US3885194A - Temperature control for an indirectly heated cathode for a high power electron beam gun - Google Patents

Temperature control for an indirectly heated cathode for a high power electron beam gun Download PDF

Info

Publication number
US3885194A
US3885194A US356018A US35601873A US3885194A US 3885194 A US3885194 A US 3885194A US 356018 A US356018 A US 356018A US 35601873 A US35601873 A US 35601873A US 3885194 A US3885194 A US 3885194A
Authority
US
United States
Prior art keywords
cathode
electron beam
electron
cathode member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US356018A
Inventor
Berthold W Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US356018A priority Critical patent/US3885194A/en
Application granted granted Critical
Publication of US3885194A publication Critical patent/US3885194A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/242Filament heating power supply or regulation circuits

Definitions

  • ABSTRACT A method and apparatus for regulating and determining the temperature of a heated cathode in an electron beam system to regulate the magnitude of the beam current both during operation and prior to turn on. This is accomplished by measuring the thermionic emission of a well defined area of the cathode, regardless of whether the electron beam is being drawn from the cathode, and utilizing this measured signal to control the temperature of the heated cathode.
  • an auxiliary electrode is associated with the cathode to derive electron emissions from the cathode from an area isolated from the electron beam source area to obtain a sensing signal representative of the temperature of the cathode.
  • the signal thus derived by means of the auxiliary electrode may be utilized to control the heating power source connected to the cathode.
  • the operating potential of the auxiliary electrode is such as to provide no substantial loading on the cathode, and the auxiliary electrode is shielded to provide a signal representative of a given area.
  • FIG. 1 is a schematic showing of an electron beam welding apparatus incorporating the teachings of this invention
  • FIG. 2 is an enlarged view of a portion of the electron gun illustrated in FIG. 1;
  • FIG. 3 is a schematic showing of a circuit that may be associated with the assembly shown in FIG. 2;
  • FIG. 4 illustrates a possible modification of the cathode structure illustrated in FIG. 2.
  • the apparatus basically consists of three sections l0, l2 and I4.
  • the top section or chamber is a high pressure section which is filled with a suitable insulating gas, such as F5 and wherein the high voltage supplies are located.
  • the middle section 12 contains the electron gun proper and is the section of the apparatus where the lowest vacuum is found.
  • a cathode assembly 16 and anode 17 are mounted in the middle section 12.
  • the next chamber or lower chamber 14 is where the electron beam generated by the cathode assembly 16 is directed and passes through succeeding pumping stages and finally to a bottom orifice 18 where it goes on into the full atmosphere and bombards a workpiece 20.
  • FIG. 1 Several pumping stages and several pumping orifices are illustrated in FIG. 1.
  • the pressure increases stage by stage from the cathode assembly 16 on down to the workpiece 20.
  • the cathode environment is at a pressure of about 10 Torr.
  • the succeeding stage is at a fraction of a Torr, and the final stage is about 200 Torr.
  • a magnetic lens 24 may be utilized for focusing the electron beam.
  • the electron beam generated at the cathode assembly 16 is accelerated by an anode member 17.
  • the anode member 17 is at substantially ground potential.
  • the cathode assembly 16 is at a negative potential of about 150,000 volts, while the succeeding stages of the system are all actually at ground potential.
  • the electron beam proceeds through an aperture in the anode member 17 and is focused by the magnetic lens 24 and passes on through several orifices separating differential pressure areas which are maintained by the various pumps located progressively along the tubular housing 26.
  • the housing 26 may be of a suitable metal such as non-magnetic stainless steel.
  • FIG. 2 illustrates the cathode assembly 16.
  • the assembly 16 consists of a base member 30 from which extends a tungsten rod, bolt cathode 32.
  • the electron beam is drawn from the end face portion 34 of the bolt cathode 32.
  • An auxiliary cathode 36 here a tungsten filament, surrounds the bolt cathode 32, and generates electrons by which the bolt cathode is bombarded and heated.
  • the auxiliary cathode 36 is maintained at a negative potential relative to bolt cathode 32.
  • a radiation shield 38 is provided about the auxiliary cathode 36.
  • a grid member or focusing electrode 39 may be provided surrounding the emission region 34.
  • auxiliary electrode 40 Positioned between the secondary cathode 36 and the base 30 is an auxiliary electrode 40, which typically serves as an anode, which may be a circular wire of a suitable material, such as tungsten, surrounding the bolt cathode 32.
  • An isolated lead-in member 42 is connected to the auxiliary anode 40 and passes through the base member 30.
  • a shield member 44 effective against elective fields, for instance from the filament cathode 36, is provided about the auxiliary anode 40 as illustrated, and consists of an annular member with an upper and lower inturned flange member 46.
  • the shield member 44 may be connected to the same potential as the bolt cathode 32.
  • FIG. 3 illustrates a suitable circuit associated with the cathode assembly 16.
  • the auxiliary anode 40 is connected through a variable potential source 46 and a sensing member 48 to the cathode 32.
  • the sensing member 48 may be a current measuring device of the appropriate sensitivity and is scaled to indicate the cathode temperature as a function of the measured current.
  • a signal amplifier 50 may be connected across the sensing element 48 to derive and amplify the signals generated therein.
  • a filament power supply 52 is connected across the terminals of the secondary cathode 36 to provide the necessary excitation and heating of the secondary cathode to generate electrons for bombardment of the bolt cathode 32.
  • a voltage supply 54 is connected between the filament power supply and the bolt cathode 32 so as to provide a positive potential of about 100 to 600 volts between the secondary cathode 36 and the bolt cathode 32, so that the bolt cathode is at a more positive potential than the secondary cathode.
  • a control signal derived from the signal amplifier 50 may be utilized to modify either the potential of the source 54 to thereby reduce the energy of the electrode bombarding the cathode, or may control the potential supply to the filament supply 52.
  • the temperature of the stem of the bolt member 32 is determined by measuring the thermionic emission from a well defined area of the stem. This area is of course beneath the auxiliary anode 40 and limited by shield 44. This thermionic emission will be obtained regardless of whether of not the main electron beam generated from the face 34 of the cathode is being drawn due to a high accelerating potential applied.
  • the auxiliary electrode 40 may be placed at any convenient location opposite a section of the stem. The exact location is immaterial since a defined and ascertainable relationship exists between the temperature at the face 34 of the cathode and at any section along the stem.
  • the auxiliary anode 40 may be of a suitable material such as tungsten.
  • auxiliary anode 40 is shown here as a ring member, it can also be a pin-like member.
  • the anode should be shielded, by shield member 44 of a suitable material such as tungsten or tantalum, against radiations and electrons that might arrive from the secondary cathode 36.
  • a positive potential may be applied to the auxiliary electrode 40 with re spect to the bolt cathode 32 such that all electrons are collected within the enclosed section of the bolt stem. This current is an indication of the bolt temperature.
  • auxiliary electrode 40 instead of placing a positive potential on the auxiliary electrode 40, it is also possible to utilize this electrode 40 at zero or a slightly negative potential. A negative potential of about 1 volt, or a variable potential from about volts to 0 volts may be placed on the auxiliary electrode 40. A residual current will flow between bolt cathode 32 and electrode 40 which is also a measure of the temperature. This latter method has the advantage that no great amount of power is dissipated to the auxiliary electrode 40 from the cathode 32.
  • the associated circuitry responsive to the temperature signal indication may regulate via the feedback loop either the filament supply or the accelerating voltage between the secondary cathode 36 and the bolt cathode 32.
  • the bolt cathode 36 typically is maintained at a high negative potential, from 1 W to several hundred kilovolts,
  • the shield 44 is maintained at the same high negative potential as the cathode 36, while the auxiliary electrode 40 is maintained at for example about a 100 V more positive potential,
  • the current flow from the cathode 36 to the auxiliary electrode 40 is typically of the order of a few milliamps to several hundred milliamps.
  • the secondary current thus involves relatively low power as compared to the much higher power of the main electron beam, which will have a comparable current magnitude but over a much greater potential difference.
  • the sensing member 48 can be a device in which the amplified current is passed through a filament, and the filament temperature and current flow therethrough are read with an optical pyrometer to avoid the high voltage problem. Suitable high voltage isolating step-down systems can also be used as part of the sensing member 48.
  • the signal amplifier 50 is also at a high negative potential it is also possible to avoid any connection between sensing member 48 and ground and simply to pass-on the signal from 48 to amplifier 50, but to adjust the reference value which is provided for amplifier 50 through an isolation link from ground, which can be an isolated potentiometer drive electrically connected to the amplifier 50.
  • FIG. 4 illustrates a possible modification of the cath ode assembly wherein a strap cathode member of a suitable material such as tungsten and indicated as item is provided between two electrode supports 62 and 64.
  • the strap 60 is provided with a form dimple 66 with the emission surface 68 thereon for generating the electron beam.
  • a grid member 69 may be provided proximate the emission surface 68.
  • a pin-type auxiliary electrode 70 may be positioned within this dimple as illustrated, or the auxiliary anode 70 may be disposed anywhere along the filament a'nd a shielding member provided. In this cathode, of course, the cathode is heated directly by passing current through the cathode or filament strap 60.
  • the current flow between the strap cathode 60 and more particularly, the dimple portion 66 and the auxiliary electrode 70 is sensed and used to develop a feedback signal for controlling the heating current through strap cathode 60.
  • the apparatus and method of the present invention thus permit an accurate temperature determination of the electron beam cathode prior to use of the main beam. This prevents for instance excessive initial currents which might burn through the work piece in a welding application, or low current flows which would mean a poor weld.
  • the cathode temperature could continue to be monitored and controlled utilizing the present invention or a conventional technique may be used which senses the main electron beam current.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

A method and apparatus for regulating and determining the temperature of a heated cathode in an electron beam system to regulate the magnitude of the beam current both during operation and prior to turn on. This is accomplished by measuring the thermionic emission of a well defined area of the cathode, regardless of whether the electron beam is being drawn from the cathode, and utilizing this measured signal to control the temperature of the heated cathode.

Description

United States Patent Schumacher 1 May 20, 1975 [54] TEMPERATURE CONTROL FOR AN 2,677,787 5/1954 Litton 315/107 x 2,945,100 7/1960 Burk 315/107 x INDIRECT HEATED CATHODE FOR A 2,954,470 9/1960 Brashear 315/107 x HIGH POWER ELECTRON BEAM GUN Berthold W. Schumacher, Pittsburgh, Pa.
Westinghouse Electric Corporation, Pittsburgh, Pa,
Filed: Apr. 30, 1973 Appl. No.: 356,018
Inventor:
Assignee:
References Cited UNITED STATES PATENTS 11/1950 Lawrence et al, 315/107 X WIN 1 CAL PUMP DIFFUSION PUMP MECHANlCAL PUMP ECHANICAL PUMP PmT ECTWE GAS Primary Examiner-Nathan Kaufman Attorney, Agent, or Firm-W. G, Sutclifi [57] ABSTRACT A method and apparatus for regulating and determining the temperature of a heated cathode in an electron beam system to regulate the magnitude of the beam current both during operation and prior to turn on. This is accomplished by measuring the thermionic emission of a well defined area of the cathode, regardless of whether the electron beam is being drawn from the cathode, and utilizing this measured signal to control the temperature of the heated cathode.
3 Claims, 4 Drawing Figures SIGNAL AMPLIFIER VARIABLE L1 POTENTIAL SOURCE PMENIEU rm 2 0197s saw 01 nr 2 s g I! 3 i g i L. .-.i
MECHANICAL PUMP DIFFUSION PUMP MECHANICAL PUMP MECHANICAL PU MP PROTECTIVE GAS PATENTEDmzmms 3,885,194
sum CEJF 2 be 52 36; E FILAMENT POWER SUPPLY VOLTAGE SUPPLY SIGNAL AMPLIFIER VARIABLE POTENTIAL SOURCE FIG.3
TEMPERATURE CONTROL FOR AN INDIRECTLY HEATED CATHODE FOR A HIGH POWER ELECTRON BEAM GUN BACKGROUND OF THE INVENTION In high power electron beam systems, such as an electron beam welder, it is often necessary to control the magnitude of the beam current very closely and also in some applications to predict the current that will appear at the first instance that the beam is gated on by application of a high accelerating voltage. The dominating parameter in most high energy electron beam systems which determines the current in the electron beam is the temperature of the cathode. It is found that determining the temperature from the emission current of such a cathode is a very accurate way to measure the current. It is know in the art to stabilize the current in the electron beam by means of a feedback loop that controls either the cathode heating power or a grid control. It is however important to be able to measure the cathode temperature prior to turning the electron beam on to insure that a proper amount of electron beam current is applied in a particular application. An excessive amount of current at the time of turn on of the electron beam can result for instance in creating a burn rather than a good weld.
SUMMARY OF THE INVENTION In accordance with the present invention, an auxiliary electrode is associated with the cathode to derive electron emissions from the cathode from an area isolated from the electron beam source area to obtain a sensing signal representative of the temperature of the cathode. The signal thus derived by means of the auxiliary electrode may be utilized to control the heating power source connected to the cathode. In addition, the operating potential of the auxiliary electrode is such as to provide no substantial loading on the cathode, and the auxiliary electrode is shielded to provide a signal representative of a given area.
BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the invention, reference may be had to the preferred embodiment, exemplary of the invention, shown in the accompanying drawings, in which:
FIG. 1 is a schematic showing of an electron beam welding apparatus incorporating the teachings of this invention;
FIG. 2 is an enlarged view ofa portion of the electron gun illustrated in FIG. 1;
FIG. 3 is a schematic showing of a circuit that may be associated with the assembly shown in FIG. 2; and
FIG. 4 illustrates a possible modification of the cathode structure illustrated in FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring in detail to FIG. 1, an electron beam apparatus for use in the atmosphere is illustrated. The apparatus basically consists of three sections l0, l2 and I4. The top section or chamber is a high pressure section which is filled with a suitable insulating gas, such as F5 and wherein the high voltage supplies are located. The middle section 12 contains the electron gun proper and is the section of the apparatus where the lowest vacuum is found. A cathode assembly 16 and anode 17 are mounted in the middle section 12. The next chamber or lower chamber 14 is where the electron beam generated by the cathode assembly 16 is directed and passes through succeeding pumping stages and finally to a bottom orifice 18 where it goes on into the full atmosphere and bombards a workpiece 20.
Several pumping stages and several pumping orifices are illustrated in FIG. 1. The pressure increases stage by stage from the cathode assembly 16 on down to the workpiece 20. The cathode environment is at a pressure of about 10 Torr. The succeeding stage is at a fraction of a Torr, and the final stage is about 200 Torr. A magnetic lens 24 may be utilized for focusing the electron beam.
The electron beam generated at the cathode assembly 16 is accelerated by an anode member 17. The anode member 17 is at substantially ground potential. The cathode assembly 16 is at a negative potential of about 150,000 volts, while the succeeding stages of the system are all actually at ground potential. The electron beam proceeds through an aperture in the anode member 17 and is focused by the magnetic lens 24 and passes on through several orifices separating differential pressure areas which are maintained by the various pumps located progressively along the tubular housing 26. The housing 26 may be of a suitable metal such as non-magnetic stainless steel.
FIG. 2 illustrates the cathode assembly 16. The assembly 16 consists ofa base member 30 from which extends a tungsten rod, bolt cathode 32. The electron beam is drawn from the end face portion 34 of the bolt cathode 32. An auxiliary cathode 36, here a tungsten filament, surrounds the bolt cathode 32, and generates electrons by which the bolt cathode is bombarded and heated. The auxiliary cathode 36 is maintained at a negative potential relative to bolt cathode 32. A radiation shield 38 is provided about the auxiliary cathode 36. A grid member or focusing electrode 39 may be provided surrounding the emission region 34. Positioned between the secondary cathode 36 and the base 30 is an auxiliary electrode 40, which typically serves as an anode, which may be a circular wire of a suitable material, such as tungsten, surrounding the bolt cathode 32. An isolated lead-in member 42 is connected to the auxiliary anode 40 and passes through the base member 30. a shield member 44, effective against elective fields, for instance from the filament cathode 36, is provided about the auxiliary anode 40 as illustrated, and consists of an annular member with an upper and lower inturned flange member 46. The shield member 44 may be connected to the same potential as the bolt cathode 32.
FIG. 3 illustrates a suitable circuit associated with the cathode assembly 16. The auxiliary anode 40 is connected through a variable potential source 46 and a sensing member 48 to the cathode 32. The sensing member 48 may be a current measuring device of the appropriate sensitivity and is scaled to indicate the cathode temperature as a function of the measured current. A signal amplifier 50 may be connected across the sensing element 48 to derive and amplify the signals generated therein. A filament power supply 52 is connected across the terminals of the secondary cathode 36 to provide the necessary excitation and heating of the secondary cathode to generate electrons for bombardment of the bolt cathode 32. A voltage supply 54 is connected between the filament power supply and the bolt cathode 32 so as to provide a positive potential of about 100 to 600 volts between the secondary cathode 36 and the bolt cathode 32, so that the bolt cathode is at a more positive potential than the secondary cathode. A control signal derived from the signal amplifier 50 may be utilized to modify either the potential of the source 54 to thereby reduce the energy of the electrode bombarding the cathode, or may control the potential supply to the filament supply 52.
In the operation of the device. the temperature of the stem of the bolt member 32 is determined by measuring the thermionic emission from a well defined area of the stem. This area is of course beneath the auxiliary anode 40 and limited by shield 44. This thermionic emission will be obtained regardless of whether of not the main electron beam generated from the face 34 of the cathode is being drawn due to a high accelerating potential applied. The auxiliary electrode 40 may be placed at any convenient location opposite a section of the stem. The exact location is immaterial since a defined and ascertainable relationship exists between the temperature at the face 34 of the cathode and at any section along the stem. The auxiliary anode 40 may be of a suitable material such as tungsten. While the auxiliary anode 40 is shown here as a ring member, it can also be a pin-like member. The anode should be shielded, by shield member 44 of a suitable material such as tungsten or tantalum, against radiations and electrons that might arrive from the secondary cathode 36. A positive potential may be applied to the auxiliary electrode 40 with re spect to the bolt cathode 32 such that all electrons are collected within the enclosed section of the bolt stem. This current is an indication of the bolt temperature.
Instead of placing a positive potential on the auxiliary electrode 40, it is also possible to utilize this electrode 40 at zero or a slightly negative potential. A negative potential of about 1 volt, or a variable potential from about volts to 0 volts may be placed on the auxiliary electrode 40. A residual current will flow between bolt cathode 32 and electrode 40 which is also a measure of the temperature. This latter method has the advantage that no great amount of power is dissipated to the auxiliary electrode 40 from the cathode 32. The associated circuitry responsive to the temperature signal indication may regulate via the feedback loop either the filament supply or the accelerating voltage between the secondary cathode 36 and the bolt cathode 32.
In high power electron beam devices of the type described herein, the bolt cathode 36 typically is maintained at a high negative potential, from 1 W to several hundred kilovolts, The shield 44 is maintained at the same high negative potential as the cathode 36, while the auxiliary electrode 40 is maintained at for example about a 100 V more positive potential, The current flow from the cathode 36 to the auxiliary electrode 40 is typically of the order of a few milliamps to several hundred milliamps. The secondary current thus involves relatively low power as compared to the much higher power of the main electron beam, which will have a comparable current magnitude but over a much greater potential difference.
The circuit in which the secondary current flows will be at the same high negative potential relative to ground as the bolt cathode, and this complicates the current measurement and conversion to a readout which is a function of cathode temperature. In order to transmit this reading to ground the sensing member 48 can be a device in which the amplified current is passed through a filament, and the filament temperature and current flow therethrough are read with an optical pyrometer to avoid the high voltage problem. Suitable high voltage isolating step-down systems can also be used as part of the sensing member 48. Insofar as the signal amplifier 50 is also at a high negative potential it is also possible to avoid any connection between sensing member 48 and ground and simply to pass-on the signal from 48 to amplifier 50, but to adjust the reference value which is provided for amplifier 50 through an isolation link from ground, which can be an isolated potentiometer drive electrically connected to the amplifier 50.
While it is preferred for sensitivity purposes, that some potential difference be maintained between the cathode and the auxiliary electrode, it is within the scope of this invention to measure the thermionic emission from the heated cathode without need for maintaining a potential difference therebetween.
FIG. 4 illustrates a possible modification of the cath ode assembly wherein a strap cathode member of a suitable material such as tungsten and indicated as item is provided between two electrode supports 62 and 64. The strap 60 is provided with a form dimple 66 with the emission surface 68 thereon for generating the electron beam. A grid member 69 may be provided proximate the emission surface 68. A pin-type auxiliary electrode 70 may be positioned within this dimple as illustrated, or the auxiliary anode 70 may be disposed anywhere along the filament a'nd a shielding member provided. In this cathode, of course, the cathode is heated directly by passing current through the cathode or filament strap 60.
Again, the current flow between the strap cathode 60 and more particularly, the dimple portion 66 and the auxiliary electrode 70 is sensed and used to develop a feedback signal for controlling the heating current through strap cathode 60.
The apparatus and method of the present invention thus permit an accurate temperature determination of the electron beam cathode prior to use of the main beam. This prevents for instance excessive initial currents which might burn through the work piece in a welding application, or low current flows which would mean a poor weld. Following initiation of the main electron beam, the cathode temperature could continue to be monitored and controlled utilizing the present invention or a conventional technique may be used which senses the main electron beam current.
I claim as my invention:
1. ln combination with an electron gun for generating a high power electron beam, which electron gun includes an elongated cathode member and cathode heater means associated therewith for electron bombardment heating of the cathode member, with the electron beam being drawn from one end of said cathode member, and wherein the temperature of the cathode member significantly affects the electron beam emission, the improvement comprising a ring conductive electrode disposed about the cathode member at a location spaced from the electron beam emission end portion of the cathode member, with a secondary emit ted electron current flow produced between said cathode member and said ring conductive electrode, a shielding enclosure disposed about the ring conductive electrode with the cathode member passing through ode member.
3. The combination specified in claim 1 wherein the electron gun is disposed within a partially evacuated electron beam generating chamber of a high power electron beam system, and wherein said sensing means and control signal means associated with the electron gun are operative to sense said electron emission capability of the cathode of said gun with or without flow of the electron beam current.

Claims (3)

1. In combination with an electron gun for generating a high power electron beam, which electron gun includes an elongated cathode member and cathode heater means associated therewith for electron bombardment heating of the cathode member, with the electron beam being drawn from one end of said cathode member, and wherein the temperature of the cathode member significantly affects the electron beam emission, the improvement comprising a ring conductive electrode disposed about the cathode member at a location spaced from the electron beam emission end portion of the cathode member, with a secondary emitted electron current flow produced between said cathode member and said ring conductive electrode, a shielding enclosure disposed about the ring conductive electrode with the cathode member passing through the shielding enclosure, and sensing means electrically connected to the ring conductive electrode for measuring the secondary emitted electron current and indicating the temperature of the cathode member as a function of said secondary emitted electron current.
2. The combination specified in claim 1, wherein the sensing means generates a signal which is a function of the cathode member temperature, and the sensing means is connected to the cathode heating means, whereby the generated signal is fed back to the cathode heating means to control the temperature of the cathode member.
3. The combination specified in claim 1 wherein the electron gun is disposed within a partially evacuated electron beam generating chamber of a high power electron beam system, and wherein said sensing means and control signal means associated with the electron gun are operative to sense said electron emission capability of the cathode of said gun with or without flow of the electron beam current.
US356018A 1973-04-30 1973-04-30 Temperature control for an indirectly heated cathode for a high power electron beam gun Expired - Lifetime US3885194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US356018A US3885194A (en) 1973-04-30 1973-04-30 Temperature control for an indirectly heated cathode for a high power electron beam gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US356018A US3885194A (en) 1973-04-30 1973-04-30 Temperature control for an indirectly heated cathode for a high power electron beam gun

Publications (1)

Publication Number Publication Date
US3885194A true US3885194A (en) 1975-05-20

Family

ID=23399771

Family Applications (1)

Application Number Title Priority Date Filing Date
US356018A Expired - Lifetime US3885194A (en) 1973-04-30 1973-04-30 Temperature control for an indirectly heated cathode for a high power electron beam gun

Country Status (1)

Country Link
US (1) US3885194A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149110A (en) * 1978-03-29 1979-04-10 Raytheon Company Brightness controlled CRT
US4247801A (en) * 1979-03-02 1981-01-27 Raytheon Company Cathode current control system
US4464564A (en) * 1982-10-27 1984-08-07 Conoco Inc. Current controller for heating stage on leitz microscope
US6091187A (en) * 1998-04-08 2000-07-18 International Business Machines Corporation High emittance electron source having high illumination uniformity
US20040108812A1 (en) * 2002-12-10 2004-06-10 Applied Materials, Inc. Current-stabilizing illumination of photocathode electron beam source
US20040119023A1 (en) * 2001-06-15 2004-06-24 Ebara Corporation Electron beam apparatus and a device manufacturing method by using said electron beam apparatus
US20110116593A1 (en) * 2009-11-13 2011-05-19 General Electric Company System and method for beam focusing and control in an indirectly heated cathode
US20160178453A1 (en) * 2014-12-18 2016-06-23 Palo Alto Research Center Incorporated Wireless thermionic sensor package and methods of using
CN115380355A (en) * 2020-04-16 2022-11-22 日商光电魂股份有限公司 Electron gun, electron beam application device, and method for emitting electron beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530169A (en) * 1948-03-01 1950-11-14 Ernest O Lawrence Electronic regulator
US2677787A (en) * 1950-05-08 1954-05-04 Charles V Litton Electron discharge device cathode assembly
US2945160A (en) * 1957-07-29 1960-07-12 Phillips Petroleum Co Emission regulator
US2954470A (en) * 1957-04-12 1960-09-27 Phillips Petroleum Co Mass spectrometer and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530169A (en) * 1948-03-01 1950-11-14 Ernest O Lawrence Electronic regulator
US2677787A (en) * 1950-05-08 1954-05-04 Charles V Litton Electron discharge device cathode assembly
US2954470A (en) * 1957-04-12 1960-09-27 Phillips Petroleum Co Mass spectrometer and method
US2945160A (en) * 1957-07-29 1960-07-12 Phillips Petroleum Co Emission regulator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149110A (en) * 1978-03-29 1979-04-10 Raytheon Company Brightness controlled CRT
US4247801A (en) * 1979-03-02 1981-01-27 Raytheon Company Cathode current control system
US4464564A (en) * 1982-10-27 1984-08-07 Conoco Inc. Current controller for heating stage on leitz microscope
US6091187A (en) * 1998-04-08 2000-07-18 International Business Machines Corporation High emittance electron source having high illumination uniformity
US7361895B2 (en) 2001-06-15 2008-04-22 Ebara Corporation Electron beam apparatus and a device manufacturing method by using said electron beam apparatus
US20040119023A1 (en) * 2001-06-15 2004-06-24 Ebara Corporation Electron beam apparatus and a device manufacturing method by using said electron beam apparatus
US8368016B1 (en) 2001-06-15 2013-02-05 Ebara Corporation Electron beam apparatus and a device manufacturing method by using said electron beam apparatus
US7005641B2 (en) * 2001-06-15 2006-02-28 Ebara Corporation Electron beam apparatus and a device manufacturing method by using said electron beam apparatus
US20060097200A1 (en) * 2001-06-15 2006-05-11 Ebara Corporation Electron beam apparatus and a device manufacturing method by using said electron beam apparatus
US20040108812A1 (en) * 2002-12-10 2004-06-10 Applied Materials, Inc. Current-stabilizing illumination of photocathode electron beam source
US6847164B2 (en) 2002-12-10 2005-01-25 Applied Matrials, Inc. Current-stabilizing illumination of photocathode electron beam source
US20110116593A1 (en) * 2009-11-13 2011-05-19 General Electric Company System and method for beam focusing and control in an indirectly heated cathode
US8477908B2 (en) 2009-11-13 2013-07-02 General Electric Company System and method for beam focusing and control in an indirectly heated cathode
US20160178453A1 (en) * 2014-12-18 2016-06-23 Palo Alto Research Center Incorporated Wireless thermionic sensor package and methods of using
US9903768B2 (en) * 2014-12-18 2018-02-27 Palo Alto Research Center Incorporated Wireless thermionic sensor package and methods of using
CN115380355A (en) * 2020-04-16 2022-11-22 日商光电魂股份有限公司 Electron gun, electron beam application device, and method for emitting electron beam
US20230230794A1 (en) * 2020-04-16 2023-07-20 Photo Electron Soul Inc. Electron gun, electron ray applying device, and electron beam projecting method

Similar Documents

Publication Publication Date Title
US3158733A (en) Focus control for electron beam heating
US3885194A (en) Temperature control for an indirectly heated cathode for a high power electron beam gun
US7768267B2 (en) Ionization gauge with a cold electron source
US6885728B2 (en) X-ray source
US4707637A (en) Plasma-anode electron gun
US3320475A (en) Nonthermionic hollow cathode electron beam apparatus
US5128617A (en) Ionization vacuum gauge with emission of electrons in parallel paths
Burdovitsin et al. Effect of collector potential on the beam-plasma formed by a forevacuum-pressure plasma-cathode electron beam source
GB1329228A (en) Electron beam apparatus
US7177392B2 (en) X-ray detector for feedback stabilization of an X-ray tube
US7529346B2 (en) Method for stabilizing the size of a focal spot of an X-ray tube, and X-ray tube comprising such a method
US3082316A (en) Electron beam welding
US2905847A (en) High compression beam generating system especially for velocity modulated tubes
US2203048A (en) Shielded anode electron multiplier
US3054896A (en) Apparatus for electron beam heating control
US3689798A (en) Device for automatically controlling electrical conditions of an electron beam unit
US3555347A (en) Self aligning electron beam welder
US4163153A (en) Ion beam means
KR20220106161A (en) Gas analyzer system with ion source
US2967245A (en) Neutron source for well logging apparatus
US3377506A (en) Electromagnetic current control for a hollow cathode
US3393316A (en) Self-rectified positive ion accelerator and neutron generator
US5506412A (en) Means for reducing the contamination of mass spectrometer leak detection ion sources
US3872351A (en) Electron guns
US2205072A (en) Space discharge apparatus and circuits therefor