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber and measuring current or voltage
Abstract
Description
United States Patent [191 Lov'elock 1 July 1, 1975 [76] Inventor: James Ephraim Lovelock,
Bowerchalke, Salisbury, England [22] Filed: Dec. 4, 1973 [2-1] App]. No.: 421,615 [63] Related US. Application Data Continuation of Ser. No. 278,411, Aug. 7. 1972, abandoned. [30] Foreign Application Priority Data Aug. 6, 1971 United Kingdom 37025/71 52 US. Cl. 250/389; 250/384; 250/385; 1 250/387 [51] Int. Cl. G0lt 1/18 [58] Field of Search 250/389, 385, 432, 356, 250/384; 324/33; 313/54, 93
[56] References Cited UNITED STATES PATENTS 3,009,097 11/1961 Strange 324/33 gas inlet.
3,154,680 10/1964 Greene 324/33 3,573,460 4/1971 Skala 324/33 3,688,106 8/1972 Brain 250/389 Primary Examiner-Harold A. Dixon Attorney, Ag'e'ht, or Firm--Woodhams, Blanchard and Flynn [5 7 ABSTRACT Two electron capture detectors are connected together such that a gas flows through the first detector and then into the second detector. The potential across the first detector is switched regularly between maximum and rriinimum values and the signal derived from the second detector is modulated by this switching action whenever a strong electron absorber is present in the gas flow.
3 Claims, 1 Drawing Figure LOW FREQUENCY GENERATOR l SYNCHRONOU CONVERTOR.
oti fi t. AMPLl'F lER.
SIGNAL.
POLARIZATION FOR DETECTOR B.
LOW FREQUENCY GENERATOR l SIGNAL.
0353i. AMPLIFIER as i nlet.
POLARIZATION FOR DETECTOR B.
1 ELECTRON cA rURir DErEcToig SYSTEMS This is a continuation-of application seiner-278,41 l filed'Au'g. 7, 197-2, and now abandoned;
The present invention relates to electron capture detector systems. n! r An electron capture detector,comprisesanionization chamber having spaced apart; elpctrodesanda:source of ionising radiation located withirtthe chamber. Upon entry of a gas possessing no affini ty for electrons into the chamber, recombination of positive ions and free electrons is unlikely to take place because of the high mobility of the free electrons. Thus by applying a potential across the chamber all ions formed by the ionising radiation can be collected. When the gas contains a substance having an affinity for electrons negative ion formation occurs which is accompanied by an observed decrease in current.
The presence of extraneous weakly absorbing subtances in the gas flow through the detector can interfere with or prevent the correct functioning of the de- 1 the electrodes of the first detector between zero and maximum values and means for detecting an output signal from the second detector.
The invention will be described further, by way of example, with reference to the accompanying diagrammatic drawing of an electron capture detector system.
In the drawing reference letters A and B denote two electron capture detectors coupled together such that gas entering A through an inlet passes through A and enters B before exhausting at an outlet from B. The detectors A and B are electrically insulated the one from K the other as denoted at C. Detector B is connected to an amplifier or other electronic system. The operation of detector B can be by a DC polarising potential, by pulses or by a frequency modulated procedure.
Detector A is arranged to be polarised either with a high DC potential, for example 100 volts, which is sufficient to remove all electrons present in an incoming gas, or with zero potential whereby the free electron concentration in the gas can be the maximum possible.
If a strong electron absorber is present in the incoming The system can be used to distinguish a weak from a strong electron absorbing substance. The system can thus be used in the identification of such substances. If I the potential on detector A is switched regularly between zero and high potential, at for example one or more cycles per second, then the signal at the second detector B will be modulated by this switching cycle whenever a strong electron absorber is present in the The system" pr gas-zentering detector A. The drawing s hows ,a.,circuit iarrangement; of the two; detectors .andiincludis'ia synchronous coriverter' tov rectify alternating "signal "tration's of weakly absorbing sub stai,1e,s' can interfere with or even prevent analysis; l The preisent' system incorporati'ng tw'o'detectors -is riot sensitive to weakly absorbing substances provided that the electron concentration in the two detectors is not so far reduced by the presence of the weak absorber as to prevent the detection of the strong electron absorber. Subject to this condition the presence of weakly absorbing substances, such as oxygen, give no detectable or adverse effect.
The synchronous production, amplification and rectification of the signal results in an improvement in stability and a reduction in noise level.
Alpha emitting radio-active sources, such as Am 241, give intense ionisation with only a small amount of radio-active material. However the resulting increase in noise level prevents the use of such sources in conventional electron capture systems. This restriction is avoided by the present system.
I claim:
1. An electron capture detector system, for detecting the presence of an electron absorber in a gas sample, comprising in combination:
first and second electron capture detectors electrically insulated the one from the other, said first and second detectors being coupled together in series such that the gas sample flows through the first detector and then through the second detector, said first detector including electrodes for receiving a potential, said second detector including means for producing an output signal, means periodically switching the potential applied across the electrodes of the first detector between minimum and maximum values for modulating the output signal of the second detector in response to presence of an electron absorber in the gas sample, and means for detecting the output signal from the second detector, said second detector including electrodes, said means for producing an output signal including means applying a polarizing potential to said second detector electrodes, said output signal of said second detector being an alternating signal, said means for detectingthe output signal including a synchronous converter for rectifying said alternating signal from said second detector.
2. An electron capture detector system, for detecting the presence of an electron absorber in a gas sample, comprising in combination:
first and second electron capture detectors electrically insulated the one from the other, said first and second detectors being coupled together in series such that the gas sample flows through the first detector and then through the second detector, said first detector including electrodes for receiving a potential, said second detector including means for producing an output signal, means periodically switching the potential applied across the electrodes of the first detector between minimum and maximum values for modulating the output signal further electrodes, said synchronous converter being coupled further to one of said second detec- 4 tor electrodes for rectifying the alternating output signal from the second detector 3 The system of claim 2 in which said minimum and maximum values correspond, respectively, to a first p0- tenti'al wherein the free electron concentration in the io ized gas sample is maximized and to a second potential wherein substantially all free electrons present in the ionized gas sample are removed therefrom by said first detector electrodes.
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3702571A GB1404754A (en) | 1971-08-06 | 1971-08-06 | Electron capture detector systems |
US27841172A true | 1972-08-07 | 1972-08-07 | |
US42161573 US3892968A (en) | 1971-08-06 | 1973-12-04 | Electron capture detector systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42161573 US3892968A (en) | 1971-08-06 | 1973-12-04 | Electron capture detector systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US3892968A true US3892968A (en) | 1975-07-01 |
Family
ID=27259404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US42161573 Expired - Lifetime US3892968A (en) | 1971-08-06 | 1973-12-04 | Electron capture detector systems |
Country Status (1)
Country | Link |
---|---|
US (1) | US3892968A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019863A (en) * | 1974-04-08 | 1977-04-26 | Anthony Jenkins | Selective detection of a constituent in an atmosphere |
US4028549A (en) * | 1974-12-06 | 1977-06-07 | Shigeo Baba | Synchronized accumulating radiodetector |
US4119851A (en) * | 1977-06-23 | 1978-10-10 | Honeywell Inc. | Apparatus and a method for detecting and measuring trace gases in air or other gas backgrounds |
US4567368A (en) * | 1984-01-19 | 1986-01-28 | Varian Associates, Inc. | Bipolar pulsed electron capture detectors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3009097A (en) * | 1958-02-19 | 1961-11-14 | Mine Safety Appliances Co | Method of oxygen detection |
US3154680A (en) * | 1956-10-18 | 1964-10-27 | Air Reduction | Gas analysis by measuring negative ions resulting from captured electrons |
US3573460A (en) * | 1966-09-12 | 1971-04-06 | Gen Electric | Ion chamber detector for submicron particles |
US3688106A (en) * | 1969-03-28 | 1972-08-29 | Nat Res Dev | Measuring the density, velocity and mass flow of gases |
-
1973
- 1973-12-04 US US42161573 patent/US3892968A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3154680A (en) * | 1956-10-18 | 1964-10-27 | Air Reduction | Gas analysis by measuring negative ions resulting from captured electrons |
US3009097A (en) * | 1958-02-19 | 1961-11-14 | Mine Safety Appliances Co | Method of oxygen detection |
US3573460A (en) * | 1966-09-12 | 1971-04-06 | Gen Electric | Ion chamber detector for submicron particles |
US3688106A (en) * | 1969-03-28 | 1972-08-29 | Nat Res Dev | Measuring the density, velocity and mass flow of gases |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4019863A (en) * | 1974-04-08 | 1977-04-26 | Anthony Jenkins | Selective detection of a constituent in an atmosphere |
US4028549A (en) * | 1974-12-06 | 1977-06-07 | Shigeo Baba | Synchronized accumulating radiodetector |
US4119851A (en) * | 1977-06-23 | 1978-10-10 | Honeywell Inc. | Apparatus and a method for detecting and measuring trace gases in air or other gas backgrounds |
US4567368A (en) * | 1984-01-19 | 1986-01-28 | Varian Associates, Inc. | Bipolar pulsed electron capture detectors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Segre et al. | Experiments on the Effect of Atomic Electrons on the Decay Constant of Be 7 | |
Bondoux et al. | New approach to the analysis of low levels of anions in water | |
JP4550802B2 (en) | Obstacle substance detection method and obstacle substance detection system | |
US5491337A (en) | Ion trap mobility spectrometer and method of operation for enhanced detection of narcotics | |
US5393979A (en) | Photo-ionization detector for detecting volatile organic gases | |
Bortner et al. | Ionization of pure gases and mixtures of gases by 5-MeV alpha particles | |
Lovelock | Ionization methods for the analysis of gases and vapors | |
US5032721A (en) | Acid gas monitor based on ion mobility spectrometry | |
CA2161924C (en) | Radon gas measurement apparatus having alpha particle-detecting photovoltaic photodiode surrounded by porous pressed metal daughter filter electrically charged as po-218 ion accelerator | |
US4019863A (en) | Selective detection of a constituent in an atmosphere | |
Lubman et al. | Plasma chromatography with laser-produced ions | |
US3997297A (en) | Method and apparatus for detecting a constituent in an atmosphere | |
US2469460A (en) | Radioactivity measurement | |
Karasek et al. | Qualitative studies of trace constituents by plasma chromatography | |
WO1993022033A1 (en) | Photoionization ion mobility spectrometer | |
US5059803A (en) | Rugged alpha particle counter | |
US6924479B2 (en) | Ion detecting apparatus and methods | |
GB828121A (en) | Apparatus responsive to the composition of a gaseous medium | |
JPS62172257A (en) | Proton conductor gas sensor | |
Aue et al. | Application of the alkali-flame detector to nitrogen containing compounds | |
SU1627984A2 (en) | Method of gas analysis for impurities | |
US3920987A (en) | Method and system for detecting explosives | |
US3668383A (en) | Apparatus and methods for separating, detecting, and measuring trace gases | |
CN101504388A (en) | Miniature optical ionization sensor | |
US6727504B1 (en) | Boron nitride solid state neutron detector |