US3884417A - Nozzles for the injection of liquid fuel into gaseous media - Google Patents
Nozzles for the injection of liquid fuel into gaseous media Download PDFInfo
- Publication number
- US3884417A US3884417A US327905A US32790573A US3884417A US 3884417 A US3884417 A US 3884417A US 327905 A US327905 A US 327905A US 32790573 A US32790573 A US 32790573A US 3884417 A US3884417 A US 3884417A
- Authority
- US
- United States
- Prior art keywords
- nozzle
- valve
- fuel
- arrangement
- seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0623—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
- B05B17/063—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M27/00—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
- F02M27/08—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by sonic or ultrasonic waves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/0603—Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/04—Injectors peculiar thereto
- F02M69/041—Injectors peculiar thereto having vibrating means for atomizing the fuel, e.g. with sonic or ultrasonic vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/04—Injectors peculiar thereto
- F02M69/042—Positioning of injectors with respect to engine, e.g. in the air intake conduit
- F02M69/043—Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit upstream of an air throttle valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/34—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by ultrasonic means
- F23D11/345—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by ultrasonic means with vibrating atomiser surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S239/00—Fluid sprinkling, spraying, and diffusing
- Y10S239/90—Electromagnetically actuated fuel injector having ball and seat type valve
Definitions
- ABSTRACT Injection of liquid fuel into a combustion-air passage through an ultrasonically vibrated nozzle formed in a body is prevented during the intervals between pulses of vibration by a ball valve element co-operating with a seat at the inlet of the nozzle: passage, this ball valve element being lifted off its seat during the vibration pulses by dynamic action resulting from the impulses it receives from the seat.
- a solenoid may be provided which, when energized, acts on the valve element to lift it off its seat in opposition to the fuel pressure in the supply line and to the action of a return spring.
- OSCILLATOR g E B I P 'PULSE GENERATOR ENGINE NOZZLES FOR THE INJECTION F LIQUID FUEL INTO GASEOUS MEDIA This invention relates to fuel injection devices and has for an object to provide improved nozzle arrangements for the injection of liquid fuel into a gaseous medium and may be applied to the injection of liquid fuel into the combustion air of a turbo-jet engine or other gas turbine or internal combustion engine.
- an injection-nozzle arrangement which will hereinafter be referred-to as of the kind specified, and in which the fuel-injection nozzle is arranged to be subjected to vibrations, generally at ultrasonic or similar frequencies hereinafter called ultrasonic vibrations, the amount of fuel injected within a given period, for example within a revolution of the engine, being arranged to be controlled by varying the length of time in which the ultrasonic vibrations are applied, and thereby varying the length of time of injection, in each such period.
- the present invention has for a more specific object to provide an arrangement of improved efficiency for effecting metered injection of liquid fuel into a flow of combustion air for a combustion engine with the help of a nozzle subjected to pulses of ultrasonic longitudinal vibrations, in which variation of the length of the pulses of vibration is utilized to vary the amount of fuel injected during each revolution of the engine.
- the nozzle of an injection-nozzle arrangement of the kind specified is equipped at its inlet side with a valve, preferably a ball valve, which is arranged to normally close the inlet to the nozzle passage and thus to prevent the transfer of fuel to the combustion air but to be automatically operated to permit flow of fuel through the nozzle passage into the combustion air during the periods in which atomization is intended to be effective.
- a valve preferably a ball valve
- the valve is arranged to be normally held on its seat by fuel pressure, which may be assisted by spring action, although the valve could,
- the fuel pressure tends to open the valve, which is normally held closed in this case by the opposite action of spring pressure.
- Inertia forces will effect, during the times in which longitudinal vibrations are applied to the nozzle, opening of the non-return valve to permit the flow of fuel.
- the opening of the valve may be arranged to be effected by magnetic action upon the valve element, for example with the help of a solenoid coil which is energized to permit injection, during the periods of vibration of the nozzle, and if desired such an arrangement may also be used to assist the above mentioned inertia operation.
- the valve element is made wholly or partly of magnetic material and is so arranged as to be urged in a direction away from its seat by the magnetic action of the energized solenoid.
- FIG. 1 is a somewhat diagrammatic axial section of one embodiment of an injection nozzle arrangement according to the present invention.
- FIG. 2 is a fragmentary section illustrating a modification thereof.
- 1 indicates a passage, which may be the induction line of an internalcombustion engine, or, for example, a passage leading from the air-compressor unit to the burners of a turbojet engine or other gas-turbine E.
- a cylindrical nozzle portion 2 of an atomizer 3 is arranged to project with its end 2a through an aperture 4 in the wall of the passage 1 in such a manner as to provide substantially sealing co-operation while permitting mutual movement in the longitudinal direction of the portion 2.
- the cylindrical portion 2 forms a socalled horn at one side of the large-diameter portion 5 of a resonant stepped vibration amplifier which is attached at the opposite surface of the portion 5 to one side of a piezoelectric transducer element 6.
- a balancing body 7 is similarly attached to the opposite side of the transducer element 6, the arrangement being such that when an ac. voltage of a given ultrasonic frequency is applied to the piezoelectric element 6 by means of wires 9 and 10, resonant ultrasonic vibrations in the longitudinal direction of the cylindrical horn portion 2 are applied to the large-diameter portion 5 of the vibration amplifier.
- horn portion 2 which is so dimensioned that maximum amplitude of oscillations is generated near the outer end 2a of the horn, which projects into the duct 1.
- a fuel passage 11 Arranged coaxially in cylindrical horn portion 2 is a fuel passage 11, and in order to provide a spray nozzle, this passage 11 is formed, near the end 2a of the horn portion 2, with a restricted throat portion 12 which terminates in an outwardly flared cone portion 13, and the fuel passage 11 is formed at the opposite end of the throat portion. with a conical valve-seat surface 14.
- the latter co-operates with a ball-valve element 15, which is normally held in contact with the seat 14 by a light spring 16. Liquid fuel under suitable pressure is admitted to the passage 11 by a transverse bore 17 formed in the portion 5 of the vibration-amplifier body, in which it is located near the nodal zone of oscillation.
- the ball valve 15 will return on to its seat 14 under the combined action of the fuel pressure in line 17, 11 and of its return spring 16, and will thus prevent the escape of fuel into the air stream in the duct 1 during the intervals between the pulses of ultrasonic vibration of the nozzle.
- the means for producing the required pulses of energization for the transducer element 6 may be substantially as described in the above-mentioned British Patent Specification No. 1,138,536. They are schematically indicated in FIG. 1 as a pulse generator P mechanically coupled to the engine E and having in addition a control input C. An oscillatory voltage of the frequency of the desired ultrasonic vibrations is produced by an oscillator O energized with current from a battery B, a pulse generator P geing operative to apply this oscillatory voltage to the wires 9 and in the form of the requisite pulses.
- the illustrated embodiment also shows other means by which the ball valve 15 can be lifted off its seat 14 during the periods in which injection is desired, and which do not rely on the dynamic action of ultrasonic vibration of the cylindrical horn member 2.
- these means can be used independently, they are used in the illustrated embodiment to increase the rate of flow permitted by the ball valve above the rate achieved when inertia action during the vibration is exclusively relied-upon.
- They comprise a solenoid winding 18 arranged round the cylindrical horn portion 2 at a suitable axial position.
- This cylindrical horn portion 2 is made of non-magnetic material, while the ball valve element 15 consists of magnetizable steel or other ferromagnetic material.
- the winding 18 is so positioned that the valve element 15 will be lifted off its seat 14 by magnetic action when the solenoid winding 18 is energized.
- the energizing current is preferably direct current; otherwise the cylindrical portion 2 should be made of a material having sufficiently low electric conductivity to avoid undue screening action by induced currents.
- Suitable means are provided for timing the energizing current pulses for the winding 18 so as to coincide with pulses of ultrasonic-frequency current applied to the piezoelectric element 6. In the illustrated embodiment this is achieved by connecting the winding, via a rectifier arrangement 19, 20 across the wires 9, 10, as shown by chain-dotted connecting lines 9a,
- FIG. 2 illustrates a further development of the invention which in experiments has been found to improve considerably the effectiveness of atomization at such high rates of fuel supply while retaining the advantages of ultrasonic atomization at lower rates.
- the same references as in FIG. 1 are used as in FIG. 1, and in which the parts not shown may be as shown in FIG.
- the stem 2 is formed with a stepped bore having two parts 11a, 11b, the latter being in the form of a counterbore, in which a valveseat member 14a forming the valve seat 14 and the nozzle passage 12, and a plug 21, which at its circumference is provided with helical grooves 22, are secured in axially spaced positions so as to leave between the plug 21 and the valve seat 14 a swirl chamber 23, in which the ball valve 15 is movable.
- This valve is normally held on its seat 14 by the pressure of the liquid fuel in the chamber 23, no spring having been found necessary in the tests carried out.
- An arrangement for injecting liquid fuel into combustion air for an internal combustion engine comprising: a nozzle body having an end face, a nozzle inlet in said body, a fuel passage for feeding liquid fuel to said nozzle inlet, a nozzle outlet in said end face, vibrator means which when energized apply ultrasonic vibrations to said nozzle body, energization control means for said vibrator means responsive to engine operating data to energize said vibrator means during engine operation to produce periods of vibration varying in duration according to the momentary fuel requirement of the engine, and a normally closed valve in said fuel passage which valve is open only when said ultrasonic vibrations are applied to said nozzle body thereby to atomize fuel from said end face.
- valve is a solenoid valve.
- valve is movable in the nozzle body in the longitudinal direction of the nozzle so that the valve is opened by its inertia when the nozzle is longitudinally vibrated.
- valve seat is provided at the inlet to the nozzle passage and the valve is arranged to co-operate with said seat so as to be urged on to the seat by the pressure of the fuel fed to the nozzle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Fuel-Injection Apparatus (AREA)
- Special Spraying Apparatus (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB460972A GB1420313A (en) | 1972-02-01 | 1972-02-01 | Nozzles for the injection of liquid fuel into gaseous media |
| GB4071575A GB1556998A (en) | 1972-02-01 | 1975-10-04 | Fuel injection systems |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3884417A true US3884417A (en) | 1975-05-20 |
Family
ID=26239266
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US327905A Expired - Lifetime US3884417A (en) | 1972-02-01 | 1973-01-30 | Nozzles for the injection of liquid fuel into gaseous media |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US3884417A (cs) |
| DE (2) | DE2304525A1 (cs) |
| FR (1) | FR2326590A2 (cs) |
Cited By (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4000852A (en) * | 1975-03-05 | 1977-01-04 | Plessey Handel Und Investments A.G. | Fuel atomizers |
| US4013223A (en) * | 1974-07-16 | 1977-03-22 | Plessey Handel Und Investments A.G. | Fuel injection nozzle arrangement |
| US4060199A (en) * | 1975-10-01 | 1977-11-29 | Robert Bosch G.M.B.H. | Electromagnetic fuel injection valve |
| US4127087A (en) * | 1975-09-19 | 1978-11-28 | Plessey Handel Und Investments Ag | Electronic drive signal distribution arrangement for a fuel injection system |
| US4166605A (en) * | 1976-01-20 | 1979-09-04 | Plessey Handel Und Investments Ag | Device for metering liquids |
| US4389999A (en) * | 1980-08-18 | 1983-06-28 | Rockwell International Corporation | Ultrasonic check valve and diesel fuel injector |
| US4621771A (en) * | 1982-02-16 | 1986-11-11 | Taisan Industrial Co., Ltd. | Flow control nozzle |
| US4684104A (en) * | 1984-07-06 | 1987-08-04 | Solex and Regie Nationale des Uines Renault | Electrically controlled valve with piezoelectric effect |
| WO1990010469A1 (en) * | 1989-03-07 | 1990-09-20 | Karl Holm | An atomizing nozzle device for atomizing a fluid and an inhaler |
| US5025766A (en) * | 1987-08-24 | 1991-06-25 | Hitachi, Ltd. | Fuel injection valve and fuel supply system equipped therewith for internal combustion engines |
| US5197675A (en) * | 1991-02-11 | 1993-03-30 | Siemens Automotive L.P. | Fuel rail having rolling ball fuel injectors |
| US5366163A (en) * | 1993-09-02 | 1994-11-22 | Siemens Automotive L.P. | Fuel injector valve having a sphere for the valve element |
| US5801106A (en) * | 1996-05-10 | 1998-09-01 | Kimberly-Clark Worldwide, Inc. | Polymeric strands with high surface area or altered surface properties |
| US5803106A (en) * | 1995-12-21 | 1998-09-08 | Kimberly-Clark Worldwide, Inc. | Ultrasonic apparatus and method for increasing the flow rate of a liquid through an orifice |
| US5868153A (en) * | 1995-12-21 | 1999-02-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid flow control apparatus and method |
| WO1999008030A1 (de) * | 1997-08-12 | 1999-02-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Schnellschaltendes ventil |
| US5878960A (en) * | 1997-02-28 | 1999-03-09 | Rimrock Corporation | Pulse-wave-modulated spray valve |
| WO1999035423A3 (de) * | 1998-01-07 | 1999-08-07 | Dietmar Neuhaus | Schnellschaltendes ventil |
| US6020277A (en) * | 1994-06-23 | 2000-02-01 | Kimberly-Clark Corporation | Polymeric strands with enhanced tensile strength, nonwoven webs including such strands, and methods for making same |
| US6053424A (en) * | 1995-12-21 | 2000-04-25 | Kimberly-Clark Worldwide, Inc. | Apparatus and method for ultrasonically producing a spray of liquid |
| US6209563B1 (en) | 2000-01-07 | 2001-04-03 | Saturn Electronics & Engineering, Inc. | Solenoid control valve |
| US6321767B1 (en) | 2000-01-10 | 2001-11-27 | Saturn Electronics & Engineering, Inc. | High flow solenoid control valve |
| US6380264B1 (en) | 1994-06-23 | 2002-04-30 | Kimberly-Clark Corporation | Apparatus and method for emulsifying a pressurized multi-component liquid |
| US6395216B1 (en) | 1994-06-23 | 2002-05-28 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for ultrasonically assisted melt extrusion of fibers |
| US6450417B1 (en) | 1995-12-21 | 2002-09-17 | Kimberly-Clark Worldwide Inc. | Ultrasonic liquid fuel injection apparatus and method |
| US6543700B2 (en) | 2000-12-11 | 2003-04-08 | Kimberly-Clark Worldwide, Inc. | Ultrasonic unitized fuel injector with ceramic valve body |
| US6581634B2 (en) | 2000-01-10 | 2003-06-24 | Saturn Electronics & Engineering, Inc. | Solenoid control valve with particle gettering magnet |
| US6663027B2 (en) | 2000-12-11 | 2003-12-16 | Kimberly-Clark Worldwide, Inc. | Unitized injector modified for ultrasonically stimulated operation |
| US20040079424A1 (en) * | 2002-10-16 | 2004-04-29 | Masatoshi Takeda | Valve unit and fluid control chip |
| US20060102234A1 (en) * | 2004-11-17 | 2006-05-18 | David Meisel | Device for creating a pulsating flow of gas or fluid |
| US20090166274A1 (en) * | 2007-05-24 | 2009-07-02 | Eaton Corporation | Engine valve with a combined engine oil filter and valve actuator solenoid |
| US20110005604A1 (en) * | 2008-02-27 | 2011-01-13 | Fluid Automation Systems S.A. | Electrically actuated valve with a ball sealing element |
| RU2465965C1 (ru) * | 2011-10-06 | 2012-11-10 | Общество с ограниченной ответственностью "Центр ультразвуковых технологий АлтГТУ" | Способ управления процессом ультразвукового распыления |
| US20130299725A1 (en) * | 2011-02-10 | 2013-11-14 | Fluid Automation Systems S.A. | Electrically actuated valve with a sealing ball |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1471916A (en) * | 1974-03-14 | 1977-04-27 | Plessey Co Ltd | Fuel injection arrangements having vibrating fuel injection nozzles |
| GB1552419A (en) * | 1975-08-20 | 1979-09-12 | Plessey Co Ltd | Fuel injection system |
| US4132203A (en) * | 1977-03-17 | 1979-01-02 | The Bendix Corporation | Single point intermittent flow fuel injection |
| DE3124854C2 (de) * | 1981-06-24 | 1985-03-14 | Reinhard 8057 Eching Mühlbauer | Hochdruckeinspritzsystem mit Ultraschall-Zerstäubung |
| DE3942449A1 (de) * | 1989-12-22 | 1991-07-04 | Daimler Benz Ag | Kraftstoffeinspritzanlage fuer brennkraftmaschinen, insbesondere gemischverdichtende brennkraftmaschinen |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2410946A (en) * | 1943-04-10 | 1946-11-12 | Caterpillar Tractor Co | Fuel injection mechanism |
| US2949900A (en) * | 1958-06-02 | 1960-08-23 | Albert G Bodine | Sonic liquid sprayer |
| US3004720A (en) * | 1958-09-24 | 1961-10-17 | Bosch Gmbh Robert | Fuel injection valve arrangement |
| US3100084A (en) * | 1961-08-01 | 1963-08-06 | Gulf Research Development Co | Constant flow rate fuel injection nozzle |
| US3241768A (en) * | 1963-05-01 | 1966-03-22 | Ass Eng Ltd | Fuel injection valves |
| US3317139A (en) * | 1965-04-13 | 1967-05-02 | Simms Group Res Dev Ltd | Devices for generating and delivering mechanical vibrations to a nozzle |
| US3376027A (en) * | 1964-02-19 | 1968-04-02 | Univ California | Fuel atomizing carburetors |
| US3613649A (en) * | 1969-06-25 | 1971-10-19 | Plessey Co Ltd | Fuel injection systems for internal-combustion engines fed with a fuel-and-air mixture |
| US3731880A (en) * | 1971-10-08 | 1973-05-08 | Gen Motors Corp | Ball valve electromagnetic fuel injector |
| US3738578A (en) * | 1971-10-04 | 1973-06-12 | Gen Motors Corp | Permanent magnet armature valve |
| US3746257A (en) * | 1971-06-21 | 1973-07-17 | Plessey Handel Investment Ag | Fuel injection systems more particularly for liquid fuel burners |
-
1973
- 1973-01-30 US US327905A patent/US3884417A/en not_active Expired - Lifetime
- 1973-01-31 DE DE2304525A patent/DE2304525A1/de not_active Ceased
-
1976
- 1976-10-01 DE DE19762644464 patent/DE2644464A1/de not_active Withdrawn
- 1976-10-01 FR FR7629534A patent/FR2326590A2/fr active Granted
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2410946A (en) * | 1943-04-10 | 1946-11-12 | Caterpillar Tractor Co | Fuel injection mechanism |
| US2949900A (en) * | 1958-06-02 | 1960-08-23 | Albert G Bodine | Sonic liquid sprayer |
| US3004720A (en) * | 1958-09-24 | 1961-10-17 | Bosch Gmbh Robert | Fuel injection valve arrangement |
| US3100084A (en) * | 1961-08-01 | 1963-08-06 | Gulf Research Development Co | Constant flow rate fuel injection nozzle |
| US3241768A (en) * | 1963-05-01 | 1966-03-22 | Ass Eng Ltd | Fuel injection valves |
| US3376027A (en) * | 1964-02-19 | 1968-04-02 | Univ California | Fuel atomizing carburetors |
| US3317139A (en) * | 1965-04-13 | 1967-05-02 | Simms Group Res Dev Ltd | Devices for generating and delivering mechanical vibrations to a nozzle |
| US3613649A (en) * | 1969-06-25 | 1971-10-19 | Plessey Co Ltd | Fuel injection systems for internal-combustion engines fed with a fuel-and-air mixture |
| US3746257A (en) * | 1971-06-21 | 1973-07-17 | Plessey Handel Investment Ag | Fuel injection systems more particularly for liquid fuel burners |
| US3738578A (en) * | 1971-10-04 | 1973-06-12 | Gen Motors Corp | Permanent magnet armature valve |
| US3731880A (en) * | 1971-10-08 | 1973-05-08 | Gen Motors Corp | Ball valve electromagnetic fuel injector |
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4013223A (en) * | 1974-07-16 | 1977-03-22 | Plessey Handel Und Investments A.G. | Fuel injection nozzle arrangement |
| US4000852A (en) * | 1975-03-05 | 1977-01-04 | Plessey Handel Und Investments A.G. | Fuel atomizers |
| US4127087A (en) * | 1975-09-19 | 1978-11-28 | Plessey Handel Und Investments Ag | Electronic drive signal distribution arrangement for a fuel injection system |
| US4060199A (en) * | 1975-10-01 | 1977-11-29 | Robert Bosch G.M.B.H. | Electromagnetic fuel injection valve |
| US4166605A (en) * | 1976-01-20 | 1979-09-04 | Plessey Handel Und Investments Ag | Device for metering liquids |
| US4389999A (en) * | 1980-08-18 | 1983-06-28 | Rockwell International Corporation | Ultrasonic check valve and diesel fuel injector |
| US4621771A (en) * | 1982-02-16 | 1986-11-11 | Taisan Industrial Co., Ltd. | Flow control nozzle |
| US4684104A (en) * | 1984-07-06 | 1987-08-04 | Solex and Regie Nationale des Uines Renault | Electrically controlled valve with piezoelectric effect |
| US5025766A (en) * | 1987-08-24 | 1991-06-25 | Hitachi, Ltd. | Fuel injection valve and fuel supply system equipped therewith for internal combustion engines |
| US5099815A (en) * | 1987-08-24 | 1992-03-31 | Hitachi, Ltd. | Fuel injection valve and fuel supply system equipped therewith for internal combustion engines |
| WO1990010469A1 (en) * | 1989-03-07 | 1990-09-20 | Karl Holm | An atomizing nozzle device for atomizing a fluid and an inhaler |
| US5193745A (en) * | 1989-03-07 | 1993-03-16 | Karl Holm | Atomizing nozzle device for atomizing a fluid and an inhaler |
| US5197675A (en) * | 1991-02-11 | 1993-03-30 | Siemens Automotive L.P. | Fuel rail having rolling ball fuel injectors |
| US5366163A (en) * | 1993-09-02 | 1994-11-22 | Siemens Automotive L.P. | Fuel injector valve having a sphere for the valve element |
| US6020277A (en) * | 1994-06-23 | 2000-02-01 | Kimberly-Clark Corporation | Polymeric strands with enhanced tensile strength, nonwoven webs including such strands, and methods for making same |
| US6395216B1 (en) | 1994-06-23 | 2002-05-28 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for ultrasonically assisted melt extrusion of fibers |
| US6380264B1 (en) | 1994-06-23 | 2002-04-30 | Kimberly-Clark Corporation | Apparatus and method for emulsifying a pressurized multi-component liquid |
| US6053424A (en) * | 1995-12-21 | 2000-04-25 | Kimberly-Clark Worldwide, Inc. | Apparatus and method for ultrasonically producing a spray of liquid |
| US5868153A (en) * | 1995-12-21 | 1999-02-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid flow control apparatus and method |
| US6659365B2 (en) | 1995-12-21 | 2003-12-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid fuel injection apparatus and method |
| US6450417B1 (en) | 1995-12-21 | 2002-09-17 | Kimberly-Clark Worldwide Inc. | Ultrasonic liquid fuel injection apparatus and method |
| US6315215B1 (en) | 1995-12-21 | 2001-11-13 | Kimberly-Clark Worldwide, Inc. | Apparatus and method for ultrasonically self-cleaning an orifice |
| US5803106A (en) * | 1995-12-21 | 1998-09-08 | Kimberly-Clark Worldwide, Inc. | Ultrasonic apparatus and method for increasing the flow rate of a liquid through an orifice |
| US5801106A (en) * | 1996-05-10 | 1998-09-01 | Kimberly-Clark Worldwide, Inc. | Polymeric strands with high surface area or altered surface properties |
| US5878960A (en) * | 1997-02-28 | 1999-03-09 | Rimrock Corporation | Pulse-wave-modulated spray valve |
| WO1999008030A1 (de) * | 1997-08-12 | 1999-02-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Schnellschaltendes ventil |
| US5967485A (en) * | 1998-01-07 | 1999-10-19 | Deutsches Zentrum Fuer Luft- Un Raumfahrt E.V. | Quick-action valve |
| EP0928919A3 (de) * | 1998-01-07 | 1999-09-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Schnellschaltendes Ventil |
| WO1999035423A3 (de) * | 1998-01-07 | 1999-08-07 | Dietmar Neuhaus | Schnellschaltendes ventil |
| US6209563B1 (en) | 2000-01-07 | 2001-04-03 | Saturn Electronics & Engineering, Inc. | Solenoid control valve |
| US6321767B1 (en) | 2000-01-10 | 2001-11-27 | Saturn Electronics & Engineering, Inc. | High flow solenoid control valve |
| US6581634B2 (en) | 2000-01-10 | 2003-06-24 | Saturn Electronics & Engineering, Inc. | Solenoid control valve with particle gettering magnet |
| US20040016831A1 (en) * | 2000-12-11 | 2004-01-29 | Jameson Lee Kirby | Method of retrofitting an unitized injector for ultrasonically stimulated operation |
| US6663027B2 (en) | 2000-12-11 | 2003-12-16 | Kimberly-Clark Worldwide, Inc. | Unitized injector modified for ultrasonically stimulated operation |
| US6543700B2 (en) | 2000-12-11 | 2003-04-08 | Kimberly-Clark Worldwide, Inc. | Ultrasonic unitized fuel injector with ceramic valve body |
| US6880770B2 (en) | 2000-12-11 | 2005-04-19 | Kimberly-Clark Worldwide, Inc. | Method of retrofitting an unitized injector for ultrasonically stimulated operation |
| US20040079424A1 (en) * | 2002-10-16 | 2004-04-29 | Masatoshi Takeda | Valve unit and fluid control chip |
| US7163026B2 (en) * | 2002-10-16 | 2007-01-16 | Matsushita Electric Industrial Co., Ltd. | Valve unit and fluid control chip |
| US20060102234A1 (en) * | 2004-11-17 | 2006-05-18 | David Meisel | Device for creating a pulsating flow of gas or fluid |
| US20090166274A1 (en) * | 2007-05-24 | 2009-07-02 | Eaton Corporation | Engine valve with a combined engine oil filter and valve actuator solenoid |
| US20110005604A1 (en) * | 2008-02-27 | 2011-01-13 | Fluid Automation Systems S.A. | Electrically actuated valve with a ball sealing element |
| US9695946B2 (en) * | 2008-02-27 | 2017-07-04 | Fluid Automation Systems S.A. | Electrically actuated valve with a ball sealing element |
| US20130299725A1 (en) * | 2011-02-10 | 2013-11-14 | Fluid Automation Systems S.A. | Electrically actuated valve with a sealing ball |
| US9228671B2 (en) * | 2011-02-10 | 2016-01-05 | Fluid Automation Systems S.A. | Electrically actuated valve with a sealing ball |
| RU2465965C1 (ru) * | 2011-10-06 | 2012-11-10 | Общество с ограниченной ответственностью "Центр ультразвуковых технологий АлтГТУ" | Способ управления процессом ультразвукового распыления |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2644464A1 (de) | 1977-04-14 |
| FR2326590A2 (fr) | 1977-04-29 |
| DE2304525A1 (de) | 1973-08-16 |
| FR2326590B2 (cs) | 1979-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3884417A (en) | Nozzles for the injection of liquid fuel into gaseous media | |
| US4067496A (en) | Fuel injection system | |
| US3949938A (en) | Fuel atomizers | |
| US4974780A (en) | Ultrasonic fuel injection nozzle | |
| US3819116A (en) | Swirl passage fuel injection devices | |
| KR100342093B1 (ko) | 연료인젝터내의 와류발생기 | |
| RU2060402C1 (ru) | Клапан впрыска топлива для двигателей внутреннего сгорания | |
| US5199641A (en) | Fuel injection nozzle with controllable fuel jet characteristic | |
| US4105004A (en) | Ultrasonic wave fuel injection and supply device | |
| US4813610A (en) | Gasoline injector for an internal combustion engine | |
| JP4233754B2 (ja) | 加圧渦流型燃料噴射器の平頭ニードル | |
| US4000852A (en) | Fuel atomizers | |
| SU837334A3 (ru) | Топливна форсунка | |
| US6209806B1 (en) | Pulsed air assist fuel injector | |
| US5836521A (en) | Valve device with impact member and solenoid for atomizing a liquid | |
| US3746257A (en) | Fuel injection systems more particularly for liquid fuel burners | |
| JPH04165207A (ja) | 比例燃焼制御装置 | |
| WO1993023172A1 (en) | Valve device with impact member and solenoid for atomizing a liquid | |
| GB1420313A (en) | Nozzles for the injection of liquid fuel into gaseous media | |
| EP0302637B1 (en) | Fuel injector | |
| JPS63218273A (ja) | 液体霧化装置 | |
| JP2005042615A (ja) | 流体噴射弁 | |
| KR820000430B1 (ko) | 연료 주입장치 | |
| DE3870240D1 (en) | Electromagnetically-operated fuel injector for IC engine | |
| GB1355647A (en) | Liquid-fuel injection system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: EATON CORPORATION 100 ERIEVIEW PLAZA CLEVELAND, OH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PLESSEY OVERSEAS LIMITED;REEL/FRAME:004139/0101 Effective date: 19830607 |