US3888707A - Flexible, self-supporting explosive composition - Google Patents

Flexible, self-supporting explosive composition Download PDF

Info

Publication number
US3888707A
US3888707A US243504A US24350472A US3888707A US 3888707 A US3888707 A US 3888707A US 243504 A US243504 A US 243504A US 24350472 A US24350472 A US 24350472A US 3888707 A US3888707 A US 3888707A
Authority
US
United States
Prior art keywords
explosive
composition according
weight
flexible
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US243504A
Inventor
Julius Rothenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US243504A priority Critical patent/US3888707A/en
Priority to IL41816A priority patent/IL41816A0/en
Priority to BE129020A priority patent/BE797052A/en
Priority to DE2313886A priority patent/DE2313886A1/en
Priority to IT48902/73A priority patent/IT979915B/en
Priority to FR7309902A priority patent/FR2176930A1/fr
Priority to JP48032581A priority patent/JPS4919010A/ja
Application granted granted Critical
Publication of US3888707A publication Critical patent/US3888707A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Definitions

  • No.: 243,504 properties of flexible explosives comprising a dispersion of fine particle size explosive filler in a readily curable low-density binder system formed of a liquid [52] 3 3 2 2 3 curable prepolymer such as a dihydroxy polybutadiene 51 I t Cl C06b 15/02: (306d 6 and a coupling curing agent such as a diisocyanate and "fi 93 19 4 19 9 optionally a low density compatible plasticizer.
  • the 1 0 care i 4 1 composition cures at low temperature to form a flexible, self-supporting, thermally stable, non- References Cited thermoplastic high energy explosive.
  • the present invention relates to flexible, selfsupporting explosive compositions and, more particularly, to castable, thermally stable, nonthermoplastic compositions containing very high solids content.
  • the solids content of the explosive filler concentration is limited because at high solids content, the compositions are not readily castable because the resin binder system is incapable of binding large amounts of solids or the composition becomes too brittle to be usable.
  • the low concentration of explosive filler reduces the detonation rate and/or increases the critical thickness required for detonation propagation.
  • a further object of the invention is the provision of flexible explosive compositions incorporating a high concentration of fine particles of explosive in binder and being provided in lower critical thickness sizes.
  • a further object of the invention is the provision of castable, thermally stable, non-thermoplastic explosive compositions that are both flexible and self-supporting.
  • compositions of the present invention comprises a high concentration of substantially fine particle size explosive filler uniformly dispersed in a binder composition formed of a low density prepolymer and appropriate low temperature curing and catalytic agents and optionally and preferably a compatible low density plasticizer.
  • the fine particle size filler insures minimal critical thickness for detonation propagation.
  • the low density prepolymer has a low viscosity in the precured condition and is capable of accommodating the high concentration of explosive filler necessary to attain high rates of detonation.
  • the low temperature prepolymer readily cures under mild conditions to crosslinked, flexible, elastomeric non thermoplastic, polymeric materials that are thermally stable.
  • composition of the invention generally includes in parts by weight:
  • the explosive filler material is preferably a capsensitive, crystalline organic compound suitably having an average particle size below microns and preferably a -325 mesh material having an average particle size between about less than 1 to about 30 microns, preferably 15 to 20 microns.
  • the compounds generally used are organic nitrates such as PETN or cyclonitramines such as I-IMX or RDX or mixtures thereof.
  • Critical thickness for the composition of the invention are between 0.05 to 0.30 inches.
  • the filler particles may be coated with a suitable desensitizing agent such as a dialkyl ester of a carboxylic acid for example 0.1 to 1 per cent of dioctyl adipate based on the weight of the explosive filler.
  • the elastomeric binder is formed by the condensation reaction between a liquid prepolymer of the formula:
  • n is an integer from O-4, m is an integer of at least 2
  • R is an organic radical containing from 2 to 50 carbon atoms
  • R is an organic moiety having a molecular weight from 1,000 to 15,000, preferably l,0O0-5,000
  • Z and Y are coreactive condensible end and/or side groups, which are capable of in-situ reaction to chain extend and crosslink the liquid prepolymer to form a continuous, flexible, thermally stable, high tensile strength explosive filler binder film.
  • the readily curable liquid prepolymer is of a type compatible with the other components of the explosive composition and is preferably soluble, miscible, or fusible with the other components of the composition.
  • the R or backbone portion of the liquid prepolymer is preferably an elastomer forming prepolymer such as a diene prepolymer or a polyether prepolymer.
  • the diene prepolymer may be a polymer of a conjugated diene containing from 4 to 12 carbon atoms per molecule and preferably four to eight carbon atoms per molecule, such as l,3-butadiene, isoprene, 2,3-dimethyll ,3-butadiene, l,3pentadiene (piperylene 3-methyl-l,3-pentadiene, 1,3-heptadiene, 3-butyl-1,3- octadiene, phenyl-l ,3-butadiene and the like.
  • l,3-butadiene isoprene
  • 2,3-dimethyll ,3-butadiene l,3pentadiene (piperylene 3-methyl-l,3-pentadiene, 1,3-heptadiene, 3-butyl-1,3- octadiene, phenyl-l ,3-butadiene and the like.
  • the conjugated diene may also contain hydroxy, carboxyl or lower alkoxy substituents along the chain such as 2- methoxyl ,3-butadiene, 2-ethoxy-3-ethyl-l ,3- butadiene, and 2-ethoxy-3-methyl-l,3-hexadiene.
  • Suitable co-monomers are vinyl compounds such as vinyl-substituted aromatic and aliphatic compounds.
  • Examples of co-monomers that can be employed in the elastomer forming liquid prepolymers of the invention include acrylonitrile, methacrylonitrile, propylene, butene, isobutylene, styrene, l vinylnaphthalene, 2-vinylnapthalene, and alkyl, cycloalkyl, aryl, alkaryl, aralkyl, alkoxy, aryloxy, and dialkylamino derivatives thereof.
  • the equivalent weight of the liquid prepolymer is at least a thousand and not usually more than five thousand.
  • the functionality of the prepolymer is advantageously slightly over 2, but less than to form by crosslinking and chain-extending final polymers of the molecular weight of at least 20,000. With higher molecular weight prepolymers, it may be necessary to apply heat to reduce viscosity. Therefore, the equivalent weight is preferably from 1,000 to 3,000.
  • the low molecular weight liquid reacts at ambient temperature to produce a high molecular weight elastomer.
  • the functionality of the prepolymer is preferably maintained within the range of 2.1 to about 2.5 in order that excessive cross-linking does not transform the product into too brittle a state and thus reduce the resilient properties desirable for sheet or shaped forms of the product.
  • the diene prepolymers preferably contain a minimum amount of 1,2 addition to avoid excessive decrease of elastomeric properties.
  • a suitable material is a butadiene polymer of equivalent weight of about l,000-2,000 and has a functionality slightly greater than two and comprises 60% cis 1,4 units, trans 1,4 and about 20% 1,2 vinyl units.
  • polyhydroxy elastomer forming prepolymers are polyoxyalkylene glycols such as polyethylene, polypropylene or polybutylene glycols or esters thereof, neopentyl glycol adipate, polyethylene glycol azelate, sorbitol polyethers and polyoxypropylene oxide adducts of trimethylolpropane (TMP).
  • polyoxyalkylene glycols such as polyethylene, polypropylene or polybutylene glycols or esters thereof, neopentyl glycol adipate, polyethylene glycol azelate, sorbitol polyethers and polyoxypropylene oxide adducts of trimethylolpropane (TMP).
  • TMP trimethylolpropane
  • the coupling-curing systems can include various types of polyfunctional curatives reactive with the end or side chain functional groups.
  • the thiol or hydroxyl substituted liquid prepolymers can be coupled and cured with aliphatic, aromatic cycloaliphatic polyfunctional compounds containing isocyanate. carboxyl, anhydride, amine, hydroxyl or epoxy groups.
  • the polyisocyanates are those represented by the general formula RHNCOM wherein R is a polyvalent organic radical containing from two to 30 carbon atoms and m is 2,3 or 4. R can be aliphatic, cycloaliphatic or aromatic. It is preferred that the organic radical be essentially hydrocarbon in character although the presence of unreactive groups containing elements other than carbon and hydrogen is permissible.
  • Suitable compounds of this type include benzene 1,3-diisocyanate, hexamethylene 1,6 diisocyanate, (HDI) tolylene 2,4-diisocyanate (TDI), TDl dimer, tolylene 2,3-diisocyanate, metaphenylene diisocyanate (MDI) diphenylmethane 4,4- diisocyanate, naphthalene 1,5-diisocyanate, diphenyl 3,3'-dimethyl 4,4-diisocyanate, diphenyl 3,3- dimethoxy 4,4'-diisocyanate diethyl ether, 3(diethylaminolpentane l,5-diisocyanate, butane 1,4-
  • isocyanate terminated prepolymers are readily formed by reacting a hydroxyl substituted prepolymer with a diisocyanate, or a polyisocyanate.
  • PAPI-1 A suitable, commercially available polyaryl polyisocyanate is known as PAPI-1. This material has an average of 3 isocyanate groups per molecule and an average molecular weight of about 380.
  • Exemplary polybasic acids reactive with hydroxyl or thiol modified polymers of the invention include maleic acid, pyromellitic acid, succinic acid, phthalic acid, terephthalic acid, trimellitic acid, and the like.
  • isocyanate substituted prepolymers are also chain extended and cured with polyamines.
  • polyamines include tetraethylenepentamine, ethylenediamine, diethylene triamine, triethylene-triamine, ophenylenediamine, 1,2-propane-diamine, 1,2- butanediamine, piperazine, 1,2,3-benzenetriamine, 3,3-biphenyldiamine, methylene dianiline or N,N bis(- l,4-dimethylpentyl)-paraphenylenediamine.
  • the fatty diamines or amine terminated polyamides such as can be produced by condensation of polyamines with polybasic acids can also be used.
  • Urethane or ester linked polymers are formed when isocyanate or carboxyl substituted prepolymers where from Formula I.
  • Y is -NCO or -COOH, are cured with polyhydroxy compounds.
  • These compounds can be either aliphatic or aromatic polyols or certain polyether products.
  • Examples of such coupling-curing agents include castor oil, ethylene glycol, glycerol, propylene glycol, neopentylglycol, glycerol monoriconoleate, pentaerythritol, trimethanolethane, trimethanolpropane, butanediol or hexanetriol.
  • an elastomer is formed of a plurality of prepolymer elastomeric units joined by coupling reagents which condense to form linking urethane, thiourethane, ester, urea, alkyl, or dialkyl, urea, thiourea, aminoalkyl units or combinations thereof.
  • a low density plasticizer such as a thermoplastic hydrocarbon resin compatible with the prepolymer and contributing no other properties, suitably a polybutene, in a preferred concentration of 30-50 percent by weight of the prepolymer may be present.
  • the amount of plasticizer is chosen according to the desired critical thickness and in accordance with processing limitations
  • Optional filler or other additives may be present such as inert inorganic material such as metal or metal oxide particles for example aluminum or aluminum oxide, or pigments such as lead chromate or carbon black or organic additives such as triacetin pigment or antioxidants, for example sym. di-beta-naphthyl-para phenylene diamine or other additives useful for improving processing cure or properties of the precured or cured compositions.
  • compositions are chosen so as to balance processability, extrudability and flexibility with the ability to incorporate maximum presented for illustrative purposes and it being readily understood that alternative ingredients and proportions may be readily utilized to form composition within the scope of this invention.
  • a difunctional coupling curing agent EXAMPLE 2 in an amount from 50 to 150 percent of stoichiometric A 400 gram b h f a fl ibl explosive was based on the functionality of the prepolymer is capable pared by mixing at 1 10 .1 15 and 5 weight percent of providing a Satisfactory Product Polymers having a of Class E RDX (approximately 77-325 mesh, average functionality of 2 or less the coupling curing agent pref i l i 15 2() micron d t i i 05 i ht erably has a functionality Of 2 01 more.
  • Crosslinking bepercent dioctyl adipate desensitizer based on the tween prepolymer chains can result whenever the preweight of RDX), with a prepolymer portion comprised polymer or coupling-curing agent has a functionality of 100 equivalents ofa hydroxy terminated polybutadigreater than ene having an equivalent weight of 1150, and a func- Polymerization modifiers can be added to increase or ti lit b t 2 and 3, 80 equivalent of TD] decrease stiffness as desired.
  • a composition was prepared according to the proce-
  • the coupling-curing reaction can be promoted or acdure of Example 2 containing 73.4 wt 7: class E RDX celerated by an appropriate curing catalyst such as 0.01 (0.5 wt dioctyl adipate desensitizer) instead of the 65 to I percent a heavy metal salt of an alkanoic acid.
  • suitwt7 of Example 2. ably ferric acetylacetonate or stannous octoate.
  • the critical thickness processability and curing prop- The composition is simply formed by combining the erties of the sheet explosives of Example 2 and 3 are ingredients. mixing to form a uniform dispersion and listed in Table 1 below.
  • the curable composition can be cast into a film of appropriate thickness and cured or the cured composition can be molded or rolled, sliced or cut into a product of a desired thickness and shape.
  • the material can be utilized in perforate or imperforate form, as is known in the art.
  • Example 3 gave a detonation velocity of 7,230 m/sec which is above the 7,000 m/sec value considered as satisfactory.
  • the tensile strengths were 47 and 46 psi and the elongations at 77, 155 and 72 percent, respectively. Flexibility from 65 to +160F is good and no cracks occur either at 40F or after 24 hours of immersion in water at 160F when bent 90 around a 0.25-in. dowel. In fact, no cracks occur when bent 180 around the dowel although a 1/l6-in. crack is specified as tolerable.
  • the sensitivities as measured by Bureau of Mines impact sensitivity, rotary friction, and electrostatic sensitivity appear satisfactory.
  • the vacuum stabilities are of the order of 0.25 to 0.33 ml/gm/lC/48 hrs compared to 5.0 ml considered adequate. Based on previous experience, these formulations would be expected to have long shelf lives.
  • the invention provides a castable, thermally stable, non-thermoplastic, flexible, explosive composition with low critical thickness propagation to detonation, containing an explosive filler, a low density diluent or plasticizer, and a binder comprising a low density, readily curable prepolymer and a curing agent.
  • the composition will readily find use in sheet, or ribbon and a variety of other cast molded or extruded shapes. Typical applications are in destruct and anti- Dersonnel devices, field demolition, underwater energy generation and in metal hardening.
  • compositions )f this invention will find substantial use as flexible thin 111661: explosives having a critical thickness from about 0.05 to about 0.5 inches, a detonation velocity between 6,600 and 8,000 m/sec and a density from 1.4 to 1.6 g/cc.
  • the sheet may be perforated to form a line-wave generator as a triangular section of the sheet. A detonation initiated at any apex of the triangle will proceed as a straightline detonation zone to the opposite edge.
  • the line-wave generator can be used to initiate cylindrical explosion charges or to fabricate plane-wave generators.
  • a castable composition for forming a selfsupporting, thermally stable, flexible explosive comprising 60-85 weight percent of fine particulate explosive filler selected from organic nitrates and organic nitramines dispersed in a binder formed of a low temperature curable liquid prepolymer of the formula and a coupling curing agent of the formula where n is an integer from 0 to 4, m is an integer of at least 2, R is an organic moiety having a molecu lar weight from 1,000 to 15,000, R is an organic radical containing 2-50 carbon atoms and Z and Y are coreactive, condensible groups, capable of reaction to form ZY links which chain extend and crosslink the liquid prepolymer to form a continuous, flexible, thermally stable, high tensile strength explosive composition with high detonation velocity and low critical thickness, wherein Y is selected from the group consisting of thiol, hydroxyl, isocyanate, epoxy and amine and Z is a group coreactive and condensible with Y selected from the
  • liquid prepolymer is a polyhydroxy polybutadiene having an equivalent weight from 1,000 to 3,000 and a functionality from 2.0 to 2.5 and the coupling-curing agent is a triisocyanate.
  • a composition according to claim 1 containing about 10 to 22 parts by weight of the prepolymer and l to 5 parts by weight of the coupling-curing agent.
  • composition according to claim 6 further including to percent by weight of a low density, compatible plasticizer.
  • composition according to claim 1 in sheet form having a thickness from 0.05 to about 0.40 inches and a detonation velocity from 6,600 to 7,500 meters per second,
  • composition according to claim 8 in which said sheet is perforated.
  • a method of forming a castable, thermally stable, non-thermoplastic explosive composition that is both flexible and self-supporting comprising the steps of:
  • n is an integer from 0 to 4
  • m is an integer of at least 2
  • R is an organic moiety having a molecular weight from 1,000 to 15,000
  • R is an organic radical containing 2-50 carbon atoms
  • Z and Y are coreactive, condensible groups, capable of reaction to form ZY links which chain extend and crosslink the liquid prepolymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A castable composition exhibiting all the desirable properties of flexible explosives comprising a dispersion of fine particle size explosive filler in a readily curable low-density binder system formed of a liquid curable prepolymer such as a dihydroxy polybutadiene and a coupling curing agent such as a diisocyanate and optionally a low density compatible plasticizer. The composition cures at low temperature to form a flexible, selfsupporting, thermally stable, non-thermoplastic high energy explosive.

Description

Q United States Patent [1 1 [111 3,888,707
Rothenstein June 10, 1975 [54] FLEXIBLE, SELF-SUPPORTING 3,447,980 6/ 1969 Voigt l49/l9 EXPLOSIVE COMPOSITION 3,507,722 4/1970 Hamrick. 149/92 X [75] Inventor: Julius Rothenstein, Sacramento,
Calif. Primary Examiner-Benjamin R. Padgett [73] Assignee: The United States of America as represented by the Secretary of the Navy, Washington, DC. [57] ABSTRACT [22] Filed: 1972 A castable composition exhibiting all the desirable [21] Appl. No.: 243,504 properties of flexible explosives comprising a dispersion of fine particle size explosive filler in a readily curable low-density binder system formed of a liquid [52] 3 3 2 2 3 curable prepolymer such as a dihydroxy polybutadiene 51 I t Cl C06b 15/02: (306d 6 and a coupling curing agent such as a diisocyanate and "fi 93 19 4 19 9 optionally a low density compatible plasticizer. The 1 0 care i 4 1 composition cures at low temperature to form a flexible, self-supporting, thermally stable, non- References Cited thermoplastic high energy explosive.
UNITED STATES PATENTS 10 Claims No Drawings 13,338,764 18/1967 Evans 149/93 X FLEXIBLE, SELF-SUPPORTING EXPLOSIVE COMPOSITION BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to flexible, selfsupporting explosive compositions and, more particularly, to castable, thermally stable, nonthermoplastic compositions containing very high solids content.
2. Description of the Prior Art The relative scarcity, but apparent need for readily processable, safe, high energy explosives that have appropriately high rates of detonation and suitably low critical thickness propagation to quality as satisfactory flexible :sheet explosives under MIL specification MIL-B46676 (MV) and BUWEPS Notice 8027, has motivated new research in this field. The qualified sheet explosives are unique because they fulfill certain needs that cannot readily be met by other kinds of ex plosive material. In service they require toughness, durability, uniform detonation velocity and a high degree of safety. In addition to their flexibility, they are water proof, insensitive to shock, easy to cut to any desired shape and easy to apply. Among the more widely known applications are uses in metal cutting and hardening, underwater and general demolition, line wave generators and safe-arm devices.
Of the explosives that qualify under the cited military specifications, perhaps the most widely known are extrudable compositions containing 63-75 percent pentaerithrytol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) in a phosphate or carboxylate ester plasticized nitrocellulose binder or in a polyterpene plasticized preformed polymeric rubber binder. These presently available explosive compositions have certain inherent shortcomings when utilized in applications requiring flexible sheet. These application techniques are limited to extrusion because of the thermoplastic nature of the binder. Binder thermoplasticity limits temperature of potential applications or use. Furthermore, the solids content of the explosive filler concentration is limited because at high solids content, the compositions are not readily castable because the resin binder system is incapable of binding large amounts of solids or the composition becomes too brittle to be usable. The low concentration of explosive filler reduces the detonation rate and/or increases the critical thickness required for detonation propagation.
OBJECTS AND SUMMARY OF THE INVENTION It is therefore an object of the invention to fabricate castable explosive compositions capable of forming flexible explosives and obviating processing limitations and other shortcomings of presently available, flexible, explosive compositions.
A further object of the invention is the provision of flexible explosive compositions incorporating a high concentration of fine particles of explosive in binder and being provided in lower critical thickness sizes.
A further object of the invention is the provision of castable, thermally stable, non-thermoplastic explosive compositions that are both flexible and self-supporting.
These and other objects and many other attendant advantages of the invention will become apparent as the description proceeds.
The compositions of the present invention comprises a high concentration of substantially fine particle size explosive filler uniformly dispersed in a binder composition formed of a low density prepolymer and appropriate low temperature curing and catalytic agents and optionally and preferably a compatible low density plasticizer. The fine particle size filler insures minimal critical thickness for detonation propagation. The low density prepolymer has a low viscosity in the precured condition and is capable of accommodating the high concentration of explosive filler necessary to attain high rates of detonation. The low temperature prepolymer readily cures under mild conditions to crosslinked, flexible, elastomeric non thermoplastic, polymeric materials that are thermally stable.
The composition of the invention generally includes in parts by weight:
The explosive filler material is preferably a capsensitive, crystalline organic compound suitably having an average particle size below microns and preferably a -325 mesh material having an average particle size between about less than 1 to about 30 microns, preferably 15 to 20 microns. The compounds generally used are organic nitrates such as PETN or cyclonitramines such as I-IMX or RDX or mixtures thereof. Critical thickness for the composition of the invention are between 0.05 to 0.30 inches. The filler particles may be coated with a suitable desensitizing agent such as a dialkyl ester of a carboxylic acid for example 0.1 to 1 per cent of dioctyl adipate based on the weight of the explosive filler.
The elastomeric binder is formed by the condensation reaction between a liquid prepolymer of the formula:
Ya (I) and coupling-curing agents of the formula:
where n is an integer from O-4, m is an integer of at least 2, R is an organic radical containing from 2 to 50 carbon atoms, R is an organic moiety having a molecular weight from 1,000 to 15,000, preferably l,0O0-5,000, and Z and Y are coreactive condensible end and/or side groups, which are capable of in-situ reaction to chain extend and crosslink the liquid prepolymer to form a continuous, flexible, thermally stable, high tensile strength explosive filler binder film.
The readily curable liquid prepolymer is of a type compatible with the other components of the explosive composition and is preferably soluble, miscible, or fusible with the other components of the composition. The R or backbone portion of the liquid prepolymer is preferably an elastomer forming prepolymer such as a diene prepolymer or a polyether prepolymer.
The diene prepolymer may be a polymer of a conjugated diene containing from 4 to 12 carbon atoms per molecule and preferably four to eight carbon atoms per molecule, such as l,3-butadiene, isoprene, 2,3-dimethyll ,3-butadiene, l,3pentadiene (piperylene 3-methyl-l,3-pentadiene, 1,3-heptadiene, 3-butyl-1,3- octadiene, phenyl-l ,3-butadiene and the like. The conjugated diene may also contain hydroxy, carboxyl or lower alkoxy substituents along the chain such as 2- methoxyl ,3-butadiene, 2-ethoxy-3-ethyl-l ,3- butadiene, and 2-ethoxy-3-methyl-l,3-hexadiene.
The comonomer should not exceed 35 percent of the polymer in order to preserve the elastomeric properties. Suitable co-monomers are vinyl compounds such as vinyl-substituted aromatic and aliphatic compounds. Examples of co-monomers that can be employed in the elastomer forming liquid prepolymers of the invention include acrylonitrile, methacrylonitrile, propylene, butene, isobutylene, styrene, l vinylnaphthalene, 2-vinylnapthalene, and alkyl, cycloalkyl, aryl, alkaryl, aralkyl, alkoxy, aryloxy, and dialkylamino derivatives thereof.
The equivalent weight of the liquid prepolymer is at least a thousand and not usually more than five thousand. The functionality of the prepolymer is advantageously slightly over 2, but less than to form by crosslinking and chain-extending final polymers of the molecular weight of at least 20,000. With higher molecular weight prepolymers, it may be necessary to apply heat to reduce viscosity. Therefore, the equivalent weight is preferably from 1,000 to 3,000.
Functionality is provided by reactive terminal and side groups which may be at least one of thiol, (-SH) carboxyl, (COOH) hydroxyl (OH), isocyanate (C-N=O), epoxy or amine. Upon addition of polyfunctional reactive coupling-curing agents and suitable catalysts or accelerators, the low molecular weight liquid reacts at ambient temperature to produce a high molecular weight elastomer. The functionality of the prepolymer is preferably maintained within the range of 2.1 to about 2.5 in order that excessive cross-linking does not transform the product into too brittle a state and thus reduce the resilient properties desirable for sheet or shaped forms of the product.
The diene prepolymers preferably contain a minimum amount of 1,2 addition to avoid excessive decrease of elastomeric properties. A suitable material is a butadiene polymer of equivalent weight of about l,000-2,000 and has a functionality slightly greater than two and comprises 60% cis 1,4 units, trans 1,4 and about 20% 1,2 vinyl units.
Other suitable polyhydroxy elastomer forming prepolymers are polyoxyalkylene glycols such as polyethylene, polypropylene or polybutylene glycols or esters thereof, neopentyl glycol adipate, polyethylene glycol azelate, sorbitol polyethers and polyoxypropylene oxide adducts of trimethylolpropane (TMP).
The coupling-curing systems can include various types of polyfunctional curatives reactive with the end or side chain functional groups. The thiol or hydroxyl substituted liquid prepolymers can be coupled and cured with aliphatic, aromatic cycloaliphatic polyfunctional compounds containing isocyanate. carboxyl, anhydride, amine, hydroxyl or epoxy groups.
Preferably the polyisocyanates are those represented by the general formula RHNCOM wherein R is a polyvalent organic radical containing from two to 30 carbon atoms and m is 2,3 or 4. R can be aliphatic, cycloaliphatic or aromatic. It is preferred that the organic radical be essentially hydrocarbon in character although the presence of unreactive groups containing elements other than carbon and hydrogen is permissible.
Examples of suitable compounds of this type include benzene 1,3-diisocyanate, hexamethylene 1,6 diisocyanate, (HDI) tolylene 2,4-diisocyanate (TDI), TDl dimer, tolylene 2,3-diisocyanate, metaphenylene diisocyanate (MDI) diphenylmethane 4,4- diisocyanate, naphthalene 1,5-diisocyanate, diphenyl 3,3'-dimethyl 4,4-diisocyanate, diphenyl 3,3- dimethoxy 4,4'-diisocyanate diethyl ether, 3(diethylaminolpentane l,5-diisocyanate, butane 1,4-
diisocyanate, cyclohexane 1,2-diisocyanate, benzene l,3,4-triisocyanate, xylene triisocyanate, naphthalene l,3,5,7-tetraisocyanate, napthalene 1,3 ,7- triisocyanate, toluidine diisocyanate, isocyanate terminated prepolymers, polyaryl polyisocyanates, and the like. The isocyanate terminated prepolymers are readily formed by reacting a hydroxyl substituted prepolymer with a diisocyanate, or a polyisocyanate.
A suitable, commercially available polyaryl polyisocyanate is known as PAPI-1. This material has an average of 3 isocyanate groups per molecule and an average molecular weight of about 380.
Exemplary polybasic acids reactive with hydroxyl or thiol modified polymers of the invention include maleic acid, pyromellitic acid, succinic acid, phthalic acid, terephthalic acid, trimellitic acid, and the like.
isocyanate substituted prepolymers are also chain extended and cured with polyamines. Examples of such polyamines include tetraethylenepentamine, ethylenediamine, diethylene triamine, triethylene-triamine, ophenylenediamine, 1,2-propane-diamine, 1,2- butanediamine, piperazine, 1,2,3-benzenetriamine, 3,3-biphenyldiamine, methylene dianiline or N,N bis(- l,4-dimethylpentyl)-paraphenylenediamine. The fatty diamines or amine terminated polyamides such as can be produced by condensation of polyamines with polybasic acids can also be used.
Urethane or ester linked polymers are formed when isocyanate or carboxyl substituted prepolymers where from Formula I. Y is -NCO or -COOH, are cured with polyhydroxy compounds. These compounds can be either aliphatic or aromatic polyols or certain polyether products. Examples of such coupling-curing agents include castor oil, ethylene glycol, glycerol, propylene glycol, neopentylglycol, glycerol monoriconoleate, pentaerythritol, trimethanolethane, trimethanolpropane, butanediol or hexanetriol.
It is thus seen that an elastomer is formed of a plurality of prepolymer elastomeric units joined by coupling reagents which condense to form linking urethane, thiourethane, ester, urea, alkyl, or dialkyl, urea, thiourea, aminoalkyl units or combinations thereof.
A low density plasticizer such as a thermoplastic hydrocarbon resin compatible with the prepolymer and contributing no other properties, suitably a polybutene, in a preferred concentration of 30-50 percent by weight of the prepolymer may be present. The amount of plasticizer is chosen according to the desired critical thickness and in accordance with processing limitations Optional filler or other additives may be present such as inert inorganic material such as metal or metal oxide particles for example aluminum or aluminum oxide, or pigments such as lead chromate or carbon black or organic additives such as triacetin pigment or antioxidants, for example sym. di-beta-naphthyl-para phenylene diamine or other additives useful for improving processing cure or properties of the precured or cured compositions.
All additives and components of the composition are chosen so as to balance processability, extrudability and flexibility with the ability to incorporate maximum presented for illustrative purposes and it being readily understood that alternative ingredients and proportions may be readily utilized to form composition within the scope of this invention.
' PoI \eth \lene glycol-Moi wt 4000 explosive filler content with minimum critical thick- The n and desensitizer were premixed before WP? and amount of Curing agent depends on dition to the other ingredients. The total mixture was the funcnonality and molecular Weight of the prepoly stirred and cast into a tray with runners and cured at mer l the amount 9 plasticizer- The Curing agellt is ambient temperature to form a 0.20 inch thick, uniadded 1n an amount insufficient to form an inflexible f fl ibl tough Sheet product. if the functionality of the prepolymer is greater than two. a difunctional coupling curing agent EXAMPLE 2 in an amount from 50 to 150 percent of stoichiometric A 400 gram b h f a fl ibl explosive was based on the functionality of the prepolymer is capable pared by mixing at 1 10 .1 15 and 5 weight percent of providing a Satisfactory Product Polymers having a of Class E RDX (approximately 77-325 mesh, average functionality of 2 or less the coupling curing agent pref i l i 15 2() micron d t i i 05 i ht erably has a functionality Of 2 01 more. Crosslinking bepercent dioctyl adipate desensitizer based on the tween prepolymer chains can result whenever the preweight of RDX), with a prepolymer portion comprised polymer or coupling-curing agent has a functionality of 100 equivalents ofa hydroxy terminated polybutadigreater than ene having an equivalent weight of 1150, and a func- Polymerization modifiers can be added to increase or ti lit b t 2 and 3, 80 equivalent of TD] decrease stiffness as desired. For example, in a system i l w i ht 87); plasticized with 40 wt f a in which the functionality of the prepolymer and/or polybutene (O i 6) d c ntainin 0,20 wt of curing agent leads IO more than optimum crosslinking synii-beta naphthyl paraphenylene diamine (PBNA) a mOnOfUHCIiOTIaI modifier Such as a monoisocyanate antioxidant. The composition was cast into 0.20 inch can be added. If it is desired to increase crosslinking a thick sheets. modifier containing at least three functional groups such as triamine or thiol can be added to the explosive EXAMPLE 3 composition. A composition was prepared according to the proce- The coupling-curing reaction can be promoted or acdure of Example 2 containing 73.4 wt 7: class E RDX celerated by an appropriate curing catalyst such as 0.01 (0.5 wt dioctyl adipate desensitizer) instead of the 65 to I percent a heavy metal salt of an alkanoic acid. suitwt7 of Example 2. ably ferric acetylacetonate or stannous octoate. The critical thickness processability and curing prop- The composition is simply formed by combining the erties of the sheet explosives of Example 2 and 3 are ingredients. mixing to form a uniform dispersion and listed in Table 1 below.
TABLE I Critical Terminal EX- RDX RDX-E Thickness l in. Shore AMPLE Wt. "/1 Wt. 71 Castability No Go Go Hardness I 65.0 65.0 Excellent 04] 28 3 73.0 73.0 Very Good 0.19 0.2] 35 l l Initiated with a No. 8 blasting cap perpendicular to top surface near end of specimen.
curing at a low temperature. suitably from F to about 150F until a self-supporting thermally stable flexible explosive is formed. The explosive filler may be precoated with the disensitizing agent before addition to the composition. The curable composition can be cast into a film of appropriate thickness and cured or the cured composition can be molded or rolled, sliced or cut into a product of a desired thickness and shape. The material can be utilized in perforate or imperforate form, as is known in the art.
The invention will now become better understood by reference to the following specific example which are A number of properties of the explosives of Example 2 and 3 as delineated in MIL-E46676 (MU) were measured and are summarized in Table II, below TABLE 2 COMPARISON OF PHYSICAL MECHANICAL. AND EXPLOSIVE CHARACTERISTICS OF FLEXIBLE EXPLOSIVE FORMULATIONS TABLE 2-Continued COMPARISON OF PHYSICAL MECHANICAL. Alxl) EXPLOSIVE CHARACTERISTICS OF FLEXIBLE EXPLOSIVE FORMULATIONS No. 8 blasting cap. unconfined sheet No cracks when hem 90 or 180 around V4" dowel RDX 32 cm Dry RDX 0.025 to 0.15 joules -H- All burned smoothly The compositions were easily processable even at 73 wt% explosive filler. The sheet materials of both Examples 2 and 3 were smooth, homogenous, very rubbery and retained the explosive RDX when cut or broken. They were cast into sheet or block but can be readily cast into any shape.
Example 3 gave a detonation velocity of 7,230 m/sec which is above the 7,000 m/sec value considered as satisfactory. The tensile strengths were 47 and 46 psi and the elongations at 77, 155 and 72 percent, respectively. Flexibility from 65 to +160F is good and no cracks occur either at 40F or after 24 hours of immersion in water at 160F when bent 90 around a 0.25-in. dowel. In fact, no cracks occur when bent 180 around the dowel although a 1/l6-in. crack is specified as tolerable.
The sensitivities as measured by Bureau of Mines impact sensitivity, rotary friction, and electrostatic sensitivity appear satisfactory. The vacuum stabilities are of the order of 0.25 to 0.33 ml/gm/lC/48 hrs compared to 5.0 ml considered adequate. Based on previous experience, these formulations would be expected to have long shelf lives.
It is thus seen that the invention provides a castable, thermally stable, non-thermoplastic, flexible, explosive composition with low critical thickness propagation to detonation, containing an explosive filler, a low density diluent or plasticizer, and a binder comprising a low density, readily curable prepolymer and a curing agent. The composition will readily find use in sheet, or ribbon and a variety of other cast molded or extruded shapes. Typical applications are in destruct and anti- Dersonnel devices, field demolition, underwater energy generation and in metal hardening. The compositions )f this invention will find substantial use as flexible thin 111661: explosives having a critical thickness from about 0.05 to about 0.5 inches, a detonation velocity between 6,600 and 8,000 m/sec and a density from 1.4 to 1.6 g/cc. The sheet may be perforated to form a line-wave generator as a triangular section of the sheet. A detonation initiated at any apex of the triangle will proceed as a straightline detonation zone to the opposite edge. The line-wave generator can be used to initiate cylindrical explosion charges or to fabricate plane-wave generators.
It is to be understood that only preferred embodiments of the invention have been described and that numerous substitutions, alterations and modifications are all permissible without departing from the spirit and scope of the invention as defined in the following claims.
What is claimed is:
1. A castable composition for forming a selfsupporting, thermally stable, flexible explosive comprising 60-85 weight percent of fine particulate explosive filler selected from organic nitrates and organic nitramines dispersed in a binder formed of a low temperature curable liquid prepolymer of the formula and a coupling curing agent of the formula where n is an integer from 0 to 4, m is an integer of at least 2, R is an organic moiety having a molecu lar weight from 1,000 to 15,000, R is an organic radical containing 2-50 carbon atoms and Z and Y are coreactive, condensible groups, capable of reaction to form ZY links which chain extend and crosslink the liquid prepolymer to form a continuous, flexible, thermally stable, high tensile strength explosive composition with high detonation velocity and low critical thickness, wherein Y is selected from the group consisting of thiol, hydroxyl, isocyanate, epoxy and amine and Z is a group coreactive and condensible with Y selected from the group consisting of isocyanate, carboxyl, amine, anhydride, hydroxyl or epoxy.
2. A composition according to claim 1 in which the explosive filler has a particle size below microns and is selected from the group consisting of pentaerythritol, tetranitrate, cyclotetramethylenetetranitramino, and cyclotrimethylenetrinitramine.
3. A composition according to claim 2 in which the explosive filler comprises particles of cyclotrimethylene-trinitramine having an average particle size of less than 1 to about 30 microns.
4-. A composition according to claim 3 in which the explosive filler is of average particle size between 15 to 20 microns, and contains for 0.1 to 1 percent parts by weight of a desensitizing agent.
5. A composition according to claim 4 in which the liquid prepolymer is a polyhydroxy polybutadiene having an equivalent weight from 1,000 to 3,000 and a functionality from 2.0 to 2.5 and the coupling-curing agent is a triisocyanate.
6. A composition according to claim 1 containing about 10 to 22 parts by weight of the prepolymer and l to 5 parts by weight of the coupling-curing agent.
7. A composition according to claim 6 further including to percent by weight of a low density, compatible plasticizer.
8. A composition according to claim 1 in sheet form having a thickness from 0.05 to about 0.40 inches and a detonation velocity from 6,600 to 7,500 meters per second,
9. A composition according to claim 8 in which said sheet is perforated.
10. A method of forming a castable, thermally stable, non-thermoplastic explosive composition that is both flexible and self-supporting comprising the steps of:
dispersing 60 to 85 percent by weight ofa fine particulate explosive material in a binder portion comprising a curable liquid prepolymer of the formula:
and a coupling curing agent of the formula:
where n is an integer from 0 to 4, m is an integer of at least 2, R is an organic moiety having a molecular weight from 1,000 to 15,000, R is an organic radical containing 2-50 carbon atoms and Z and Y are coreactive, condensible groups, capable of reaction to form ZY links which chain extend and crosslink the liquid prepolymer,
curing the composition at a temperature from about

Claims (10)

1. A CASTABLE COMPOSITION FOR FORMING A SELF-SUPPORTING THERMALLY STABLE, FLEXIBLE EXPLOSIVE COMPRISING 60-85 WEIGHT PERCENT OF FINE PARTICULATE EXPLOSIVE FILLER SELECTED FROM ORGANIC NITRATES AND ORGANIC NITRAMINES DISPERSED IN A BINDER FORMED OF A LOW TEMPERATURE CURABLE LIQUID PREPOLYMER OF THE FORMULA
2. A composition according to claim 1 in which the explosive filler has a particle size below 100 microns and is selected from the group consisting of pentaerythritol, tetranitrate, cyclotetramethylenetetranitramino, and cyclotrimethylenetrinitramine.
3. A composition according to claim 2 in which the explosive filler comprises particles of cyclotrimethylene-trinitramine having an average particle size of less than 1 to about 30 microns.
4. A composition according to claim 3 in which the explosive filler is of average particle size between 15 to 20 microns, and contains for 0.1 to 1 percent parts by weight of a desensitizing agent.
5. A composition according to claim 4 in which the liquid prepolymer is a polyhydroxy polybutadiene having an equivalent weight from 1,000 to 3,000 and a functionality from 2.0 to 2.5 and the coupling-curing agent is a triisocyanate.
6. A composition according to claim 1 containing about 10 to 22 parts by weight of the prepolymer and 1 to 5 parts by weight of the coupling-curing agent.
7. A composition according to claim 6 further including 5 to 15 percent by weight of a low density, compatible plasticizer.
8. A composition according to claim 1 in sheet form having a thickness from 0.05 to about 0.40 inches and a detonation velocity from 6,600 to 7,500 meters per second.
9. A composition according to claim 8 in which said sheet is perforated.
10. A method of forming a castable, thermally stable, non-thermoplastic explosive composition that is both flexible and self-supporting comprising the steps of: dispersing 60 to 85 percent by weight of a fine particulate explosive material in a binder portion comprising a curable liquid prepolymer of the formula:
US243504A 1972-03-20 1972-03-20 Flexible, self-supporting explosive composition Expired - Lifetime US3888707A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US243504A US3888707A (en) 1972-03-20 1972-03-20 Flexible, self-supporting explosive composition
IL41816A IL41816A0 (en) 1972-03-20 1973-03-19 Flexible,self supporting explosive composition
BE129020A BE797052A (en) 1972-03-20 1973-03-20 FLEXIBLE EXPLOSIVE COMPOSITIONS
DE2313886A DE2313886A1 (en) 1972-03-20 1973-03-20 FLEXIBLE SELF-SUPPORTING EXPLOSIVE SUBSTANCE
IT48902/73A IT979915B (en) 1972-03-20 1973-03-20 FLEXIBLE SELF-SUPPORTING EXPLOSIVE COMPOSITION
FR7309902A FR2176930A1 (en) 1972-03-20 1973-03-20
JP48032581A JPS4919010A (en) 1972-03-20 1973-03-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US243504A US3888707A (en) 1972-03-20 1972-03-20 Flexible, self-supporting explosive composition

Publications (1)

Publication Number Publication Date
US3888707A true US3888707A (en) 1975-06-10

Family

ID=22919006

Family Applications (1)

Application Number Title Priority Date Filing Date
US243504A Expired - Lifetime US3888707A (en) 1972-03-20 1972-03-20 Flexible, self-supporting explosive composition

Country Status (7)

Country Link
US (1) US3888707A (en)
JP (1) JPS4919010A (en)
BE (1) BE797052A (en)
DE (1) DE2313886A1 (en)
FR (1) FR2176930A1 (en)
IL (1) IL41816A0 (en)
IT (1) IT979915B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953260A (en) * 1975-05-23 1976-04-27 The United States Of America As Represented By The Secretary Of The Navy Gossypol, an abundant, low-cost iron deactivator, pot-life extender, and processing aid for HTPB propellants
US4091729A (en) * 1977-03-07 1978-05-30 The United States Of America As Represented By The Secretary Of The Army Low vulnerability booster charge caseless ammunition
US4113811A (en) * 1975-07-02 1978-09-12 Dynamit Nobel Aktiengesellschaft Process for the production of flexible explosive formed charges
US4116734A (en) * 1976-10-28 1978-09-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Composite explosives
US4385948A (en) * 1980-08-07 1983-05-31 The United States Of America As Represented By The Secretary Of The Navy In situ cured booster explosive
US4428785A (en) 1979-10-24 1984-01-31 Nissan Motor Co., Ltd. Binder for a polydiene composite propellant
US4650617A (en) * 1985-06-26 1987-03-17 Morton Thiokol Inc. Solvent-free preparation of gun propellant formulations
US4726919A (en) * 1985-05-06 1988-02-23 Morton Thiokol, Inc. Method of preparing a non-feathering nitramine propellant
US4799980A (en) * 1988-01-28 1989-01-24 Reed Jr Russell Multifunctional polyalkylene oxide binders
US4889571A (en) * 1986-09-02 1989-12-26 Morton Thiokol, Inc. High-energy compositions having castable thermoplastic binders
US5565651A (en) * 1991-03-06 1996-10-15 Agency For Defence Development Method for preparing a compactable composite explosive
US5578789A (en) * 1992-05-04 1996-11-26 Aerojet General Energetic plasticizers for polybutadiene-type solid propellant binders
US5801326A (en) * 1997-04-18 1998-09-01 Eastman Chemical Company Explosive formulations
US5808234A (en) * 1996-05-06 1998-09-15 Eastman Chemical Company Explosive formulations
US5936196A (en) * 1996-05-03 1999-08-10 Eastman Chemical Co. Explosive formulations
US6833037B1 (en) * 1989-01-25 2004-12-21 Bae Systems Plc Polymer bonded energetic materials
US6932878B1 (en) * 1988-05-11 2005-08-23 Bae Systems Plc Explosive compositions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2529432C2 (en) * 1975-07-02 1985-10-17 Dynamit Nobel Ag, 5210 Troisdorf Process for the production of flexible molded explosives
JPS62125005U (en) * 1986-01-31 1987-08-08
FR2671549A1 (en) * 1991-01-16 1992-07-17 Commissariat Energie Atomique EXPLOSIVE COMPOSITION AND METHODS FOR PREPARING A POWDER AND A PART THEREOF
TR25832A (en) * 1992-02-10 1993-09-01 Commissariat Energie Atomique EXPLOSIVE COMPUTER AND THE METHOD OF PREPARING A POWDER AND PARTICLE FROM THIS COMPUTER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338764A (en) * 1965-08-19 1967-08-29 Du Pont Flexible detonating compositions containing high explosives and polymeric metallocarboxylates
US3447980A (en) * 1967-01-20 1969-06-03 Us Army Castable explosive containing tnt and a reaction product of a diisocyanate and 1,4-butyleneoxide polyglycol
US3507722A (en) * 1967-08-09 1970-04-21 Joseph T Hamrick Unfoamed polyether urethane,nitramine bonded high explosive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338764A (en) * 1965-08-19 1967-08-29 Du Pont Flexible detonating compositions containing high explosives and polymeric metallocarboxylates
US3447980A (en) * 1967-01-20 1969-06-03 Us Army Castable explosive containing tnt and a reaction product of a diisocyanate and 1,4-butyleneoxide polyglycol
US3507722A (en) * 1967-08-09 1970-04-21 Joseph T Hamrick Unfoamed polyether urethane,nitramine bonded high explosive

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953260A (en) * 1975-05-23 1976-04-27 The United States Of America As Represented By The Secretary Of The Navy Gossypol, an abundant, low-cost iron deactivator, pot-life extender, and processing aid for HTPB propellants
US4113811A (en) * 1975-07-02 1978-09-12 Dynamit Nobel Aktiengesellschaft Process for the production of flexible explosive formed charges
US4116734A (en) * 1976-10-28 1978-09-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Composite explosives
US4091729A (en) * 1977-03-07 1978-05-30 The United States Of America As Represented By The Secretary Of The Army Low vulnerability booster charge caseless ammunition
US4428785A (en) 1979-10-24 1984-01-31 Nissan Motor Co., Ltd. Binder for a polydiene composite propellant
US4385948A (en) * 1980-08-07 1983-05-31 The United States Of America As Represented By The Secretary Of The Navy In situ cured booster explosive
US4726919A (en) * 1985-05-06 1988-02-23 Morton Thiokol, Inc. Method of preparing a non-feathering nitramine propellant
US4650617A (en) * 1985-06-26 1987-03-17 Morton Thiokol Inc. Solvent-free preparation of gun propellant formulations
AU605442B2 (en) * 1986-09-02 1991-01-10 Thiokol Corporation High-energy compositions having castable thermoplastic binders
US4889571A (en) * 1986-09-02 1989-12-26 Morton Thiokol, Inc. High-energy compositions having castable thermoplastic binders
US4799980A (en) * 1988-01-28 1989-01-24 Reed Jr Russell Multifunctional polyalkylene oxide binders
US6932878B1 (en) * 1988-05-11 2005-08-23 Bae Systems Plc Explosive compositions
US6833037B1 (en) * 1989-01-25 2004-12-21 Bae Systems Plc Polymer bonded energetic materials
US5565651A (en) * 1991-03-06 1996-10-15 Agency For Defence Development Method for preparing a compactable composite explosive
US5578789A (en) * 1992-05-04 1996-11-26 Aerojet General Energetic plasticizers for polybutadiene-type solid propellant binders
US5936196A (en) * 1996-05-03 1999-08-10 Eastman Chemical Co. Explosive formulations
US5808234A (en) * 1996-05-06 1998-09-15 Eastman Chemical Company Explosive formulations
US5801326A (en) * 1997-04-18 1998-09-01 Eastman Chemical Company Explosive formulations

Also Published As

Publication number Publication date
FR2176930A1 (en) 1973-11-02
DE2313886A1 (en) 1973-10-11
BE797052A (en) 1973-07-16
JPS4919010A (en) 1974-02-20
IL41816A0 (en) 1973-07-30
IT979915B (en) 1974-09-30

Similar Documents

Publication Publication Date Title
US3888707A (en) Flexible, self-supporting explosive composition
US4163681A (en) Desensitized explosives and castable thermally stable high energy explosive compositions therefrom
US7011722B2 (en) Propellant formulation
US4799980A (en) Multifunctional polyalkylene oxide binders
US3716604A (en) Method for bonding solid propellants to rocket motor casing
JPS5817158B2 (en) Crosslinked double base propellant
US4853051A (en) Propellant binder prepared from a PCP/HTPB block polymer
US3695952A (en) Solid propellant compositions containing hydroxymethyl-terminated polydienes
US3792003A (en) Hydroxy-terminated polybutadiene,diisocyanate and triol composition
US6103029A (en) Triazole cross-linked polymers
EP0266973A2 (en) PCP/HTPB block copolymer and propellant binder prepared therefrom
US3762972A (en) Reaction product of phosphine oxide with carboxylic acids
US4412875A (en) Nitramine composite propellant compostion
US3745074A (en) Composite solid propellant with additive to improve the mechanical properties thereof
US5240523A (en) Binders for high-energy composition utilizing cis-,cis-1,3,5-tri(isocyanatomethyl)cyclohexane
US3976522A (en) Nitroplasticized amine perchlorate flexible explosives
US6508894B1 (en) Insensitive propellant formulations containing energetic thermoplastic elastomers
US4482408A (en) Plasticizer system for propellant compositions
US20020020477A1 (en) Reduced energy binder for energetic compositions
CA1056984A (en) Curable binding systems
US3748199A (en) Composite propellants containing hydroxylammonium perchlorate
US3236704A (en) Propellant composition
US3511725A (en) Solid propellant containing cross-linked diamine-terminated polyglycol
KR20100035522A (en) Gap/nitramine-based energetic propellant composition having excellent mechanical properties
US6350330B1 (en) Poly(butadiene)poly(lactone) thermoplastic block polymers, methods of making, and uncured high energy compositions containing same as binders